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To the 4000 students who have taken my first-year circuits courses,
and thereby taught me a lot about circuits. Forgive me if I don’t
mention you by name.
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Preface

Some years ago I declared to my colleagues that I would never, ever, write a first
year textbook. So what happened?

What happened was that I could find no textbooks appropriate to the 20-lecture
course on circuits that I was teaching. Why? There were many reasons. Most
texts were far too large, heavy and expensive: 1000 pages? 2 kg? £70? No thanks.
Many were devoted exclusively to linear circuit theory, ignoring the many useful
circuits that my students would later encounter. Some decided to teach some of
the mathematics required: but my mathematics colleagues do that far better than
I. Others decided to treat the underlying physics: I prefer to make a well-defined
start with the relations imposed on currents and voltages by components and
connections (otherwise, where do you stop? Back emf? Schrödinger’s equation?).
Some authors are exhaustive (and exhausting): is it really necessary to teach mesh
analysis (which no one uses) to students who are not going to be dedicated circuit
theorists in later life?

So I prepared and modified my own ‘handout’ notes which, eventually, started
looking like the book I had been searching for. What you have in your hand
is essentially those notes, supplemented by quite a number of worked examples
which students always find useful and always request.

At the end of each chapter I have included useful problems with a selection
of answers. The remaining solutions can be found on a companion website at
www.wiley.com/go/spence circuit.

I used to teach mainstream electrical engineering undergraduates and I now
teach non-EE students, specifically those pursuing a course in Biomedical Engi-
neering. It may well be, therefore, that the book is particularly suited to ‘non-EE’
first-year students, though I suspect that it may still be useful as a supporting text
for mainstream EE undergraduates.

Robert Spence
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1
The Design Process

The principal reason for learning how to analyse the behaviour of a circuit is that
we shall eventually want to design one or try to understand one that has been
designed. So to provide a context for the entire book we look briefly at the design
process to see where the material of this book fits in and where it doesn’t.

Figure 1.1 provides an overview of the circuit design process. Someone (A),
somewhere – and it may be you, the circuit designer – needs a circuit designed.
You must therefore say what performance you want from the circuit: in other
words, you provide specifications (B) for its behaviour. The performance may,
for example, be the extent to which the voltage captured from an aerial must be
amplified to operate a loudspeaker. You, the circuit designer (C), must propose an
idea (D) for a circuit that will exhibit the required performance. This is the hard
part! You may achieve this by recalling a circuit designed earlier, and try to modify
it; or you may consult a book to find what might be a suitable circuit; or you may
ask a fellow engineer for ideas; or you may simply draw upon your experience of
circuit design and create a circuit from scratch.

The idea will usually be sketched as a circuit diagram on a piece of paper so that
it can be reviewed. But what then? There are three routes that may be followed.

One approach is to build the circuit (E) and then measure its performance (F).
The measured performance (G) can then be compared (H) with the customer’s
specification. If the two agree then circuit design might stop at that point. But it
would be remarkable if the first idea for a design were satisfactory. In that case you,
the designer (C) must decide how to modify (J) the circuit (or discard it and start
again). The circuit would be rebuilt, measured again, and its performance checked
against specifications. Again, the circuit may not work exactly as required, so the
loop C–D/J–E–F–G–H–C is traversed once more. Indeed, it would not be unusual
for this loop to be traversed many times in order to ensure a well-designed circuit.

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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2 THE DESIGN PROCESS
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THE DESIGN PROCESS 3

The approach we have just described is totally inappropriate if you are designing
an integrated circuit: the cost of manufacturing such a circuit is so high and,
moreover, would be multiplied many times if the first few attempts at design were
not satisfactory. In this case you would use one of the many available software
packages (L) to simulate the proposed circuit’s performance and compare that
prediction (G) with the specifications (H). Again, the design loop (here, C–D/J–
L–G–H–C) will probably be traversed a number of times until the simulated
circuit performance (G) satisfies the specifications (B). At that point, with some
degree of confidence, a decision may be made to manufacture the circuit.

A third approach is for the circuit designer to write down a mathematical model
(M) – normally a number of equations – describing the proposed circuit, and then
to solve those equations in order to find the proposed circuit’s performance (G).
Again, because the initially proposed circuit may not quite meet the specifications
an iterative process may be required.

In what way does this book prepare one to undertake design, and in what way
does it not? Its principal value relates partly to the transition from C to D: in other
words the process by which you, the designer, propose what you think might be a
suitable circuit. The material of this book, and especially the solution of problems,
should provide some experience relevant to this initial stage of the design process.
Another principal value of the book is that it shows how a circuit (D) can be
modelled (M) and then analysed to find its performance (G), thereby enabling a
wide variety of circuit performances to be investigated.

This book does not address the task of building a circuit (E) and measuring (F)
its behaviour: such skills are usually acquired in a laboratory course. Equally, it
does not address the task of using software (L) to simulate circuit performance:
again, special classes are often organized to introduce students to this task.
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2
Electronic Circuits

It is stating the obvious to say that electronic circuits are essential components of
computation, instrumentation, communication and many other vital systems. It is
therefore necessary for us to be able to determine how a given circuit will perform
and, of course, to be able to invent new circuits to perform new functions. The first
question is how we describe these circuits.

2.1 Voltage and Current

A circuit comprises a number of interconnected parts, each of which imposes its
own unique relationship between two electrical quantities – voltage and current.
It is these relationships, and their variety, which makes it possible for the creative
circuit designer to design many different useful circuits. Once we know how the
parts are connected to form a circuit we can then describe that circuit (essentially
a new ‘component’) in terms of the relationships that it now imposes upon its
voltages and currents.

What can we usefully say about these variables called ‘voltage’ and ‘current’? It
is sometimes helpful to draw an analogy between electrical and hydraulic systems:
electrical current is similar to the flow of water, and voltage is similar to water
pressure. Given a pipe in which water can flow (Figure 2.1), the rate of flow
will be governed by the difference in water pressure between its two ends. The
dimensions of the pipe will determine the relation between the water flow rate and
the difference in pressure between the two ends: a thinner tube will resist the flow
of water, whereas a wider one will allow the water to flow faster. In the same
way (Figure 2.2) an electronic component will determine the relation between the
voltage across it and the current through it.

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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6 ELECTRONIC CIRCUITS

water-filled pipe

pressure
difference
influences
flow

flow

water
pressure

water
pressure

Figure 2.1 Illustrating the water pressure/flow analogy of voltage and current

electrical component

source of electrical voltage

electric
current

Figure 2.2 Application of a voltage across a component causes a current to flow

It can also be helpful to ask exactly what electric current is. Briefly, and without
going into the physics involved,1 electric current is the movement, in a piece of
material, of those electrons within the material that are available for movement.
In materials such as copper, silver and most metals there are many free electrons,
so that a relatively small voltage will lead to a substantial current. Other materials
such as plastic and glass are known as insulators and have few free electrons, so
that only a miniscule current flows, even when a very high voltage is applied.
Conventionally, we use the name ‘current’ to refer to movement of electrons in
the opposite direction (Figure 2.3).

1 The omission of any mention of the physics underlying electrical behaviour is intentional. There are
various levels at which electrical behaviour can be described. The amplifier that connects your CD
to the loudspeaker can be described, at one extreme, as a ‘black box’ introducing a specific voltage
amplification, or by the various voltages and currents in its internal components, or by the physics
underlying the different components in the circuit. A line has to be drawn somewhere according to
the interest of the person dealing with the circuit. Our view in this book concerns analysis leading to
design, and it for this reason that the line is drawn above the physics.
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VOLTAGE AND CURRENT 7

electrical component

source of electrical voltage

electric
current

electron
flow

Figure 2.3 Negative free electrons are attracted to the positive potential of the source.
However, in all discussions of electrical circuits the conventional current is regarded as
flowing in the opposite direction

What is voltage? The obvious answer is that it is that which encourages the free
electrons to flow. In many cases a voltage is produced by chemical means, as in
conventional batteries: in others – as we shall see in Chapter 12 – it is produced
by an electronic circuit.

The difference between current and voltage can also be related to the way in
which they are measured. Current, measured in amperes (or simply amps), is
usually measured by an ammeter (Figure 2.4) through which the current to be
measured actually flows. Usually one wants to measure current without disturbing
the circuit within which it is connected – that is, without impeding the current in
any way. For this reason, ammeters are usually designed to have what is called
low impedance. Voltage, measured in volts, is usually measured (Figure 2.5)
by a voltmeter whose two terminals are connected to the points in the circuit
whose voltage difference is to be measured. As with the ammeter, to avoid the
connection of a voltmeter disturbing a circuit, voltmeters are designed to have a
high impedance – that is, they impede, as far as possible, the diversion of any
current through the voltmeter.

With the development of technology, present-day ammeters and voltmeters often
look a little different (Figure 2.6) from the ‘dial and pointer’ instrument. There is
also a frequent need to observe voltages and currents that are varying with time,
and it is here that the oscilloscope (Figure 2.7) finds application.

ammeter

I
rest of
circuit

rest of
circuit

Figure 2.4 An ammeter indicates the value of the current I flowing through it
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8 ELECTRONIC CIRCUITS

voltmeter

electrical component

rest of
circuitrest of

circuit

Figure 2.5 A voltmeter indicates the value of the voltage between two points in a circuit

Figure 2.6 A modern ‘multimeter’ capable of providing a digital indication of voltage and
other quantities

Figure 2.7 An oscilloscope allows time-varying voltages to be observed
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Point at which
voltage can be
measured

Current through
component

Point at which
voltage can be
measured

Electrical component

Voltage across component

Figure 2.8 Conventional indication of current and voltage associated with an electrical
component

We often need to discuss voltages and currents, and give them names. Currents
are denoted by arrows superimposed on the wire carrying that current (Figure 2.8),
while a voltage is indicated by an arrow stretching between the two terminals at
which voltage is measured (Figure 2.8). Further details about the meaning of the
arrows in Figure 2.8 will be provided when appropriate.

2.2 Power

There is another important electrical variable, called power. Power is the rate at
which energy is supplied to something. If we consider the ‘black box’ (called
‘black’ because we don’t know what’s inside it!) shown in Figure 2.9, where the
voltage between the box’s terminals is V and the current entering one terminal
and leaving the other is I , then physics tells us that energy is supplied to the box
at a rate equal to the product of V and I , this rate having the unit of watts. The
bulb from the headlight of a car may, for example, be rated at 48 watts, so if the
car’s voltage supply from its battery is 12 volts we know that the current flowing
in the bulb is 48 watts divided by 12 volts, which is 4 amps.

Black
 Box

I

I
V

Figure 2.9 Relevant to a definition of the supply of energy to a two-terminal black box
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10 ELECTRONIC CIRCUITS

For some components such as resistors, diodes and Zener diodes, V is always
positive if I is positive, so energy can only be supplied to these components – we
call them passive components because they cannot supply energy themselves. To
supply energy a component would have to be active, a property we discuss later.
What happens to the energy supplied to resistors and similar passive components?
It is dissipated as heat, and because heat can, if there is too much of it in a small
area, destroy a component, it is normal to have a maximum power rating associated
with a component.

2.3 Circuit Diagrams

The way in which components are connected together to form a circuit is usually
described by a circuit diagram, an example of which is shown in Figure 2.10. The
lines between the components indicate the wiring – the ‘connecting together’ – of
the components. The implication is that the voltage is the same at all points along
the wire. In other words, in Figure 2.10, similarly labelled parts of components and
wires (e.g., A, A, A.) are all at the same voltage. The black ‘blobs’ in the circuit
diagram of Figure 2.10 confirm the connection of wires at the points indicated.
Occasionally we use white blobs to indicate the points at which one circuit with a
well-defined function is connected – or available to be connected – to another.

A A A A

A A

Figure 2.10 A circuit diagram shows how components are connected together. Every point
(e.g., A) along a wire has the same voltage
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Overview: DC Circuits

If we’re going to design electrical circuits we must be able to predict how they
will behave: in other words, what their performance will be. That is why we first
study circuit analysis though we shall sometimes apply it to circuit design.

Circuit analysis is sometimes carried out by computers and sometimes by human
beings. The analysis of a large circuit such as an integrated circuit on a chip must
be carried out by computer if the result is needed without delay and must be free
from the sort of errors that human beings often make. But the human designer
of circuits must be able to analyse simple circuits, often ‘on-the-fly’ as he or she
designs them, often informally and without recourse to a computer, simply because
an ability to design relies heavily upon an ability to analyse.

We first consider what are called ‘DC circuits’ in which all currents and voltages
have constant values (DC = direct current). We start with linear resistive circuits
which contain two types of component, sources and resistors.

The behaviour of a DC circuit is governed by three sets of equations:

� Kirchhoff’s current law

� Kirchhoff’s voltage law

� Component current∼voltage relations: including Ohm’s law and the constant
values of current and voltage sources.

These sets of relations, which are linear and therefore straightforward to solve,
will be illustrated by the first circuit examples we meet. However, after one or two
informal attempts at the analysis of simple circuits we realise that there is a need
for a systematic method of analysis that can be applied straightforwardly by either
a human being or a computer to a circuit of any size. One such method is called the

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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12 OVERVIEW: DC CIRCUITS

nodal analysis method. Linearity also means that the principle of superposition
can sometimes simplify analysis, as can Thevenin’s theorem. The latter allows us
to represent a very complicated circuit by a simple combination of a source and a
resistor, thereby making later circuit analysis far simpler.

We then extend our study of DC circuits to include controlled sources, where a
voltage at one location in a circuit controls the current flowing in another part of
the circuit. The reason we study these ‘dependent sources’ is that we need them if
we are going to be able to explain what happens in an amplifier or switch. In fact,
you can regard transistors as attempts to realize controlled sources.

The advantages conferred by linearity disappear when a nonlinear component
such as a diode is part of a circuit. Nevertheless, we can cope with this problem by
using what is called the load-line approach to circuit analysis, an approach which
employs drawing rather than equation solution.

You may ask whether it is worth studying DC circuits in which all voltages are
constant and therefore never vary: they sound a little boring. The answer is ‘yes’,
for one very good reason among many. We shall find later that the analysis of much
more interesting circuits such as amplifiers employs precisely the same approach,
so that a knowledge of DC circuit analysis is a good investment.
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3
Circuit Laws and
Equivalences

To say that

‘a circuit is an interconnection of components’

seems rather pointless, but it is not. It is useful because it emphasises the fact that
interconnections and components are independent of each other, and described by
two different sets of equations. We consider components first in order to establish
the relations they impose upon their voltages and currents.

3.1 Components

Resistance

The linear resistor has two terminals and is so called in view of the linear relation
between the current that flows through it and the voltage across it. Measurement
of a resistor’s current and voltage might provide the graph shown in Figure 3.1,
depicting a linear relation between the two:

V = RI (3.1)

known as Ohm’s law. The constant R is called the resistance of the resistor. In the
example shown the value of R is 2 ohms (2�).

The straight line will not go on forever, since at high voltages and/or currents
the resistor will be destroyed. Nevertheless, because we design circuits to avoid

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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14 CIRCUIT LAWS AND EQUIVALENCES

voltage V 
(volts)

current I 
(amperes)

4

2

Figure 3.1 The result of measuring the current through, and the voltage across, a resistor

such destruction, we assume a linear relation and reap the benefit of the resulting
linear equations that may describe the circuit containing the resistor.

If the circuit designer is drawing a circuit diagram, the resistor whose relation
between current and voltage is shown in Figure 3.1 will be represented by the
symbol and associated value of resistance shown in Figure 3.2.

Conductance

We can rearrange Ohm’s law to get the equivalent relation:

I = GV (3.2)

where G is known as the conductance of the resistor, has the units of siemens and,
as seen from Equation (3.1), is the reciprocal of the resistance R. For the same
resistor whose voltage∼current relation is depicted in Figure 3.1 the conductance
is 0.5 siemens (0.5 S) and the symbolic representation of the resistor (Figure 3.3)
is the same as in Figure 3.2. In Figure 3.3 and henceforth in this book we omit the

IV

2 ohms

Figure 3.2 Symbolic representation of the resistor whose voltage∼current relation is
shown in Figure 3.1
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0.5 
siemens

Figure 3.3 Alternative symbolic representation of the resistor whose voltage∼current
relation is shown in Figure 3.1

reference voltage and current, it being understood that they are related as shown
in Figure 3.2 (with the reference current entering at the node where the voltage is
greater). The reason for considering two equivalent descriptions of a resistor – its
resistance and conductance – is that in circuit analysis one may be more convenient
to handle than the other.

Reference directions

Let’s return to the voltage and current associated with the resistor (Figure 3.2).
When analysing a circuit we will want to know, for example, not only the value of
the current flowing through a resistor, but its direction as well. And the problem is
that before we analyse a circuit we usually have no idea whatsoever of the directions
in which current will flow in the various components and which terminal of a
component will be at a higher voltage than the other. So we acknowledge this fact
and simply assign reference directions to current and voltage. Take, for example,
the resistor shown in Figure 3.4, which is connected to other components to form
a circuit. We do not know in which direction its current will flow so we arbitrarily
choose a reference direction indicated by an arrow, and call the current in that
direction I. If it turns out that the current does flow in that direction then I will
have a positive value, for example 2 A. If it turns out, however, that the current
actually flows in the opposite direction then I will have a negative value, and we

I

Figure 3.4 The reference direction for current can be arbitrary, and does not necessarily
indicate the actual direction of flow
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I =  – 2 amps 2 amps

Figure 3.5 If the value of I in Figure 3.4 is negative, that can be represented in either of
the two ways shown here

could indicate that in one of the two ways shown in Figure 3.5. A negative value
for I doesn’t mean that we have made a mistake: the arrow was only chosen to
indicate a reference direction, not the actual direction of the current flow.

The same comment applies to voltages. In general we do not know, before
analysing even the simplest circuit, which terminal of a component will be at a
higher voltage than the other. We therefore arbitrarily assign reference directions
(using the arrowhead to denote the higher voltage) and see afterwards if the voltage
is positive or negative with respect to that reference direction.

We denote the unit of voltage by V. However, to avoid possible confusion with
V denoting a variable, the term ‘volts’ is often employed in place of V.

Sources

An ideal voltage source is an electrical component characterized by the fact
that the voltage across it is constant, and independent of the value or direction
of the current flowing through it. Thus, if we could make measurements of the
current and voltage associated with an ideal voltage source we would get a result
like the example shown in Figure 3.6. It is important to realise that the current
can flow in either of the two possible directions. Consideration of a car battery

voltage V  
(volts)

current I 
(amperes)

6

Figure 3.6 The result of measuring the current through, and the voltage across, an ideal
voltage source
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6 V

Figure 3.7 Representation of an ideal voltage source of 6 V

(which approximates to an ideal voltage source) will show that this property is not
surprising: when starting the car a current flows ‘out of’ the battery to turn the
starter motor, but once the motor is running, current flows in the opposite direction
to charge the battery.

Conventionally, an ideal voltage source is represented by the symbol shown in
Figure 3.7. The larger of the two horizontal lines denotes the terminal which is
at the higher voltage. Corresponding to the example of Figure 3.6 a label – here
‘6 V’ – indicates the extent of the voltage difference.

A special case of an ideal voltage source is a short-circuit (Figure 3.8) whose
voltage is always zero, again irrespective of the current flowing through it. In fact,
we often use a short-circuit – in the form of a connecting wire - to ensure that
two points in a circuit have the same voltage. When looking at a circuit diagram,
therefore, one should be aware that the voltage has the same value at any point
along a line joining components.

The other ideal source we shall be concerned with is the ideal current source.
This component is characterized by the fact that the current through it is constant,
irrespective of the value and direction of the voltage across it. Thus, if we could
make measurements of the current and voltage associated with an ideal current
source we would get a result like the example shown in Figure 3.9. Conventionally,
an ideal current source is represented by the symbol shown in Figure 3.10. Cor-
responding to the example of Figure 3.9 a label – here ‘2 A’ – indicates the value
of the constant current, and the arrow forming part of the symbol indicates the
reference direction for current. Just as a short-circuit is a special case of an ideal
voltage source, ensuring that no voltage exists between two points in a circuit, an
open-circuit is a special case of an ideal current source in which no current flows
(Figure 3.11).

A car battery was quoted as an approximation to an ideal voltage source. An
ideal current source is frequently approximated in integrated circuits by means of
a transistor.

V

Figure 3.8 A short-circuit. The voltage V between the terminals is zero whatever the value
of the current through it
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voltage V
(volts)

current I 
(amperes)

2

Figure 3.9 The result of measuring the current through, and the voltage across, an ideal
current source

2 A

Figure 3.10 Representation of an ideal current source of 2 A

X

Y

Figure 3.11 There is an open-circuit between terminals X and Y, through which no current
can flow

Power

In Chapter 2 we introduced the concept of power, and stated that if a black box has
a voltage and current as shown in Figure 3.12, where V and I are both positive,
then the power supplied to the black box is VI watts. If the black box happens to
be a single resistor, then it is clear (see Figure 3.1) that V and I always have the
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Black
Box

V

I

I

Figure 3.12 The power supplied to a black box is the product of V and I provided the
current I enters at the terminal with the highest voltage (i.e., the positive reference for V )

same sign and therefore a resistor can only absorb power: it cannot supply it. For
that reason it is called a passive component. What happens to the energy supplied
to a resistor? It is dissipated as heat; in other words the temperature of the resistor
rises. Too much heat will destroy a resistor, which is why a given resistor will
carry a maximum power rating that should not be exceeded. Because we know the
relation (Equation 3.1) between V and I for a resistor we can write that the power
P supplied to a resistor is given by

P = VI = RII = I 2R

Alternatively, the power supplied

P = VI = VV/R = V 2/R

Since a voltage source is a two-terminal component we can say something about
its ability to supply or receive power (Figure 3.13a). As the characteristic of the

(a)

voltage V

voltage source
supplies energy

voltage source
receives energy

current I

resistor
receives energy

(b)

voltage V

resistor cannot
supply energy

resistor receives
energy

current I
resistor cannot
supply energy

Figure 3.13 A voltage source can supply energy because the product of V and I can be
negative. With a resistor the product of V and I is always positive, so it can only receive
energy



OTE/SPH
c03 JWBK236/Spence August 4, 2008 13:22 Char Count= 0

20 CIRCUIT LAWS AND EQUIVALENCES

voltage source shows, it is possible for the product of V and I to be negative and
energy to be supplied by the source: in view of this potential it is known as an
active component. It is also possible for the product of V and I to be positive,
with energy being supplied to the source, the component then acting in a passive
manner. This is consistent with our understanding of the familiar car battery as
an approximation to a voltage source: it delivers energy when starting the car and
receives it when it is being charged. Figure 3.13(b) provides a reminder of the fact
that, for a resistor, the product VI must always be positive, and energy can only be
absorbed.

3.2 Interconnections

We stated earlier that ‘a circuit is an interconnection of components’. Having
studied some simple components and the relations they impose upon their currents
and voltages we now examine the consequences of connecting them together.
There are two consequences, and both are described by laws first presented by the
mathematician Kirchhoff.

Kirchhoff’s current law

Let’s imagine (Figure 3.14) that three resistors are connected together within a
circuit so that they share a common terminal, often called a node. We do not know
in which direction the component currents will flow, so we arbitrarily choose all
the reference directions to describe currents flowing into the common terminal.
We call the values of those currents I1, I2 and I3. Kirchhoff’s current law tells us
that the sum of those currents is zero:

I1 + I2 + I3 = 0 (3.3)

I1 I2

I3

Figure 3.14 Three resistors are connected to the same terminal
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I1 = 3 A I2 = 5 A

I3 = −8 A

“Total current into a
node is zero”

(a) (b)

I1 = 3 A I2 = 5 A

I3 =  8 A

“Total current in equals
total current out”

Figure 3.15 Alternative expressions of Kirchhoff’s current law

In other words, the total current that flows into a node is equal to the total current
flowing out. For example, if I1 and I2 are positive, so that these currents flow into
the common node, then I3 will be negative, indicating that current flows away
from the common node through the lower resistor. If you find analogies helpful,
then imagine the resistors to be replaced by pipes carrying water, such that the
flow into their junction will equal the flow out of the junction.

Kirchhoff’s current law – usually abbreviated to KCL – applies not only to
three interconnected components, but to all the currents entering a node from any
number of components, and can be expressed generally as

∑

node

I = 0 (3.4)

In our illustrative example all the reference currents flowed into the node. KCL
applies equally if all the reference currents flow away from the common node.
When analysing a circuit you may find it convenient either to state that the sum of
the currents into a node is zero (Figure 3.15a) or, equivalently, to say that the total
current flowing in is equal to the total current flowing out (Figure 3.15b). Note
that KCL does not make any reference to the components carrying the various
currents: it is concerned only with their interconnection. Indeed, the rectangular
symbols shown in Figure 3.14 need not represent resistors: they could equally well
represent lumps of cheese.

Kirchhoff’s voltage law

Figure 3.16 shows part of a circuit. We shall assume that we have no knowledge
of the currents and voltages in the circuit so we arbitrarily name the various
component voltages as VA, VB and VY as shown, and we have used VX to denote
the voltage between two nodes that are not directly connected by a component.
Kirchhoff’s voltage law – usually abbreviated to KVL – tells us that if we trace
a connected sequence of reference voltages that forms a loop (for example, VA,
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VB

VA
VX

VY

Figure 3.16 A closed loop is formed by the voltages VA, VB, VX and VY

VB, VX and VY) then the sum of all those voltages, taking reference directions into
account, is equal to zero. Thus, for the example of Figure 3.16,

VA + VB + VX + VY = 0 (3.5)

To emphasize the need to be careful about signs we examine another circuit (Figure
3.17). Paying attention to voltage reference directions, the application of KVL to
this circuit will yield

VC − VD + VR − VS = 0 (3.6)

It is very important to note that the voltages involved in an expression of KVL
need not be voltages measured directly across components: see, for example, VX in
Figure 3.16 and VS in Figure 3.17. It is also important to realise that, like KCL, KVL
makes no reference to components; it is concerned only with interconnections. In
the examples of Figures 3.16 and 3.17 the components are resistors; they could
equally well be a mixture of resistors and sources.

VR

VC

VD
VS

Figure 3.17 Four voltages forming a closed loop within a circuit
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Table 3.1 Summary of the relations describing DC circuits

FEATURES OF 
A CIRCUIT

Components

Connection
at a node

Connection
to form a loop

SYMBOLIC
REPRESENTATION

RELATION

Ohm’s Law
constant V
constant I

Kirchhoff’s
Current Law (KCL)

Kirchhoff’s
Voltage Law (KVL)

Just as Kirchhoff’s current law can be expressed generally, so can KVL, as

∑

loop

V = 0 (3.7)

where we use the term ‘loop’ to denote any closed connection of voltages.

Summary

To emphasize the fact that a DC circuit containing only sources and linear resistors
is described by only three sets of relations we provide Table 3.1. There is a second,
and very important reason for providing this table. When we later come to consider
AC circuit behaviour (Chapters 9–11) and change behaviour (Chapters 12, 13) we
shall find that they are described by the same type of relations as for DC circuits,
thereby immensely simplifying the task of understanding and analysis.

3.3 Equivalence

Very often we find, in a circuit, two resistors connected in series (Figure 3.18)
and it helps enormously if we can represent that connection as a single resistor. A
similar situation arises when two resistors are connected in parallel (Figure 3.19).
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R1

R2

Figure 3.18 The series connection of two resistors. Note that there is nothing else con-
nected to point X

R1 R2

Figure 3.19 The parallel connection of two resistors

To find the value of a single resistor which has the same electrical characteristic
as two resistors in series we assume (Figure 3.20) that the current through R1 is I .
All of this current must also flow through R2 (there is nowhere else for it to go – a
simple application of KCL at node X). From Ohm’s law we know that the voltages
across R1 and R2 are R1 I and R2 I , respectively. Using KVL we can also write

V = R1 I + R2 I = (R1 + R2)I (3.8)

R1

R2

X

R1 I

R2 I

V =

(R1 +R2) I

I

Figure 3.20 Derivation of the equivalent resistance of two resistors connected in series
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G2G1

G2VG1V

I = (G1+G2)V

V

Figure 3.21 Derivation of the equivalent conductance of two resistors connected in parallel

We therefore have a ‘new component’ indicated by the shaded area in Figure 3.20
whose relation between voltage V and current I (Equation 3.8) is identical in form
to Ohm’s law and therefore describes a resistor having a value of R1 + R2, the sum
of the two original resistances. Therefore, wherever two resistors are connected in
series they can be replaced by a single equivalent resistor. Note, however, that the
equivalence depends upon the same current flowing through R2 as flows through
R1. As a consequence, if anything were to be connected to the node X in Figure
3.20 and draw current from it, the replacement of the two series-connected resistors
by a single equivalent resistor would not be valid.

In the same way it can be shown that two resistors in parallel can be replaced by
a single equivalent resistor (Figure 3.21). In terms of conductance, the equivalent
conductance is simply the sum of the two separate conductances. Thus,

Geq = G1 + G2 (3.9)

If one prefers to work in terms of resistance the expression for the equivalent
resistance is

Req = 1/Geq = R1 R2/(R1 + R2) (3.10)

where R1 = 1/G1 and R2 = 1/G2.

3.4 Simple Circuit Analysis

To illustrate the application of the three sets of relations (Table 3.1) describing DC
circuits we examine four simple circuits. They are not trivially simple, because
they illustrate concepts that will be needed when predicting the behaviour of more
complex circuits.
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Example 3.1

Here (Figure 3.22) we have two ideal sources connected together, and we have
to find the value of the current I through the voltage source and the voltage V
across the current source. The reference directions of V and I have been chosen
arbitrarily.

6 volts
V

I
2 amps

Figure 3.22 The circuit analysed in Example 3.1

The current I must take on the value −2 A because the current source is a
statement that the current flowing in it, and therefore through the voltage source,
is fixed at 2 A irrespective of the voltage across the current source. The minus sign
occurs because we have arbitrarily chosen the reference direction for I as shown
in the figure. Similarly, the voltage V across the current source is defined by the
voltage source to be 6 V because the voltage source is connected directly across
the current source. Recall that in this ideal circuit there is no voltage drop across
the wires joining the two sources.

Example 3.2

In Figure 3.23 we have two ideal current sources connected to a resistor and we
want to find the voltage V across the resistor. We first invoke KCL at the node

V

2 Ω

5 A

X
I

3 A

Figure 3.23 Pertinent to Example 3.2
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I

VA

R1

R2

(a)

V

(b)

I

V
R1�R2

Figure 3.24 Pertinent to Example 3.3

X to find the current I (= 5 − 3 = 2 A) flowing in the resistor. Now applying
Ohm’s law we find the voltage V = −2 A × 2� = −4 V. Again, the minus sign
arises from our choice of reference direction for V . The minus sign of V means
that the voltage at point X is higher than the voltage at the other terminal of the
resistor.

Example 3.3

The simple circuit of Figure 3.24(a) will often be encountered within the circuits
we examine. Let us suppose that we have to calculate the value of the voltage VA

across the resistor R2. To do that using Ohm’s law we need to know the current
through R2. That current I is also the current through R1. To find I we can replace
the series connection of R1 and R2 by a single resistor of value R1 + R2 (Figure
3.24b). The value of I now follows from Ohm’s law:

I = V/(R1 + R2) (3.11)

Knowing I , we can now go back to Figure 3.24(a) and use Ohm’s law to find VA:

VA = R2 I = V [R2/(R1 + R2)] (3.12)

This relation is worth remembering because the circuit of Figure 3.24(a), often
referred to as a ‘voltage divider’, is widely used.
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Example 3.4

What can be called the ‘dual’ of the circuit in Example 3.3 is shown in Figure
3.25(a): a current source feeding into two resistors connected in parallel. To find
the currents I1 and I2 we can proceed as follows. First we replace the two parallel
resistors by a single equivalent resistor as shown in Figure 3.25(b). According to
Equation (3.10) the value of that resistor is 6 × 3/(6 + 3) = 2�. A current of 6 A
flowing through that resistance will, by Ohm’s law, create a voltage V given by

V = 6 × 2 = 12V

I2 (a)

6 Ω I1

V

6 A

3 Ω

(b)

V

2 Ω

6 A

Figure 3.25 Pertinent to Example 3.4

Now that we know the voltage V we can return to the original circuit of Figure
3.25(a) and use Ohm’s law to find I1 (=12 V/6� = 2 A) and I2 (=12 V/3� = 4 A).
As a check (always useful to carry out!) we note that the sum of these currents is
6 A, thereby confirming that KCL is obeyed at the junction of the two resistors
and the current source.

The circuit of Figure 3.25(a) is useful to clear a misconception that frequently
occurs. It is often erroneously thought that ‘the current takes the path of least
resistance’, whereas it simply divides in keeping with the three circuit laws of
Table 3.1. There is no way that an ‘intelligent’ current looks ahead and then
decides what route to take.

3.5 Problems

Simple circuit analysis

Problem 3.1

Figure P3.1 contains 20 components and simple circuits. For each one find the
unknown current and/or voltage as indicated with a question mark.
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V =?

6 V

I=?

10 V

I=?

V =?
I=?2 mA 4 mA I=?V =?

(a) (b) (c) (d)

1 k

V=?

3 mA

4 mA

10 V

I=?

V =?

(h)(g)

4 mA 2 mA
I=?

(f)

6 V 8 V

V =?

(e)

1 k

I=?

6 Volts

6 Volts

V =? V =?

1 k2 k

4 mA

2 mA

V =?

6 V
7 k

V =?

5 mA

3 mA

V =?

7 k

(i) (j) (k) (l)

4 k

2 k

V =?

V =?

4 mA

2 k

4 mA
2 k

6 V

I= ?

(m) (n) (o)

2 k

k4

6 mA

I = ?

I = ?

V =?

I=?

8 V

7 k
4 mA

V = ?

5 mA

I=?

2 V

V =?

3 mA

V =?

I=?

3 V

2 k

2 k

V =?

I =?

6 V

(p)

(q) (r) (s) (t)

6 V

Figure P3.1
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Problem 3.2

A current source and a voltage source are connected in parallel with a resistor as
shown in Figure P3.2. Calculate: (a) the current I through the resistor; and (b) the
current I * through the voltage source. If the connection of the current source is
now reversed and its value changed to 10 mA, what are the new values of I and
I ∗?

10 V

II*

1 k
20 mA

Figure P3.2

Problem 3.3

A current source and a voltage source are connected in series with a resistor as
shown in Figure P3.3. Calculate: (a) the voltage V across the resistor: and (b) the
voltage V ∗ across the current source. If the connection of the voltage source is
reversed, what are the new values of V and V *?

10 V

1 k20 mA

V * V

Figure P3.3

Problem 3.4

What is the total resistance between nodes A and B in the circuit of Figure P3.4 ?

3 k 3 k 3 k

A

B

Figure P3.4
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Problem 3.5

By using appropriate equivalence relations find the value of the currents IA and
IB in the circuit of Figure P3.5.

12 V

1 k
10 k

3 k

6 k

4 k

6 k

4 k

IA

IB

Figure P3.5

Problem 3.6

For the circuit shown in Figure P3.6 find the values of the voltages V1 and V2.

30 V

3 k

6 k

6 k

12 k

V1

V2

Figure P3.6

Problem 3.7

Find the values of the voltages V1 and V2 in the circuit of Figure P3.7.



OTE/SPH
c03 JWBK236/Spence August 4, 2008 13:22 Char Count= 0

32 CIRCUIT LAWS AND EQUIVALENCES

1 k

1 k

17 k 2

2 mA

2 mA

V1

V2

Figure P3.7

Problem 3.8

Find the values of the voltages V1 and V2 in the circuit of Figure P3.8.

V1

V2
10 V

1 mA
2 k

2 k

Figure P3.8

Problem 3.9

Calculate the power delivered to the 12 k� resistor in the circuit of Figure P3.6,
the ‘horizontal’ 1 k� resistor in the circuit of Figure P3.7 and the right-hand 2 k�

resistor in the circuit of Figure P3.8.

Problem 3.10

Part of a circuit is shown in Figure P3.10. Find the values of I1, I2 and V .

V
I1

I2

3 4

3 amps

2 amps

−8 amps

Figure P3.10
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Problem 3.11

In the circuit shown in Figure P3.11 device X requires 4 V at 1.5mA and device
Y operates at 2 V and 1 mA. The two devices are to be operated from a single 9 V
battery as shown. Design the circuit – in other words, specify appropriate values
of R1 and R2.

R

9 V

1

R2

X

Y

Figure P3.11
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4
Circuit Analysis

In the exercises of the previous chapter our analysis was eased by the fact that
the circuits were simple, so that spotting the correct sequence in which to apply
circuit laws and equivalences was not too difficult. But in real life circuits are
not simple, and spotting the correct approach to analysis has much in common
with solving a fiendish SuDoKu puzzle or The Times crossword. What we need
(as human beings) is a systematic approach that is foolproof and can be applied
mechanically. If a computer is to be used to predict circuit performance, as is
often the case, then it too requires a systematic approach to circuit analysis. The
principal systematic approach is called nodal analysis: it is described below and
illustrated by application to the circuit of Figure 4.1.

4.1 Nodal Analysis

Consider the circuit of Figure 4.1, a circuit which is sufficiently complicated that
it would be extremely difficult to analyse in the ad hoc manner we adopted in
Chapter 3.

We first establish how many different voltages there may be in the circuit –
and therefore how many we must find by analysis – by removing the components
and leaving the connections (Figure 4.2). Since connecting wires are assumed to
have zero resistance (so that the voltage at any point along them is the same), we
use the shading shown in Figure 4.2 to identify areas of constant voltage. We call
these areas ‘nodes’. We see from Figure 4.2 that for the circuit of Figure 4.1 there
are four different parts, each of which can have a unique voltage. If we connect
one probe of a voltmeter to one of these nodes (Figure 4.3) there are three different

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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3 mA1 mA

2 mA

1 kΩ 3 kΩ 5 kΩ

4 kΩ2 kΩ

Figure 4.1 The circuit to be analysed

voltages that can be measured in the circuit by the other probe: Figure 4.3 shows
one of those voltages being measured.

If we want to talk about the voltages in the circuit we need some reference for
voltage, otherwise the statement ‘the voltage at this point is 4 V’ will be met with
the question ‘4 V with respect to what?’ So, mindful of Figure 4.3, we choose
one node of the circuit to have zero voltage. We indicate our choice of voltage
reference point either by connecting an ‘earth’ symbol as shown in Figure 4.4 or by
labelling the node ‘0 V’. This is the first of only four steps involved in systematic
circuit analysis.

We then label the remaining three nodes (e.g., A, B and C in Figure 4.4) to
indicate which voltages – measured with respect to the reference node – must
be found by analysis. In labelling the remaining nodes we have indicated which
voltages remain to be calculated. Indeed, to remind ourselves that it is the voltage
between a node and the reference node that is of interest, we use an arrow to
indicate the voltage reference direction and a label (e.g., VA) to give a name to that

Figure 4.2 The identification of circuit nodes for the circuit of Figure 4.1
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voltmeter

Figure 4.3 The measurement of a voltage

voltage. We have now completed the second of the four steps involved in circuit
analysis. We should note that the three voltages we have identified in Figure 4.4
will not necessarily be positive in value in the reference directions shown.

The third step in systematic circuit analysis involves the application of KCL at
the nodes (here A, B and C) associated with the as-yet-unknown voltages VA, VB

and VC. Let us take node A first. There are four components connected to A and
therefore four currents to add up and set equal to zero. We shall arbitrarily choose
to sum the currents flowing into node A. Two of the four currents are supplied by
current sources: their values are 1 and 2 mA. By Ohm’s law the current entering
node A via the 2 k� resistor is the voltage across that resistor (VB – VA) divided
by 2 k�. The current entering node A via the 1 k� resistor is –VA/1 k�, the minus

3 mA 

B CA

VA VB

VC

1 mA

1 kΩ 3 kΩ 5 kΩ

4 kΩ2 kΩ

2 mA

Figure 4.4 The selection of a voltage reference point and the identification of other nodal
voltages
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sign arising because the current flowing out of node A through the 1 k� resistor
is VA/1 k�.

If we add together the four currents entering node A we can express KCL at
that node in the form

KCL @ A (IN)

1 mA + 2 mA + (VB − VA)

2 k�
− VA

1 k�
= 0 (4.1)

We use the shorthand KCL@A(IN) simply to avoid making mistakes, because it
is very easy to make sign errors if you forget that you are summing currents going
into node A rather than currents going out. Because an alternative to the set of
units [A, V, �] is [mA, V, k�] we can rewrite Equation (4.1) as

1 + 2 + (VB − VA)

2
− VA = 0 (4.2)

We next express KCL for node B, again choosing to sum currents flowing into
that node:

KCL @ B (IN)

−2 + (VA − VB)

2
+ (VC − VB)

4
− VB

3
= 0 (4.3)

Finally, we apply KCL at node C to obtain:

KCL @ C (IN)

3 + (VB − VC)

4
− VC

5
= 0 (4.4)

These three equations, obtained by applying Kirchhoff’s current law at the three
nodes whose voltages are unknown, are called the nodal voltage equations – or
simply the nodal equations – for the circuit of Figure 4.4.

We have the same number of equations as unknown voltages, and the equations
are linear in those voltages, so they can be solved by conventional means (e.g.,
successive elimination). To make the solution process easier it is often convenient
to rewrite Equations 4.2 to 4.4 in the form:

−1.5VA + 0.5VB = −3

0.5VA − 0.75VB + 0.25VC = 2 (4.5)

0.25VB − 0.45VC = −3
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In the fourth step of systematic analysis, successive elimination applied to this
set of equations will show that

VA = 1.75 V, VB = −0.75 V and VC = 6.25 V

It is important to note that once we know the values of VA, VB and VC we
can easily find all the component voltages, and hence currents, in the circuit. For
example (see Figure 4.4), the current flowing to the left in the 4 k� resistor is

(VC − VB)/4 = (6.25 + 0.75)/4 = 1.75 mA

Voltage sources

The systematic analysis of a circuit becomes a little more difficult when voltage
sources are present in the circuit, although the four steps involved are the same.
To illustrate the procedure involved we select the circuit of Figure 4.5 as an
example.

5 Ω 4 Ω

12 Ω15 V

X Y

2 A 4 A

Figure 4.5 A circuit containing a voltage source

In order to avoid any confusion regarding the two connection points X and
Y which, of course, are at the same voltage, it can be helpful (Figure 4.6) to
redraw the circuit and use a single connection point to represent the node. As with
the previous example we first select, arbitrarily, a voltage reference node: this is
indicated by the earth symbol in Figure 4.7. We then label the other nodes W, A
and B, as shown in Figure 4.7.

5 Ω 4 Ω

12 Ω15 V

2 A 4 A

Figure 4.6 The circuit of Figure 4.5 redrawn to emphasize the circuit nodes
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5 Ω

15 V

2 A 4 A

4 Ω

12 Ω

W A B

Figure 4.7 A voltage reference node has been chosen and other circuit nodes labelled

At this point we notice that the voltage VW is already specified as –15 V: we
therefore do not need to solve equations to find it. The voltages VA and VB are the
‘unknowns’ whose value must be found by applying KCL at nodes A and B and
solving the resulting nodal equations.

Let us take node A first. There are three components connected to A and
therefore three currents to add up and set equal to zero. We shall arbitrarily choose
to sum the currents flowing into node A. By Ohm’s law the current (labelled I1 in
Figure 4.8) entering node A via the 5� resistor is the voltage across that resistor
(−15 – VA) divided by 5 �. The current I2 entering node A via the current source
is simply 2 A. The third current I3, entering node A via the 4 � resistor, is again
obtained from Ohm’s law. The voltage across the 4 � resistor in the reference
direction shown is VB − VA so that the current is (VB − VA)/4. If we add I1, I2

and I3 together we can express KCL at node A in the form

KCL @ A (IN)

(−15 − VA)

5
+ 2 + (VB − VA)

4
= 0 (4.6)

We then express KCL for node B though arbitrarily choosing to sum currents
flowing out of B:

AI1

I2

I3

5 Ω VA VB

–15 – VA VB –VA
B

–15 4 Ω

2 A

Figure 4.8 Illustration of the application of KCL at node A of the circuit of Figure 4.7
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KCL @ B (OUT)

(VB − VA)

4
+ VB

12
+ 4 = 0 (4.7)

Equations (4.6) and (4.7) are the nodal equations for the circuit of Figure 4.7. By
simple elimination we obtain VA and VB:

VA = −320/21 V, VB = −164/7 V

Once we know VA and VB we can easily find all the component voltages, and
hence currents, in the circuit. For example (see Figure 4.7), the current flowing to
the left in the 4 � resistor is (VB − VA)/4 = (−164/7 + 320/21)/4 = −2.05 A.

Example 4.1

There are situations in which the choice of unknown nodal voltages may not be
obvious. Let us, for example, work with the same circuit as before (Figure 4.7),
but assume that the node previously labelled A has been chosen as the reference
node, as indicated in Figure 4.9. This is a perfectly valid choice of reference node,
but the nodes whose voltages with respect to the reference are unknown need to
be identified with care. We might first choose node X because no voltage source is
connected directly to it, thereby identifying VX as an unknown voltage. We could
also choose node Y since there is no direct connection to the reference node via a
voltage source: VY is the voltage at node Y with respect to the reference node. But
what about node Z? The voltage VZ is not an unknown voltage because, once VY

is known, so is VZ because VZ = VY – 15. Thus, having identified the unknown
nodal voltages VX and VY, systematic analysis of the circuit of Figure 4.5 for the
choice of reference node shown in Figure 4.9 would now proceed by applying

4 Ω
12 Ω

2 A

X

Y

Z
VX

4 A
VY15 V

5 Ω

Figure 4.9 Preparation for the analysis of the circuit of Figure 4.7, using a different choice
of reference node
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KCL at nodes X and Y to obtain two linear equations (nodal voltage equations)
in VX and VY which can easily be solved. The results will be identical with the
earlier analysis except, of course, that VX − VY will have the same value as VB

and VY will be equal to −VA.

4.2 Superposition

Systematic circuit analysis, leading to nodal voltage equations, is not the only
method of analysis, even though it has advantages. Another method which may
offer an attractive alternative can be illustrated by examining the numerical terms
on the right-hand sides of Equations 4.5, the nodal voltage equations describing
the circuit of Figure 4.4. The term –3 on the right hand side in the first of the three
equations is due to the addition, at node A, of the 1 and 2 mA sources. The term
2 in the second equation is due to the 2 mA source connected to node B. And the
–3 term in the third equation in (4.5) is due to the 3 mA source connected to node
C. If you solve the nodal voltage equations (4.5) by multiplying each equation
by an appropriate constant and adding the results (i.e., by successive elimination)
you will find that VA, for example, is directly proportional to each of the sources
contributing to the right-hand sides of (4.5). In other words, we could express VA

in the form

VA = a(1 mA) + b(2 mA) + c(3 mA) (4.8)

where a, b and c are constants. For the moment it does not matter what the values
of these constants are. What is significant is that Equation (4.8) shows that we can
calculate VA by means of three simpler analyses. In the first (Figure 4.10a) we
replace the 2 mA source by an open-circuit (so that b is multiplied by zero) and
the 3 mA source also by an open-circuit (so that c is multiplied by zero), creating
a circuit we can analyse to find that component of VA due to the 1 mA source.
We then analyse another circuit (Figure 4.10b) in which the 1 mA source in the
original is replaced by an open-circuit (so that a is multiplied by zero) and the
3 mA source by an open-circuit (so that c is multiplied by zero), creating another
circuit we can solve to find VA, the VA due solely to the 2 mA source. We repeat
this process to find the value of VA due to the 3 mA source. The principle of
superposition now enables us to add the three separately calculated values of VA

together to find the actual value of VA in the circuit of Figure 4.4.
As stated, this method of circuit analysis is based on the superposition principle,

which states that in any system in which there is a linear relation between sources
and responses, the response of a system to a number of simultaneous sources is
the sum of the responses to each source applied separately. In our example the
sources were current sources and the response was the voltage VA.
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VA

1 mA

4 kΩ

5 kΩ3 kΩ

2 kΩ

1 kΩ

4 kΩ

5 kΩ3 kΩ

2 kΩ

1 kΩ

4 kΩ

5 kΩ3 kΩ

2 kΩ

1 kΩ

VA

2 mA

3 mA

VA

A

A

A

(a)
Analyse to find the
value of VA due to
the 1 mA source

(b)

Analyse to find the
value of VA due to
the 2 mA source

(c)
Analyse to find the
value of VA due to
the 3 mA source

Figure 4.10 Illustration of the use of the superposition principle to find the voltage VA at
node A in the circuit of Figure 4.4. The three calculated voltages are added together to find
the actual value of VA.
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Example 4.2

To illustrate the superposition principle, and at the same time show how voltage
sources are handled, we employ the circuit of Figure 4.7 previously analysed by
the systematic method: we can thereby compare both the ease of analysis and the
results. Our aim is to find the value of the voltage VA.

Following the scheme just discussed we generate, from the circuit of interest
(Figure 4.11a) three separate circuits (Figure 4.11b, c and d), each associated with
one of the three sources acting alone. From Figure 4.11(b) we see, by applying
the voltage divider principle, that the component of VA due to the 15 V source is
–80/7 V. From Figure 4.11(c) we find that the component of VA due to the 2 A
source is 160/21 V. And from Figure 4.11(d) we find that the component of VA

due to the 4 A source is –80/7 V. The superposition principle allows us to find the
actual value of VA in the circuit of Figure 4.11(a) by adding those components to
get –320/21 V, the same result we achieved by systematic analysis.

A reasonable question at this stage is ‘which is the best approach to use?’
Each has advantages. Systematic analysis has the advantage that one only needs
to follow some well-defined steps, hopefully minimizing the likelihood of error.
Superposition may offer, in some circumstances, the possibility of analysing a
small number of simple circuits.

4.3 Thevenin Equivalent Circuit

There is a third approach to circuit analysis which offers considerable advantages
in many situations. Let us suppose (Figure 4.12a) that we have a complex circuit,
here denoted N, which is connected by its two external terminals to a simple
external circuit, here a single resistor of value R. N might be the HiFi amplifier
that lets you listen to music, or an operational amplifier of the sort treated later
in Chapter 6. In the first case the resistor R might represent a loudspeaker; in the
second it might be a single resistor. In both cases our principal interest may be in
the voltage V and current I associated with the resistor R, and not at all with the
voltages and currents internal to N. Now imagine that we need to know the voltage
V across R as we vary R over a range of (say) 20 values. To find those voltages we
could use systematic analysis 20 times, but that would take a great deal of effort.
Fortunately a theorem due to Thevenin, a French engineer, drastically reduces the
effort involved by allowing us to represent the circuit N by (Figure 4.12b) a voltage
source VOC in series with a resistor RO. Then, the voltage V across the load R
can easily be found (e.g., by voltage divider action) even if we have to repeat that
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(a)

(b)

(c)

(d)

redraw equivalence

VA

A5 Ω 4 Ω

15 V

2 A

4 A

12 Ω

A5 Ω

15 V

4 Ω

12 Ω

A

16 Ω
2 A

A

2 A

2 A

A

80/21 Ω

4 A

AA

12 Ω

4 A VA
144/7
volts

Apply superposition

5 Ω

5 Ω

4 Ω

12 Ω

VA

VA

5 Ω 4 Ω 4 Ω

5 Ω 5 Ω

4 Ω
12 Ω

VA
V

VA VA

By the voltage divider principle:

             VA =−15(16/21) = −80/7 volts

redraw equivalence

By Ohms law VA=2×80/21

By Ohms Law V = 4(108/21) = 144/7 volts
By voltage divider principle VA = (5/9)(144/7) = −80/7 volts

By Superposition, actual VA in the circuit of Figure  4.6 = –80/7 + 160/21 – 80/7 = –320/21 volts

Figure 4.11 Illustrating the use of superposition to analyse circuit behaviour
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N V

I
equivalence

(a) (b)

R

I

Thevenin equivalent 
of circuit N

V
VOC

ROR

Figure 4.12 A linear circuit N can be represented by a Thevenin equivalent circuit con-
sisting of a voltage source and a resistor

calculation 20 times. The new ‘box’ containing VOC and RO is called the Thevenin
equivalent of the circuit N. The only question that remains, of course, is how to
find the values of VOC and RO. Two calculations are involved, as described below,
and are immediately illustrated by an example.

To find VOC

The voltage VOC in the Thevenin equivalent of a circuit is the voltage that appears
at the terminals of the original circuit when nothing is connected to it (Figure
4.13a): in other words, when N is on open-circuit. VOC can be determined by any
method of analysis.

To find RO

The resistance RO – often called the output resistance of the circuit N – is found
by creating a new circuit (Figure 4.13b), which is identical with N except that we
assign zero values to all independent sources. In other words we replace any ideal
voltage source by a short-circuit and any ideal current source by an open-circuit.
The value of RO is then the resistance between the two external terminals of this
new circuit.

The computational effort required to find VOC and RO is roughly equivalent
to that associated with two circuit analyses, so if the voltage across R in Figure
4.12(a) is to be found for four or more values of R a considerable saving of effort
is possible. The Thevenin equivalent circuit in Figure 4.12b is in a real sense a
model of the circuit N, so we may often refer to a Thevenin model of a circuit. To
clarify the calculation of a Thevenin model we use a simple circuit for illustration.
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VOCN R ON
(a) (b)

with all sources
set to zero

Figure 4.13 Calculations required to find the two parameters defining a Thevenin equiva-
lent circuit

Example 4.3

So that we can check our example we use the same circuit (see Figure 4.7)
employed in Examples 4.1 and 4.2, and assume that the circuit whose Thevenin
model we require is that shown shaded in Figure 4.14(a). In other words the 4
� resistor is the resistance R of Figure 4.12(a), and we are interested only in the
voltage across that resistor, not in any other voltage or current inside the shaded
region.

We first calculate the voltage VOC using the circuit of Figure 4.14(b). It is not
necessary to undertake a nodal analysis because we can see that: (a) the current
of 4 A flows solely in the 12 � resistor, setting up a voltage of 48 V; and that (b)
the 2 A source creates, across the 5 � resistor, a voltage of 10 V which, when
added to −15 V provides a voltage of −5 V. The addition of 48 and –5 V yields
an open-circuit voltage VOC of 43 V.

To find RO we replace the current sources by open-circuits and the voltage
source by a short-circuit to generate the circuit of Figure 4.14(c). The resistance
between the two external terminals is easily seen to be 17 �.

These two calculations, of VOC and RO, now allow us to represent the circuit of
Figure 4.14(a) by the Thevenin model of Figure 4.14(d). If we now reconnect the
4 � resistor (Figure 4.14d) we can easily find the current through it in the direction
from right to left:

I = −VOC/(RO + 4) = −43/21 = −2.05 A

This result checks with the systematic analysis carried out earlier and leading to
Equations (4.6) and (4.7), from which we calculated the current through the 4 �

resistor to be −2.05 A.
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To summarize, the use of a Thevenin model is appropriate when the internal
behaviour of a circuit is of no interest and only one voltage or current in an external
circuit is of concern.

4.4 Norton Equivalent Circuit

A useful alternative to the Thevenin model is the Norton equivalent circuit. Just as
a two-terminal circuit composed of linear resistors and sources can be modelled
by an ideal voltage source in series with a resistor (Figure 4.15a), it can also be
modelled by an ideal current source in parallel with a resistor (Figure 4.15b). The
two models are, in fact, simply related, making their use in circuit analysis rather
flexible.

Given the parameters VOC and RO of a Thevenin model, it is a simple matter to
find the parameters ISC and R of the equivalent Norton model. The ideal current
source in the Norton model is denoted by ISC because it is the current that would
flow in a short-circuit connected between the two terminals. If we connect a short-
circuit between the terminals of the Thevenin model of Figure 4.15(a) the current
that flows is found, by Ohm’s law, to be VOC/RO. Thus, if the Norton and Thevenin
models are equivalent,

ISC = VOC/RO (4.9)

We can find the value of R in the Norton model by equating the open-circuit
voltage of each model, VOC for the Thevenin model and ISC R for the Norton
model. Thus:

VOC = ISCR (4.10)

Comparison of Equations (4.9) and (4.10) shows that

R = RO (4.11)

VOC

RO

ISC

RO

(a) (b)

Figure 4.15 The Thevenin (a) and Norton (b) equivalent circuits that can model a linear
circuit
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Conversion from one model to the other is therefore straightforward: the resis-
tances are identical, and Equation (4.9) allows one source value to be derived from
the other.

4.5 Problems

Systematic circuit analysis

Problem 4.1

For the circuit of Figure P4.1, and for the indicated choice of voltage reference
node, apply KCL at node A. Hence find the value of the voltage VA. Does your
answer agree with the simple application of Ohm’s law to the current and voltage
of the resistor?

A

VA

10

2 A

Figure P4.1

Problem 4.2

For the circuit of Figure P4.2, and for the indicated voltage reference node, use
nodal analysis to find the voltage VB.

VB

B

2 A
10

Figure P4.2



OTE
c04 JWBK236/Spence August 4, 2008 12:41 Char Count= 0

PROBLEMS 51

Problem 4.3

For the circuit shown in Figure P4.3 a reference node has been chosen. Apply
KCL at nodes A and B to obtain the nodal voltage equations. Solve these to find:

(1) VA and VB (show them on the circuit diagram)

(2) The voltage across the 2 k� resistor

(3) The currents in all resistors

A B

1 mA

1 k

2 k

3 k

Figure P4.3

Now check that the currents entering each node obey Kirchhoff’s current law.

Problem 4.4

Using the same circuit and choice of reference node as in Figure P4.3 apply KCL
at node A and at the reference node. Do you obtain two nodal voltage equations
in VA and VB that can be solved to find these two voltages?

Problem 4.5

Redraw the circuit of Figure P4.3 by combining the series connection of the
1 k� and 2 k� resistors into a single equivalent resistor. How many unknown
voltages are there now? Write down the nodal voltage equation for this new circuit
and solve it to find the single nodal voltage. Does it agree with the value of
VB you found in Problem 4.3? Now use the voltage divider principle to find the
voltage across the 1 k� resistor. Does that agree with the value of VA found in
Problem 4.3?

Problem 4.6

For the circuit of Problem 4.3 (Figure P4.3) choose a different reference node and
find the new nodal equations. Solve them and check that the result agrees with the
result of Problem 4.3.



OTE
c04 JWBK236/Spence August 4, 2008 12:41 Char Count= 0

52 CIRCUIT ANALYSIS

Problem 4.7

Choose a reference node for the circuit of Figure P4.7 and obtain the corresponding
set of nodal voltage equations.

4 mA2 mA

1 mA

4 k2 k

1 k 5 k

Figure P4.7

Problem 4.8

Write down, but do not solve unless you wish, the nodal voltage equations for the
circuit of Figure P4.8. Any node can be selected as the reference node.

8 k
1 mA

2 k

4 k

1 k

5 V

2 mA

Figure P4.8

Superposition principle

Problem 4.9

For the circuit shown in Figure P4.9 use the superposition principle to find the
value of the voltage V .

V

3

6
4 A9 V

Figure P4.9
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Problem 4.10

Use the superposition principle to find the value of the voltage across the 12 k�

resistor in the circuit of Figure P4.10. Note the crossover, indicating an absence of
connection, near the centre. Also note that one resistor has intentionally not been
assigned a value!

3 k

6 k

12 k

1 mA

6 V

Figure P4.10

Problem 4.11

For the circuit of Figure P4.11 find one value of the current I * for which the
current I will fall between the limits of 0.4 and 0.6 mA.

2 k

2 k

4 V

I*
I

Figure P4.11

Thevenin and Norton equivalent circuits

Problem 4.12

For the circuit within the grey box in Figure P4.12 find both the Thevenin and
Norton equivalent circuits. If a 1.6 k� resistor were to be connected between A
and B what current would flow through it? Perform this calculation using both
equivalent circuits.
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A

B

4 k

6 k

10 V

Figure P4.12

Problem 4.13

Find the Thevenin equivalent circuit of the circuit within the grey box in Figure
P4.13.

If a voltage source of 12 V were to be connected between A and B, making A
positive with respect to B, what current would flow from that source into terminal
A?

A

B

5 k 5 k

4 mA

8 V

Figure P4.13

Problem 4.14

For the Thevenin model shown in Figure P4.14(a), plot the relation between the
external voltages V and I , indicating clearly the value of the intersections on
both current and voltage axes. Now do the same for the Norton model of Figure
P4.14(b) using the same scales for voltage and current.

VOC

RO

I

V

I

V

RO
ISC

(a ) (b)

Figure P4.14
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5
Controlled Sources and
Nonlinear Components

There is another type of electrical component with which we must be familiar if
we are to understand – and help to design – the rich collection of functions that
circuits can perform. They are known as controlled sources. To select the specific
example we shall be concerned with in this chapter, they enable a voltage in one
part of a circuit to control the current in another part.

5.1 Voltage-controlled Current Source

The symbol for a voltage-controlled current source (or VCCS as we shall call it)
is shown in Figure 5.1. The VCCS has two pairs of terminals: the voltage across
one pair controls the current between the other pair. Figure 5.2 shows the form of
the relation between voltage and current, a form that is described by the simple
equation

I = GV ∗ (5.1)

where G, which clearly has the dimensions of conductance, is known as the mutual
conductance to distinguish it from the conductance of a resistor which relates the
current through a component directly to the voltage across the same component.
Note that, as with the independent current source introduced in Chapter 3, the
current in a VCCS is independent of the voltage across it, as is evident from
Figure 5.2 and Equation (5.1).

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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VV* I=GV*

Figure 5.1 Representation of a voltage-controlled current source

We call a VCCS a dependent source simply because the current depends for its
value upon a voltage elsewhere in the circuit, and to distinguish it from the inde-
pendent sources (the ideal current source and the ideal voltage source) introduced
in Chapter 3.

Typically, the idea of a VCCS seems a little unreal: ‘What is there between the
voltage V * and the current source in Figure 5.1?’ is a question frequently asked.
One answer is that the VCCS is a model, but then the question is ‘a model of
what?’. One device for which the VCCS is a reasonably accurate model is the
transistor which, of course, appears in its millions in many everyday electronic
devices. Though the transistor on its own is not discussed in this book (though it
is a vital component of operational amplifiers which are – see Chapters 6, 7 and
8) we show in Figure 5.3 the symbol for a transistor and the measured relation

V* = 1 volt

V* = 2 volts

V* = 3 volts

V* = 4 volts

V* = –1 volt

V* = –2 volts

V* = –3 volts

V* = –4 volts

I (amps)

4G

3G

2G

G

–G

–2G

–3G

–4G

V (volts)

Figure 5.2 The voltage–current characteristics of a voltage-controlled current source
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IC

VCE

VBE

VBE

VCE

IC

C

B

E

Figure 5.3 The symbol for a transistor, with terminals E (emitter), B (base) and C
(collector) and the (sketched) measured characteristics showing the control of the current
IC by the voltage VBE

between what are called the collector current IC and the base–emitter voltage VBE.
Under certain conditions (e.g., with VCE sufficiently large) the characteristics of a
transistor approximate to that of a VCCS.

Why do we need the concept of controlled sources? Without them we could
not easily model, analyse or design circuits such as amplifiers and switches. Their
importance in general is emphasized by the fact that they are so-called active
components. We recall from Chapter 3 the discussion of power, and saw that
(Figure 5.4a) the power supplied to a component is the product of its voltage V
and its current I , provided that the reference directions for V and I are as shown in
Figure 5.4a. Since, for a resistor, the signs of V and I are always the same (Figure
5.4b), the resistor cannot be a source of power. However, if we examine the VCCS
(Figure 5.4c) we see that the product of V and I can be negative, showing that the
VCCS can supply power. For this reason it is classed as an active component.

Black 
 Box

V

I

I

(a)

Power supplied to box � VI

I

V
VI<0

VI<0

V *

(c)

I

VVI>0

(b)

VI>0

Figure 5.4 (a) The condition for a component to be passive; (b) a resistor is passive: it
cannot supply energy; (c) a VCCS is said to be active because it can supply energy if it is
operating in the appropriate shaded region
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5.2 Analysis of Circuits Containing VCCSs

Because the VCCS is a linear component (see Equation 5.1) the analysis of a circuit
containing a VCCS can proceed in exactly the same way as for the DC circuits
with which we are familiar, as an example will show. However, the presence of
a VCCS does introduce some features of which we have to be aware when, for
example, making use of superposition or creating Thevenin or Norton models, as
we shall soon see.

Example 5.1

The circuit of Figure 5.5 contains one VCCS as well as two independent sources.
Using the systematic method of circuit analysis introduced in Chapter 4 we first
select the voltage reference point: this has been indicated by the earth symbol in
Figure 5.5. In the second step we identify the location of the unknown voltages:
again, these have been indicated by the labels A and B at the nodes whose voltage
values with respect to the reference are VA and VB, respectively. In the third step
we simply apply KCL at these two nodes (here we have (arbitrarily) chosen to sum
currents leaving the nodes):

KCL @ A (OUT):

(VA − 20)

5
− 0.2(VA − VB) + (VA − VB)

4
= 0

Note that we have immediately substituted VA − VB for V * because, in the two
nodal equations we expect to obtain, we want only two unknowns. Rearranging
the above equation we obtain:

1.25VA − VB/4 = 20 (5.2)

20 V
0.2 V *

5 Ω 4 Ω

12 Ω
2 A

A B
V *

VA
VB

Figure 5.5 The circuit analysed in Example 5.1. It contains one voltage-controlled current
source whose mutual conductance is 0.2 A/V (i.e., 0.2 S)
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KCL @ B (OUT):

−2 + VB

12
+ (VB − VA)

4
= 0

which can be arranged in the form

−VA/4 + VB/3 = 2 (5.3)

Equations (5.2) and (5.3) are the nodal voltage equations for the circuit of Figure
5.5. Because we have two equations in two unknowns we can solve them to obtain
VA (=344/17) and VB (=360/17) and, therefore, all the voltages and currents in
the circuit.

From Example 5.1 we see that we do not need to modify the systematic method
of circuit analysis to cater for the presence of VCCSs. It is useful to note, however,
that the VCCS did not contribute to the right-hand side of the nodal equations: the
‘20’ In Equation (5.2) corresponds to the independent 20 V source, and the ‘2’ on
the right-hand side of Equation (5.3) arises from the independent 2 A source. It is
because the VCCS is a dependent source that it contributes only to the left-hand
side of the nodal voltage equations.

Certain rules have to be followed when either superposition is used to analyse
a circuit or a Thevenin or Norton model has to be derived, as we discuss below.

Superposition

When using the principle of superposition only the independent sources should
be taken in turn as the single source within the circuit. The dependent VCCS
should be ‘left alone’ and treated as part of the circuit to which each source is
applied. Some idea of the reason for this rule can be gleaned from the fact that,
as Example 5.1 has demonstrated, the VCCS does not contribute to the right-hand
side of the nodal equations: it was on the basis of Equation (4.8) that we saw, in
Example 4.2 that, for the circuit of Figure 4.6, the value of VA could be derived
by considering, separately, each source which contributes to the right-hand side
of the nodal equations. The example below will show how superposition can be
applied to a circuit containing a VCCS.

Example 5.2

For each of the two independent sources in the circuit of Figure 5.5 we have
created, in Figure 5.6, the circuits needed to apply the superposition principle.
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20 V 
0.2 V * 

5 Ω 4 Ω

12 Ω

A B
V *

V A

(a)

0.2 V*

5 Ω 4 Ω

12 Ω
2 A

A B
V *

V A

(b)

Figure 5.6 Circuits prepared for application of the superposition principle to the analysis
of the circuit of Figure 5.5. From (a) it is found that the component of VA due to the
independent 20 V source is 320/17 volts. From (b) it is found that the component of VA due
to the independent 2 A source is 24/17 V. Superposition allows us to state that the actual
value of VA in the circuit of Figure 5.5 is 320/17 + 24/17 = 344/17 V

Systematic circuit analysis shows that for circuit (a) the component of VA due to
the 20 V source is 320/17 V. The analysis of circuit (b) shows that the component
of VA due to the 2 A source is 24/17 V. Superposition then allows us to say that
the actual value of VA is 320/17 + 24/17 = 344/17 V, which agrees with the value
calculated in Example 5.1.

Thevenin models

The difference in treatment of dependent and independent sources also extends
to the development of Thevenin models. To calculate the parameter VOC of a
Thevenin model we simply carry out a conventional circuit analysis. However,
when RO is to be calculated, and all independent sources are set to zero, dependent
sources such as VCCSs are left untouched.

In Example 5.3 below we demonstrate the derivation of a Thevenin model for a
circuit containing a VCCS. We again select the circuit of Figure 5.5 for illustration
so that a comparison can be made with Examples 5.1 and 5.2.

Example 5.3

We assume in this example that, for the circuit of Figure 5.5, the Thevenin model
being sought is that describing the circuit connected to the 12 � resistor: in other
words, we seek the Thevenin model of the circuit within the grey area as shown
in Figure 5.7.

We proceed, first, to find the open-circuit voltage VOC, simply by analysing the
circuit (a) shown in Figure 5.8. It is found by nodal analysis to be 30 V.
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20 V
0.2 V * 

5 Ω 4 Ω
12 Ω

2 A

V *

Figure 5.7 The circuit of Figure 5.5 rearranged to show that part for which a Thevenin
model is to be found

We now find the parameter RO by (b) setting to zero all independent sources
within the circuit to be modelled, but leaving the VCCS untouched. To find the
resistance RO between the external terminals we apply a current of 1 A and
calculate the resulting voltage V . Analysis reveals that the voltage V is 5 V. The
combination of a current of 1 A and a voltage of 5 V identifies a resistance of 5 �

between the two terminals.

(a)

20 V
0.2 V *

5 Ω 4 Ω

2 A

V *

V OC

RO
V 1 A

0.2 V * 

5 Ω 4 Ω

V *

(b)

Figure 5.8 The two analyses required to find the Thevenin parameters VOC and RO of the
circuit bounded by the grey box in Figure 5.7 (a) VOC is found by analysis to be 30 V;
(b) RO = V/1 A is found by analysis to be 5 �
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5 Ω 12 Ω

30 V

Figure 5.9 Use of the Thevenin model of the circuit of Figure 5.7 to calculate the voltage
across the 12 � resistor. If the 12 � resistor is replaced by another resistor having a different
value only a very simple calculation is involved, invoking Ohm’s law

As shown in Figure 5.9 we can now use the simple Thevenin model we have
derived to calculate the voltage across the 12 � to be 30 (12/17) V = 360/17 V, a
result which agrees with the calculations carried out in Examples 5.1 and 5.2.

Sometimes, when forming the circuit required for the calculation of RO, it
happens that the controlling voltage of a VCCS occurs directly across the terminals
of the controlled current source, as in Figure 5.10. To simplify analysis, it can be
useful to recognize that this situation represents a simple resistor!

GV*

V *
G

is equivalent to

Figure 5.10 A VCCS whose controlling voltage appears directly across the controlled
current source is equivalent to a resistor of appropriate value

5.3 Nonlinear Components

All our discussion up to now has been about components described by linear
equations, and the consequent ease with which a circuit containing those compo-
nents can be analysed. But we know that many components such as diodes and
transistors are not linear, so the question arises as to how to approach the analysis
of circuits containing those devices. Certainly, all the many advantages that accrue
from linearity are now gone if even a single nonlinear component is present: a new
approach to analysis must be found.
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N
V

I

(a) (b)

I

V

N
RO

VOC

Linear circuit
containing
resistors, VCCSs,
and independent
sources

nonlinear
component

is equivalent to

nonlinear
component

Figure 5.11 (a) A circuit containing one nonlinear component whose voltage and current
are of interest; (b) a representation of the linear part of the circuit by a Thevenin model

Load-line construction

To illustrate an approach that is useful if there is one nonlinear component in
a circuit we represent the circuit as shown in Figure 5.11(a), with the nonlinear
component connected externally to a circuit (N) that is linear. However, we know
that a linear circuit can be represented by a Thevenin model, so we reformulate
the problem as shown in Figure 5.11(b).

To analyse the circuit of Figure 5.11(b) we split it into two parts, as shown in
Figure 5.12. Consider the right-hand part first, the nonlinear component. A plot
of its current–voltage characteristic is shown. Now consider the left-hand part,
the circuit N. When the two parts are reconnected to form the circuit of Figure
5.11(a) the voltage V and the current I will be common to both parts, and therefore
we designate the voltage of N to be V and its current to be I , but in the same

II

VOC

slope
= –1/RO

(a) (b)

V
RO

VOC

N
I

nonlinear
component

I

V

V V

Figure 5.12 Separation of the linear and nonlinear parts of the circuit in Figure 5.11, and
their characterization by current∼voltage plots
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I

Voc

I*

V*
V

Figure 5.13 The point I, V must lie on both characteristics, and hence at their intersection
(I*,V*)

direction as with the nonlinear component: this is important. The current∼voltage
characteristic of N, using the chosen reference directions for V and I , is as shown
in Figure 5.12(a) and, as expected, is linear.

Connection of the two parts to obtain the circuit of Figure 5.11(b) has the
following consequence. The point (I ,V ) describing the nonlinear component must
lie on the nonlinear characteristic shown in Figure 5.12(b), but the same point
(I ,V ) describing the circuit N also lies on the linear characteristic shown in Figure
5.12(a): it must therefore occur at the intersection of the two characteristics, as
shown in Figure 5.13. The intersection identifies the current I * and the voltage
V * which are the values of I and V in the original circuit of Figure 5.11(b). Thus,
by using the same axes to draw the V –I characteristics of the two parts of the
circuit, we have found the values of voltage and current.

Conventionally, the straight line in Figure 5.11(a) is called a ‘load-line’. The
graphical method of analysis demonstrated above is valid only if there is a single
nonlinear component in the circuit.

5.4 Problems

Circuits containing VCCSs

Problem 5.1

For the circuit of Figure P5.1 calculate the value of the voltage V .

V *
4 V

0.5 V* amps

10 V

Figure P5.1
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Problem 5.2

The circuit of Figure 5.8(a) is reproduced as Figure P5.2. Analyse the circuit to
find the value of the voltage VOC.

20 V

0.2 V *

5 4

2 A

V *

VOC

Figure P5.2

Problem 5.3

Choose any value for V * and calculate the value of the current I in the circuit of
Figure P5.3. Would the current be any different in value if the VCCS were to be
replaced by a resistor of value 100�?

V * 0.01 V * amps

I

Figure P5.3

Problem 5.4

The circuit of Figure 5.8(b) is reproduced here as Figure P5.4. Find the value of
the resistance RO between the terminals of the grey box.

0.2 V*

5 4

V*

Figure P5.4
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Problem 5.5

The circuit shown in Figure P5.5 contains one voltage-controlled current source
having a mutual conductance of 0.2 mA per volt, in addition to an independent
voltage source and an independent current source.

3 volts

V

0.2V mA

1 kI

1 k

6 mA

A B

Figure P5.5

By using the superposition principle calculate the value of the current I flowing
through the upper 1 k� resistor.

Derive the Thévenin equivalent circuit of the circuit below terminals A and B
and hence calculate the current flowing in the upper 1 k� resistor.

Find the same current by using the Norton model of the circuit below the
terminals A and B.

The upper 1 k� resistor is now removed and a voltage source of 4.5 V is
connected between terminals A and B such that A is more positive than B. Calculate
the current that will flow in this voltage source.

Problem 5.6

Find the Thévenin equivalent circuit of the circuit within the grey box in Figure
P5.6. The circuit contains a voltage-controlled current source.

20 volts

1 k

V mA

V

1 k

Figure P5.6
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Problem 5.7

For the circuit shown in Figure P5.7 find the Thévenin equivalent circuit with re-
spect to terminals A and B. Also, find the corresponding Norton equivalent circuit.

5 k

2 k 2 k
5V* mA

V*

A B

Figure P5.7

Load-line construction

Problem 5.8

The circuit shown in Figure P5.8(a) has application to the generation of a well-
regulated voltage supply and is discussed in detail in Chapter 12. The nonlin-
ear component X is described by the current∼voltage relation shown in Figure
P5.8(b).

10 k X

20 V

10 k

V

I

V

I

1

2

(volts)

(mA)

5

(a) (b)

Figure P5.8

By means of a load-line construction find the value of V and I in the circuit of
Figure P5.8(a).

If the right-hand 10 k� resistor is now replaced by one having a resistance of
5 k�, what are the new values of V and I ?
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Problem 5.9

The circuit of Figure P5.9(a) contains a nonlinear component known as a Zener
diode, and forms the basis of a circuit introduced in Chapter 12. A good approxi-
mation to its V ∼I relation is shown in Figure P5.9(b).

V

R

Zener
diode Zener

diode

8 V

(a)

V
I

V

20

40

–20

–40

–60

–80

–100

–120

(mA)
I

(volts)

–5–10

(b)

Figure P5.9

A limitation to the performance of this circuit is set by the maximum power
rating of the Zener diode which, if exceeded, will lead to irreversible damage due
to heating. The maximum power that can be absorbed by the diode and dissipated
as heat is 300 mW (i.e., in Figure P5.9b the product VI must be less than or equal
to 300 mW).

On the plot provided in Figure P5.9(b) sketch the boundary of permissible power
dissipation

Sketch, on the same plot, the load line corresponding to the minimum permis-
sible value of R (i.e., the smallest value of R that will keep the intersection of the
load-line and the Zener characteristic within the allowed region). Calculate this
minimum value of R.

If the minimum value of R is used in the circuit of Figure P5.9(a), calculate the
power dissipated by the resistor R.
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Overview: Operational
Amplifiers

An extremely valuable, inexpensive and useful component is the operational am-
plifier, henceforth referred to as the opamp. As the name suggests it performs
amplification, but the potential it offers is far wider. It is very economical to
manufacture, especially in integrated circuit (IC) form.

The variety of operations that the opamp can help to provide is extensive, ranging
from amplification to switching and the generation of many different waveforms.
In this book we shall examine some of them.

One advantage of the opamp as far as its study and its use in circuit design
is concerned is its simplicity. It has two input terminals, and it is the difference
in voltage between these terminals that controls a single output voltage. For this
reason it is often referred to as a differential amplifier. To operate satisfactorily two
additional terminals must be connected externally to sources of constant voltage.
The current required by the two input terminals is so small (of the order of 10−12A)
that, in this book, it is justified to assume these currents to be zero without the risk
of serious error in our analyses.

Typically, an opamp is made up from a large number of transistors, resistors
and a few capacitors, but this detail will not concern us. We shall view the opamp
as a ‘black box’ described by the relation between its input voltage (the difference
between the voltages at its two input terminals) and its output voltage.

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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6
The Operational Amplifier

In previous chapters we confined our attention to circuits containing linear resis-
tors, independent voltage and current sources and simple nonlinear components,
all of which can be approximated by available components. We then extended our
investigation to include voltage-controlled current sources which, though ideal,
are useful for modelling certain components. We now add another component,
the operational amplifier, to the selection available to the circuit designer. Its
availability makes possible a very wide range of useful circuits.

6.1 Properties of the Operational Amplifier

The operational amplifier (opamp) has five terminals and can be represented
symbolically as shown in Figure 6.1. Two of the terminals, marked with circled
plus and minus signs, are connected directly to supply voltages (i.e., essentially
constant voltages) which are essential to the correct functioning of the opamp.
There are two input terminals between which a voltage VI is applied and this
input voltage controls the output voltage VO. All the voltages VO, V + and V– are
measured with respect to earth.

If measurements are made and corresponding values of VI and VO are noted, the
relation between input and output voltages will be of the form shown in Figure 6.2.
Over a very small range of VI – from about −100 mV to +100 mV – the relation
between input and output voltages is linear and has a high slope – as much as
104 to 106. Thus, in that region around the origin the opamp is acting as a voltage
amplifier with a very high gain. Outside what we shall call this ‘linear region’
the output voltage is constant (at either VS or −VS) and unaffected by the input
voltage. The existence of two regions in which VO is constant is useful in digital

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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VI

VOV�

V�

voltage
supply

voltage
supply

Figure 6.1 The voltages associated with an operational amplifier

circuits based on components exhibiting two states. The voltages +VS and −VS

are usually within 2 or 3 V of the positive and negative supply voltages.
If, during measurements, the currents entering the input terminals were ob-

served, they would be found to be extremely small – of the order of picoamps. In
many applications it can safely be assumed that no current enters these terminals,
and that assumption will be made in this book.

The symbolic representation shown in Figure 6.1 will normally be simplified to
that shown in Figure 6.3 in which the power supply connections are not shown. It
is simply assumed by anyone seeing that representation within a larger circuit di-
agram that the appropriate power supply connections are intended. The advantage
is a simplified circuit diagram. The only disadvantage is that one might be tempted
to apply Kirchhoff’s current law to the currents entering the three visible terminals

VO (volts)

VI (volts)

VS

�VS

Figure 6.2 The form of the relation between the input VI and output VO voltages of an
opamp
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VO

V�

V�

VI

Figure 6.3 The conventional representation of an opamp

in Figure 6.3, in which case it would be erroneously concluded that no current can
flow out of the output terminal because none flows into the input terminals. The
error comes from ignoring the currents flowing to and from the voltage supplies.

Because, in the central linear region, the output voltage is proportional to the
difference VI between the two input voltages V + and V−, the opamp is often
referred to as a differential amplifier.

In this book we shall regard the operational amplifier as a ‘black box’: we shall
not be concerned with its interior which typically contains as many as 100 or even
more components.

6.2 Large-signal Operation

We shall first investigate the behaviour of the opamp when there is no restriction
on the values that the input voltage VI can assume. In the next chapter we shall
encounter circuits which exploit, and are restricted to, operation in the linear
region.

The comparator

Figure 6.4 shows a circuit which forms the basis of many applications of the
opamp. It is called a comparator. Recall that when VI is greater than about 100µV
or less than about –100 µV, the output voltage VO is fixed at either its positive or

VI

VREF

VIN

VO

Figure 6.4 The comparator
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negative extremes VS and −VS. In that case if we make VI the difference between
some arbitrary input voltage VIN and some reference voltage VREF, then VO will
be at its positive or negative extreme according to whether VIN is greater or less
than VREF. In other words, the comparator compares the input voltage VIN with the
reference voltage and provides an output voltage whose sign indicates whether or
not VIN is greater than VREF.

In this chapter we look at some applications for which the comparator is the key
circuit.

Analog-to-digital (A–D) conversion

We often wish to observe ‘real world’ quantities that are continuous, such as
the temperature inside an engine, the stress in a girder, or the blood pressure
of a patient undergoing surgery. However, it is often convenient to process this
information digitally (Figure 6.5). We therefore need an analog-to-digital (A-D)
converter.

The very simple A–D converter shown in Figure 6.6 illustrates one principle on
which such a converter could be based. The chain of four resistors of equal value,
and connected to a 4 V supply, ensures that voltages of 1, 2 and 3 V are available
to form reference voltages for three comparators. These voltages are connected to
the negative inputs of three opamps.

The single (analog) input voltage VIN is applied to the positive input terminals
of all three opamps. As an example consider opamp B: its output voltage will be
equal to +VS only if VIN is greater than 2 V, otherwise VO is equal to −VS. By
considering the effect of all possible ranges of VIN between 0 and 4 V we can
produce a table (Table 6.1a) relating the three output voltages to the single input
voltage. If, for example, the voltages VS and −VS correspond to binary 1 and 0,
Table 6.1(b) shows the performance of the A–D converter expressed in binary
notation. Appropriate logic circuits can operate on the voltages VA, VB and VC as
required.

Real World
(analogue)

A-D conversion

Digital World

Figure 6.5 It is often convenient for analogue information to be transformed to digital
form for easier processing
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VC

4 volts

VB

VA

R

R

R

R

VIN A

B

C

3 volts

1 volt

2 volts

Figure 6.6 A very simple A–D converter based on the use of comparators

Table 6.1 For the A–D converter of Figure 6.6, (a) shows the values of the opamp output
voltages for different ranges of the input voltage. In (b) the same outputs are expressed in

binary form

VIN VA VB VC

Between 3 and 4 V VS VS VS

Between 2 and 3 V VS VS −VS

Between 1 and 2 V VS −VS −VS

Between 0 and 1 V −VS −VS −VS

(a)

A B C

1 1 1
1 1 0
1 0 0
0 0 0

(b)
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Schmitt trigger

The Schmitt trigger is another circuit that exploits the two well-defined states
(+VS and −VS) of the output voltage of an opamp by employing the basic
property of the comparator. Its circuit is shown in Figure 6.7. In order to ex-
plain its action we shall study a specific circuit which includes an opamp for
which VS = 10 V. In other words, the two well-defined states of VO are +10 and
−10 V.

To explain the operation of the Schmitt trigger we assume that the output voltage
VO is initially at +10 V. Because no current flows into the positive input terminal
of the opamp, the current (10 V/5 k� = 2 mA) through the 2 k� and 3 k�

resistors is the same. In this way, or by recognizing the voltage divider formed by
the two resistors, we can calculate the voltage V + at the positive input terminal to
be 6 V. If, as we have assumed, VO is positive then, from the nature of the opamp’s
characteristics (Figure 6.1), we know that VI must also be positive. And if VI is
positive, the voltage V −, and hence VIN, must be less than V + which we have just
calculated to be 6 V.

We can represent our findings so far in the plot of Figure 6.8, where VO is plotted
against VIN (not VI). Provided that VIN has a value less than 6 V, VO will remain at
+10 V. The interesting question is, ‘what happens if we increase VIN above 6 V?’

If V + is at 6 V and VIN ( = V −) is made larger than 6 V, VI will become negative,
and if VI becomes negative so must VO (Figure 6.1). So, as VIN begins to exceed
6 V, VO quickly changes to −10 V.

With VO equal to its new value of −10 V, the voltage divider formed by the
two resistors now places a new threshold voltage of −6 V at V +. With this new
threshold voltage, a discussion similar to that given above will show that, for VO

to remain at −10V, VI must be negative, and this can only be achieved if VIN is

VOVIN

V+

V–

VI

2 kΩ

3 kΩ

Figure 6.7 The Schmitt trigger
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VO (volts)

VIN (volts)6

10

Figure 6.8 The permissible range of VIN in the Schmitt trigger of Figure 6.7 while VO is
at +10 V

greater than −6V. We can now add this detail to the characteristic of Figure 6.8
to get Figure 6.9 which completely defines the behaviour of the Schmitt trigger
for any value of VIN. Note, however, that with VIN at any value between −6 and
+6 V one cannot say whether VO will be at +10 or −10V; it depends upon how
VIN arrived at that value.

VO (volts)

VIN (volts)6

10

−6

−10

Figure 6.9 The conditions relating the input and output voltages of the Schmitt trigger of
Figure 6.7, showing the fast transitions between the possible stable output states Arrows
denote a fast transition
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Example 6.1

To emphasize the fact that the threshold voltage at V + changes when the value of
VO changes we examine the behaviour of the Schmitt trigger circuit (Figure 6.7)
for the waveform of VIN shown in Figure 6.10. The first time that VIN rises above
6 V the value of VO changes, but the second time nothing happens because the
threshold voltage at V + is different.

Although the Schmitt Trigger circuit may at first seem complex it is useful to
be reminded of the very simple comparator on whose property it is based.

Another trigger circuit

The circuit shown in Figure 6.11 exhibits behaviour similar to that of the Schmitt
trigger. To understand its operation we again assume that the opamp output voltage
VO is at +10 V. Because VO is positive, VI must be positive. To make VO negative
we must make VI negative. The only way we can make VI negative is to alter the
value of VIN. To see what value of VIN is needed to make VI negative we draw
the circuit of Figure 6.12 which is that part of the circuit which determines the
value of VI once VO is fixed. What we have in Figure 6.12 is a circuit that can be
treated as a voltage divider because no current is drawn from the central node by
its connection to an input terminal of the opamp. From this circuit we see that if
VO is fixed at 10 V then, as VIN is decreased in value, VI will also decrease. We are
interested in when VI has fallen to zero and is about to go negative (whereupon
VO will change sign), so we analyse the circuit of Figure 6.12 with VI set to zero.

Since the currents in the resistors R1 and R2 are the same we can invoke Ohm’s
law to write

(0 − VIN)/R1 = (10 − 0)/R2

so that VIN = −(R1/R2) × 10V (6.1)

R1

R2

VOVI

VIN

Figure 6.11 Another trigger circuit whose output state can be controlled by an input
voltage
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R2R1
VO �10 VVIN �? VI �0

Figure 6.12 Circuit relevant to the calculation of the value of VIN needed to cause the
output voltage of the circuit of Figure 6.11 to change from +10 to −10 V

If we choose R2 = 2R1, we find that VIN is equal to −5 V. In this case a reduction
of VIN towards −5 will reduce VI to zero, and any further slight reduction of VIN

will cause VI to be negative and VO to change its value to −10 V. As with the
Schmitt trigger, there will now be a new threshold value of VIN required to change
VO back to +10 V.

Example 6.2

A voltage VIN having the triangular waveform (but with nonzero average value)
shown in Figure 6.13(a) is applied to the input of the circuit shown in Figure
6.13(b). Find the resulting waveform of the voltage VO. The output voltage VO of
the opamp limits at ±8 V.

VIN

8
6
4
2
0

(volts)

(a)

5 kΩ

VOVI

10 kΩ

(b)

VIN

–2
–4

–8
–6

(time)

Figure 6.13 The waveform (a) of the input applied to the trigger circuit (b)

The subcircuit shown in Figure 6.14 controls the threshold values of VIN. With
VO at 8 v it is easily seen that for VI to be zero the value of VIN must be −4 V.
Similarly, when VO is at −8 V, VIN would have to rise above +4 V in order to make
VI, and hence VO, positive. The resulting waveform of VO is shown in Figure 6.15,
with the threshold values of VIN shown as dashed lines.

5 k� VO �8 VVI �0 10 kΩVIN = ?

Figure 6.14 Model allowing calculation of the threshold voltages for the circuit of Figure
6.13(a)
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VIN

8

6

4

2

0

−2

(volts)

(time)

VO

−4

−6

−8

Figure 6.15 The waveform of the output voltage of the trigger circuit of Figure 6.13(a)

6.3 Problems

Opamp as a comparator

Problem 6.1

For each of the circuits shown in Figure P6.1 find the value of the output voltage
VO. Assume that the limits to the value of VO are +10 and −10 V.

VO

4 V

5 V

VO

4 V

VO

4 V

–5 V
VO

4 V

5 V

(a) (b)

(c) (d)

Figure P6.1
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Trigger circuits

Problem 6.2

The input voltage VIN of the circuit shown in Figure P6.2 has the triangular
waveform shown. Find the times at which the output voltage VO switches from
+10 to −10 V and the times at which VO switches from −10 to +10 V. Assume
that the limits to VO are +10 and −10 V, and that that no current flows into the
input terminals of the opamp.

VOVIN

6 k

4 k

VIN

8

6

4

2

0

–2

–4

–6

–8

(volts)

time
(seconds)

1 3 5 7 9

Figure P6.2

Problem 6.3

The voltage whose waveform is shown in Figure P6.3(a) is applied to terminal A
in the circuit of Figure P6.3(b). The saturation voltages of each opamp are +15

(a)

(b)

8

6

4

2

0

–2

–4

–6

–8

(volts)

time
T 2T 3T 4T 5T

5 kI

10 k

11 k

4 k

X
Y

A
C

B

Figure P6.3
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and −15 V; otherwise the opamps can be considered ideal. Both opamps have
their outputs initially at +15 V.

Provide a dimensioned sketch of the waveform of the voltage at terminals B
and C.

Provide a dimensioned sketch of the waveform of the current I .
If the negative input terminal of opamp Y is connected to a voltage source

instead of earth, what value must that voltage source have in order to prevent any
variation in the voltage at terminal B?

Problem 6.4

Refer to the circuit shown in Figure P6.4. For what range of values of the voltage
V will no current flow in the 10 k� resistor?

10 kΩ

V

2 V 1 V

Figure P6.4

Problem 6.5

For the circuit shown in Figure P6.5 find the voltage that VIN must exceed to cause
VO to change from +10 to −10 V, and the voltage that VIN must then fall below to
restore VO to a value of +10V.

7 k

VO

VIN 4 k

2 V

Figure P6.5



OTE/SPH
c06 JWBK236/Spence July 23, 2008 11:15 Char Count= 0

84



OTE/SPH
c07 JWBK236/Spence August 4, 2008 12:45 Char Count= 0

7
Linear Operation of the
Opamp

In the previous chapter we placed no constraints upon the value of the voltage
difference VI between the two input terminals of an opamp. An advantage was that
we could use the two saturated states of an opamp (with VO = ± VS) to represent
two discrete states of a circuit, with many applications to digital circuits. We now
restrict our attention to that part of an opamp’s VO ∼ VI relation close to the
origin, where the relation between VO and VI is approximately linear and of very
high slope (recall Figure 6.1). There are, as we shall see, many opportunities to
design useful circuits if the operation of an opamp is maintained within that ‘linear
region’.

To establish a concept, known as a virtual short-circuit, that considerably sim-
plifies the analysis of such circuits we first examine a circuit called an inverter.

7.1 Virtual Short-circuit

The so-called ‘inverter’ circuit is shown in Figure 7.1. To determine how it works
we first of all need to be aware of relative voltage levels. We already know that
the slope of the VO ∼ VI relation in the high-slope region around the origin can
be as high as 104 to 106. In that case, if VO lies between the limits ±VS of linear
operation (say +10 and −10 V), the largest value that VI can exhibit is between
10µV and 1 mV. Usually, the value of VIN is much larger than this, so that it can
safely be assumed, for the purpose of analysis, that VI is zero. As a consequence
we say that there is a virtual short-circuit between the two input terminals of
the opamp. This is different, of course, from there being an actual short-circuit

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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V2

R1

R2

VIN

VO

I V–

V +

VI

Figure 7.1 The inverter circuit

connected between the input terminals, which would render VI and hence VO zero.
The virtual short-circuit is a way of saying that the two input voltages V + and
V – are maintained at virtually the same value. It can be useful, when analysing a
circuit which exploits the linear region of an opamp, to sketch in by hand a dashed
line to remind the analyst that there is negligible difference between the two input
voltages. We do that in Example 7.1 below. If, as in the inverter circuit, the positive
input terminal is earthed, we say that there is a virtual earth at the negative input
terminal.

Example 7.1

Because the positive input terminal of the opamp in the circuit of Figure 7.1 is at
zero voltage, the principle of the virtual short circuit ensures that V – is essentially
zero. Under these circumstances we say that there is a virtual earth at the negative
input terminal: in other words, V – = 0. To remind ourselves of this fact we may
redraw the inverter circuit as in Figure 7.2, with a dashed line signifying the
negligible difference between the opamp’s two input voltages.

R1
R2

V2

VIN

VO

I V–

V +
virtual 
short circuit

Figure 7.2 The inverter circuit, with the virtual short-circuit sketched in
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R2

V2 = IR2 

= 0 volts

 

VO

I

VI

(virtual earth) 

Figure 7.3 An application of KVL to the inverter circuit

The assumption that V – is zero considerably simplifies analysis. Thus, applica-
tion of Ohm’s law to resistor R1, the voltage across which is VIN – V –, shows that
the current I flowing through it is VIN/R1. Where does this current flow? Since
none can flow into the negative input terminal it all flows through R2, creating a
voltage V2 equal to (VIN/R1)R2.

We now apply Kirchhoff’s voltage law around the loop (Figure 7.3) which
includes the voltages VO, V2 and VI. Taking account of reference directions we
obtain

VO + V2 + VI = 0 (7.1)

which, because VI = 0, simplifies to

VO = −V2 (7.2)

If we are interested in the voltage amplification (VO/VIN) provided by the circuit
this property is conveniently expressed by substituting for V2 in Equation (7.2) to
obtain

VO/VIN = −(R2/R1) (7.3)

So, by choosing suitable values for R1 and R2 (say, R1 = 1 k�, R2 = 10 k�)
we can ensure that a ten times magnified version of VIN appears at the output of
the opamp, suggesting the value of the circuit as a voltage amplifier. In Figure 7.1
we have shown VIN as a constant voltage, but in general it can vary with time,
provided always that VO is maintained within the saturation limits of the opamp.



OTE/SPH
c07 JWBK236/Spence August 4, 2008 12:45 Char Count= 0

88 LINEAR OPERATION OF THE OPAMP

7.2 The Inverter

In the foregoing analysis of the inverter circuit two assumptions have been made,
and although they are often thought to be identical it is vital to realize that they are
not. The first was to use the virtual short-circuit concept, ensuring that the voltage
V − is negligible. The second, and entirely separate assumption, is that no current
flows into either of the opamp’s two input terminals. We have made use of each
of those two assumptions in the analysis of the inverter, and it is essential not to
confuse or equate them. The assumption of zero input currents is equally valid for
large-signal operation, whereas the virtual short-circuit concept is not.

The simple circuit of Figure 7.1 raises a number of questions. First, where does
the current I flow after passing through R2? Since nothing else is connected to
the output of the opamp it must all flow into the opamp’s output terminal. Second,
what is the meaning of the minus sign in Equation 7.3? The minus sign does not
imply that the circuit is not a good amplifier; it simply means that the sign of the
output voltage is opposite to that of the input voltage VIN. That is why the circuit is
called an inverter. A third question concerns the contrast between the magnitude
of the voltage amplification that the opamp can achieve (typically between 104

and 106) and the modest value of the inverter’s gain (in our example, |VO/VIN| =
10). We seem to be throwing away a great opportunity! There are two answers to
this third question.

Manufacturing variations

The first answer concerns the variability of manufactured artefacts. If you’re
manufacturing a large number of ‘identical’ items – whether they are hats or cups
or electrical components such as resistors and opamps – the most noticeable and
unwanted feature of what you produce is the fact that they are not identical! One
hat will be a bit wider than another, even marginally; one cup will be a bit thinner
than another, and the value of a resistor said to have a nominal value of 10 k�

may well have an actual value somewhere between 9 and 11 k�. In the case of an
opamp the voltage amplification in the linear region may also vary quite widely
from one opamp to the next. So, in order to design circuits having a reliable and
predictable performance we must somehow minimize the effects of manufacturing
variations.

This has in fact been achieved in the inverter circuit, because the voltage am-
plification of the opamp does not appear in the expression for VO/VIN. This does
not mean that we can remove the opamp from the circuit and still achieve the
same voltage amplification! It means that, to an extremely good approximation,
variations in the opamp’s gain will not affect the inverter’s gain. That advantage is
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obtained at a price – the low gain of the circuit. But what about the inevitable vari-
ations in the value of the resistors? The voltage amplification VO/VIN will certainly
be sensitive to their variation, except in one interesting – and very common – case.
If the two resistors R1 and R2 are part of an integrated circuit, and if they are
located close together on a chip, then they will tend to vary in the same way from
one circuit to another, such that the ratio R2/R1, and hence the circuit’s voltage
amplification, remains essentially constant from one chip to another.

The second answer involves issues that we treat in Chapter 11, and will be
discussed there.

A model

In any field it is often helpful to have a simple ‘model’ of something so that the
prediction of how it will behave within an environment can be made easier. This is
the case with the inverter, whose model is shown in Figure 7.4. We know from the
analysis we have carried out above that the current flowing into the circuit from
the voltage source VIN is VIN/R1, and that is certainly the case in the model. We
also showed that the output voltage VO was a multiple (−R2/R1) of the voltage
VIN: again, this is represented faithfully in the model by the voltage-controlled
voltage source.

Stability

What happens if we accidentally make a mistake when connecting the opamp
within the inverter circuit, so that R2 is connected between the opamp output and
the positive input terminal of the opamp, as shown in Figure 7.5? The analysis we
have used to derive Equation 7.3 will not predict the outcome.

To explain qualitatively what happens we redraw the circuit of Figure 7.5 as
shown in Figure 7.6. Purely for convenience we assume the two resistors have equal
value, that the opamp has a voltage amplification in its linear region of 2000, and

R1
VIN

(�R2/R1) VIN

VO

Figure 7.4 A model of the inverter circuit
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R1

R2

VIN

VO

V�

V�

VI

Figure 7.5 The inverter circuit with the opamp input terminals interchanged

that the source is temporarily removed. We now assume that, due to noise in the
circuit or a signal picked up from a nearby radio, the voltage VO increases by a
very small amount – say, one microvolt. The voltage divider provided by the two
resistors will then cause a voltage V + (and hence VI) of 0.5 µV to appear at the
positive input terminal of the opamp. If the opamp’s voltage gain is 2000, this will
cause the output voltage VO to be 1000µV, or 1 mV. In turn, this voltage will be
halved to provide V +(0.5 mV) which will then be amplified to provide an output
voltage of 1 V. This regenerative action continues very rapidly until VO reaches
and remains at its maximum value of +10 V and, by voltage divider action, V + is
equal to 5 V. We refer to such behaviour as instability.

Restoration of the input voltage VIN to the circuit of Figure 7.5 merely provides
an initial starting point for the rapid change in VO to one of its limiting values, VS

or –VS.

Feedback

It will have been noticed in our discussion of opamp circuits so far that when the
output voltage VO is connected back to the positive input terminal of the opamp

V+

V–

VI
VO

R

R

Figure 7.6 The circuit of Figure 7.5 redrawn
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via a resistor, the circuit’s state is liable to change rapidly, or be unstable, when
certain conditions are satisfied. We have seen some examples in Chapter 6. We
generally refer to this condition as positive feedback. By contrast the inverter
circuit involves negative feedback (R2 is connected between the output terminal
and the negative input terminal) and is associated with a circuit that is stable. The
theory of feedback, however, is quite complex and inappropriate for discussion
here: the correlation of positive feedback with instability and of negative feedback
with stability is mentioned here purely to aid in the correct identification of the
expected behaviour of simple opamp circuits.

7.3 Noninverting Connection

Another useful circuit in which the opamp operates in its linear region is the
noninverting connection and is shown in Figure 7.7: it is seen to involve negative
feedback. Since no current is drawn by the negative input terminal we can use the
voltage divider principle to express V – in terms of VO:

V – = [R1/(R1 + R2)]VO (7.4)

If the opamp is operating in its linear region we can assume a virtual short-
circuit between the input terminals, so that V + = V–. Because VIN and V + are
identical, we can write, from Equation (7.4), that

VIN = V + = V – = [R1/(R1 + R2)]VO

R2

R1

VOVIN

V+

V–

VI

Figure 7.7 A noninverting circuit
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VIN

(1 + R2/R1)   VIN

VO

Figure 7.8 A model of the noninverting circuit of Figure 7.7

so that the voltage amplification of the circuit is

VO/VIN = 1 + R2/R1 (7.5)

Whatever values are chosen for R1 and R2 the output voltage VO has the same
sign as the input voltage VIN (hence ‘noninverting’). A model of the noninverting
circuit is shown in Figure 7.8 and could be referred to as a voltage-controlled
voltage source.

Voltage follower

Why are we interested in the noninverting connection? One reason is the fact that
zero current is taken from the input voltage source VIN. In other words, no ‘load’
is placed on that source. Another, and important reason, is that a special case of
the circuit has useful properties, as we shall now show.

If we choose R2 = 0 (a short-circuit) and R1 = infinity (an open-circuit) the cir-
cuit takes the form shown in Figure 7.9 and the expression for voltage amplification

VOVIN

V+

V–

VI

Figure 7.9 The noninverting circuit of Figure 7.7, with R1 = infinity and R2 = 0, provides
a voltage follower, with VO = VIN
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(Equation 7.5) becomes

VO/VIN = 1 (7.6)

(in other words, the output voltage is the same as the input voltage).
At first this property of the circuit of Figure 7.9 seems singularly unattractive,

since a single wire of zero resistance between input and output would achieve the
same result at much lower cost! The reason why the circuit of Figure 7.9 is of
interest lies not only in its voltage amplification, but also in the fact that it draws
zero current from the input voltage VIN, as an example will now show.

Imagine that we have a circuit represented by its Thevenin model – say a voltage
VX and an output resistance of 10 k� – as shown in Figure 7.10(a), and suppose we
have the task of applying the same voltage VX across a load resistance of 10 k�.
Making a direct connection, as in Figure 7.10(a), will have two important effects.
First, only half the voltage VX will appear across the load (and will vary if the load
is varied in value). Second, a current will be drawn from the source containing
VX. Why does this matter? Because we may be trying to make measurements
on a circuit without disturbing it, just as we do when placing the probe of an
oscilloscope on a connection point within a circuit; drawing a current away from
it will change its operation. The solution is shown in Figure 7.10(b); no current
is drawn from the circuit being observed, so that VIN = VX. As we discovered in
analysing the circuit of Figure 7.9, the voltage VO is identical to VIN and hence
VX, so that the voltage VX appears directly across the load resistance, whatever the
value of that resistance. We say that the opamp circuit is ‘buffering’ the load from
the circuit, and because VO = VIN we often refer to the opamp circuit of Figure
7.9 as a voltage follower.

10 kΩ
10 kΩ

10 kΩ
10 kΩ

VX VX

VIN

=VX

VO
=VIN

=VX

(a) (b)

A direct
wire

connection

Thevenin model of a
circuit whose open-
circuit voltage is to be
observed

Thevenin model of a
circuit whose open-
circuit voltage is to be
observed

A resistive load 
which may vary 
in value

A resistive load 
which may vary 
in value

A voltage
follower
connection

Figure 7.10 An example to show that although a direct connection (a) ensures identical
voltages at each end of the connection, a voltage follower (b) ensures that no current is
drawn from the circuit being observed and delivers a voltage VX irrespective of the load
resistance
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7.4 Other Opamp Circuits Operating
in the Linear Region

There are many circuits created by circuit designers to exploit the linear region
of an opamp’s characteristic. We examine three of them here: others will be
encountered in the problems provided at the end of the chapter.

Digital-to-analog (D–A) conversion

Following digital processing it is often required to transform a quantity represented
digitally into the single analog quantity that it represents (Figure 7.11). This process
is called Digital-to-analogue (D–A) conversion. There are many circuits that can
perform D–A conversion: the one we shall study makes use of the inverter circuit,
and also illustrates how valuable the concept of a Thevenin equivalent circuit
can be.

The circuit of a simple D–A converter is shown in Figure 7.12(a.) We assume
that the digital representation of a quantity of interest is the sequence of voltages
V1 to V4, each of which will take on one of two values representing binary 1 and
0. The voltage VO at the output of the opamp is the analog equivalent. The value
of R characterising the resistors of value R and 2R can have any value: it is the
relationship between these resistors that matters.

At first sight the circuit appears complicated, but its operation is easily explained
if we proceed to develop the Thevenin equivalent of the circuit to the left of the
boundary D–D′.

To do this we begin by finding the Thevenin equivalent of the much simpler
circuit to the left of the boundary A–A′. It is a voltage V4/2 in series with a
resistor R (see Figure 7.12b). We now find the Thevenin equivalent of the circuit
to the left of the boundary B–B′, by replacing what is to the left of A–A′ by the
Thevenin equivalent we have just discovered. The result is shown in Figure 7.12(c).
Proceeding in the same way we can find the Thevenin equivalent, first of the circuit
to the left of the boundary C–C′ and then the circuit to the left of D–D′ (Figures
7.12d and e). If we now redraw the complete circuit (Figure 7.13) by making use

Real World
(analogue)

D-A conversion 

Digital World

Figure 7.11 It is often necessary for information in digital form to be transformed to
analog form
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V4 /16

V3/8

V2 /4

V1/2

R

VO

RT

Figure 7.13 The D–A converter of Figure 7.12 modelled as an inverter circuit

of the Thevenin model of the entire circuit to the left of D–D′ we see that we
have the familiar inverter circuit: its input voltage VIN is the analog equivalent
of the digital quantity represented by the voltages V1 to V4. Appropriately, V4,
representing the least significant bit, has been divided by 16 and the voltage V1,
representing the most significant bit, has been divided by 2. The output VO is
therefore equal to

VO = (−RT/R)(V1/2 + V2/4 + V3/8 + V4/16) (7.7)

and is therefore a single voltage representing the binary number encoded by the
voltages V1 to V4. In practice the value of RT and R will be chosen to achieve a
voltage level for VO that is convenient and within the linear region of the opamp’s
characteristic.

Voltage summing

In instrumention applications it is sometimes necessary to generate a voltage which
is the sum of a number of separate voltage sources. A summing circuit that can
perform such an operation is shown in Figure 7.14. The essential property of this

V1

V2

V3

R

VOR

R

V�

RR

Figure 7.14 A summing amplifier
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circuit derives from the virtual earth principle: since V – can be assumed negligible
the currents flowing into node X from the voltage sources are independent of each
other and, together, flow through the resistor RR. Thus,

VO = −RR(V1/R + V2/R + V3/R)

A variant of the circuit of Figure 7.14, called a ‘weighted summer’, uses appro-
priate values of the resistors R so that the contribution of each voltage source to
the output voltage VO can be arranged.

Example 7.2

The circuit of Figure 7.15 is a weighted summer. By invoking the virtual earth
concept we can find, by Ohm’s Law, the total current from the three voltage sources
flowing towards the negative input terminal of the opamp:

I = (V1/2 + V2/5 + V3/10) k�

All this current flows into the 1 k� resistor creating a voltage

V = I × 1 k� = 0.5V1 + 0.2V2 + 0.1V3

Since, by KVL, VO = −V , the output voltage VO is given by

VO = −(0.5V1 + 0.2V2 + 0.1V3)

showing that different weights have been attached to the various voltage sources.
If the minus sign is unwelcome the voltage VO can always be applied to an inverter
designed to provide a voltage gain of −1.

V1

V2

V3

2 kΩ

VOV–5 kΩ

10 kΩ

1 kΩ

Figure 7.15 A weighted summer
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V

(voltage to be 
measured)

R

Figure 7.16 A high-input-resistance voltmeter

A voltmeter with high input resistance

We have already seen how the zero input current property of an opamp can be
exploited. Another example is shown in Figure 7.16 which shows the circuit of a
voltmeter having the very desirable property of a high input resistance. The meter
measures current and will have an internal resistance: its value is immaterial, as
we shall see.

The analysis of this circuit is straightforward, especially if, as a reminder of the
virtual short-circuit phenomenon, we sketch a dashed line between the opamp’s two
input terminals. With a virtual short-circuit between the two opamp input terminals
the voltage to be measured, V , is transferred to the negative input terminal of the
opamp. Thus, the voltage across the resistor R is V , creating a current V /R. This
current can only flow through the meter, and therefore the meter current is directly
proportional to the voltage V . One advantage offered by this circuit is the fact
that very little current flows into the positive input terminal of the opamp, thereby
ensuring that the voltmeter circuit of Figure 7.16 has a very high input resistance.
Another advantage is that the operation is unaffected by the resistance of the meter.

Example 7.3

Let us suppose that we have to design the voltmeter circuit of Figure 7.16. We
shall assume that the meter has a full-scale deflection when 50 µA passes through
it, and that we want that full-scale reading to indicate a value of 5 V for the
voltage V .
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To choose an appropriate value of R we note that when V has its maximum
value of 5 V, the current through R is 5/R. Since this current passes wholly through
the meter, it should be equal to 50 µA. Thus, 5/R = 50 µA, so that the required
value of R is 100 k�.

7.5 Problems

Linear operation

Problem 7.1

For each of the circuits shown in Figure P7.1 find the value of the voltage V .
Assume that the limits to the output voltage of the opamp are +10 and −10 V.

3 k

5 k

5 V
V 10 k

2 k

–10 V

V

(a) (b)

Figure P7.1

Problem 7.2

For the circuit shown in Figure P7.2 calculate the value of the voltage V . It can be
assumed that the opamp is ideal, with output voltage limits of ±12 V.

4 k

0.5 mA

V

Figure P7.2
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Problem 7.3

A circuit is shown in Figure P7.3. First, remove any components that are redundant.
Then calculate the value of the voltage V . The limits to the opamp’s output voltage
are ±8 V.

1 k

4 k
4 V

V

11 k

17 k

Figure P7.3

Problem 7.4

For the circuit of Figure P7.4 calculate the value of the voltages V1 and V2. It can
be assumed that the opamp is ideal, with limits on the output voltage of ±12 V.

10 V

5 V

1 k

V1

V2

1 k

Figure P7.4

Problem 7.5

The circuit of a lightmeter is shown in Figure P7.5. It uses a photodiode which,
with a constant reverse voltage, generates 0.5 µA of current per microwatt of
incident radiant power. Decide how the circuit works, and choose a value for R so
that the scale factor on the voltmeter is 2.5 µW/mV.
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Voltmeter

R

Photo-
diode

Figure P7.5

Problem 7.6

For the circuit of Figure P7.6 find expressions for (in this order) VA, VB,VC and
VOUT.

100 k

VOUT

10 k 10 k 100 kVA VB VC

V1

V2

X Y

Figure P7.6

Amplifiers using opamps

Problem 7.7

The circuit of a popular instrumentation amplifier is shown in Figure P7.7. Find,
in terms of V1 and V2: (a) the current through the 10 k� resistor; (b) the voltages
VX and VY; and (c) the voltage VO. It can be assumed that all opamps are working
in the linear region of operation.

Problem 7.8

It can be useful to generate a voltage which is the logarithm of another voltage.
That is the function of the logarithmic amplifier circuit shown in Figure P7.8. The
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5 k

5 k

50 k

50 k

10 k

50 k

50 k

V2

VO

V1

VX

VY

Figure P7.7

RVIN

VO
VD

ID

Exponential diode
Logarithmic
amplifier

Figure P7.8

voltage–current (ID ∼ VD) relation of the so-called exponential diode is:

ID = IS[exp(VD/VT) − 1]

where IS is known as the reverse saturation current of the diode and VT (=25 mV
at room temperature) is the ‘thermal voltage’.

Show that if VIN/R is much greater than the reverse saturation current IS of the
diode, and if the opamp is operating in its linear region, then

VO = −VT ln (VIN/RI S)
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Problem 7.9

Find the Thevenin equivalent circuit of the circuit within the shaded area in Figure
P7.9.

10 k

6 k

1 k

5 k

6 V

A

B

Figure P7.9

Problem 7.10

Use the superposition principle to express the voltage VO in the circuit of Figure
P7.10 in terms of the two voltages designated V1 and V2.

R1

R2

R3

R4

VOV1

V2

Figure P7.10

The circuit must be designed to act as a difference amplifier: in other words, VO

must be proportional to V2 – V1. Derive the relation between the resistances R1,
R2, R3 and R4 for this result to be achieved.
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Problem 7.11

For the circuit of Figure P7.11 choose one value of the voltage V that will ensure
that the current I lies between the limits of 1.5 and 2.5 mA. Assume operation in
the linear region of the opamp, and that the limits to the opamp’s output voltage
are ±10 V.

1 k

2 k
3 V

V

I

Figure P7.11

Problem 7.12

Determine the value of V in the circuit of Figure P7.12. Assume that the limits to
the opamp’s output voltage are ±10 V.

2 k

8 k

10 V

V

–5 V

0 V4 V

4 k

4 k

2 k

Figure P7.12
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8
Mixed and Dynamic
Opamp Circuits

In the two previous chapters we have seen the range of useful behaviour that can
be achieved through the inclusion of one or more opamps in a circuit, in some
cases exploiting the linear region of an opamp’s characteristic and in others the
existence of two well-defined states. It will not be surprising that combinations of
these two types of circuit can yield additional useful application possibilities. But
a component that can be combined with both types of opamp circuit to yield even
more useful types of behaviour is the capacitor. Before proceeding, therefore, we
examine the characteristics of the capacitor.

8.1 The Capacitor

The symbol for the two-terminal device called a capacitor is shown in Figure 8.1.
We use v and i to denote the voltage and current of a capacitor, conventionally
using the reference directions shown. In many useful circuits the voltage v and
the current i will not be constant as in a DC circuit, and we indicate that fact by
using lowercase letters to denote possibly time-varying quantities. Often we shall
explicitly emphasize the time-varying nature of the capacitor voltage and current
by writing v(t) and i(t), respectively.

For an ideal capacitor the voltage v(t) and current i(t) are related by the equation

i(t) = Cdv(t)/dt (8.1)

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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C

v(t)
i(t)

Figure 8.1 The symbol representing a capacitor. The constant C is its capacitance in farads

The single constant C that characterizes a given capacitor is called its capacitance.
The units are Farads, named after Michael Faraday.

Equation (8.1) tells us that (Figure 8.2) if a constant current I is applied to a
capacitor, the capacitor voltage will increase linearly with time, at a rate determined
by the current I and the capacitance C . If we examine a more realistic situation
where the capacitor voltage does not increase indefinitely (Figure 8.3) we see what
happens when the current into the capacitor is zero. Equation (8.1) tells us that if
i(t) is zero, the rate of change of capacitor voltage is also zero; in other words, the
capacitor voltage remains constant. This implies that if the current source were
to be removed (equivalent to setting its value to zero), the voltage on an ideal
capacitor will remain – for ever – at the last value achieved until more current is
supplied. We then say that the capacitor has been ‘charged’ to a particular value:
with an ideal capacitor it retains that charge. When more current is supplied, as at
time T in Figure 8.3, the capacitor voltage will start moving away from its existing
value, again according to Equation (8.1).

One more comment about the implication of Equation (8.1) is required before
we begin to exploit the unique properties of a capacitor. It has to do with sudden
changes in voltage like those experienced when a Schmitt trigger changes state
(see Figure 6.10). Equation (8.1) tells us that an instantaneous change in capacitor
voltage requires an infinite current. When, as in practice, such a current is un-
available, the capacitor voltage cannot change instantaneously. Thus if, in a circuit
(Figure 8.4), a voltage at one terminal A of a capacitor changes instantaneously,

C

I

i(t) v(t)

i(t)

v (t)

i(t)

Figure 8.2 The application of a constant current to a capacitor, and the resulting voltage
response
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C time

time

Ti(t)
v (t)

i(t)
i(t)

v (t)

Figure 8.3 Response of a capacitor to a time-varying current source

the voltage at the other terminal B will change by the same amount, consistent
with the capacitor voltage remaining constant.

The unique electrical nature of a capacitor, encapsulated in Equation (8.1) and
illustrated in Figures 8.2 to 8.4, enables a circuit designer to create some very
useful circuits.

8.2 The Integrator

The circuit of Figure 8.5 is very similar to the inverter circuit encountered in the
previous chapter except that we have replaced resistor R2 with a capacitor. What
useful function can this new circuit perform?

Let us assume that the opamp is operating in its linear region (we shall see soon
that this is the case), so that the negative input terminal of the opamp is a virtual
earth, i.e., v− = 0. From Ohm’s law we see that the current i(t) through R1 is

VA

time

time

X volts

X volts
VB

VA

VB

Figure 8.4 If the voltage at one teminal of a capacitor changes instantaneously, the voltage
at the other terminal will exhibit the same change since, instantaneously, a capacitor voltage
does not change
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R1

C

vIN(t)
vI

v+

v –
i(t)

i(t)

vC(t)

vO(t)

Figure 8.5 An integrating circuit

vIN(t)/R1. For the moment we shall assume that VIN is constant. Since no current
can enter the negative input terminal of the opamp, all of this current flows into the
capacitor, as indicated in Figure 8.5. According to Equation (8.1) the voltage vC

across the capacitor increases linearly at the rate (vIN/R1)/C . Since our principal
interest is in the output voltage vO we apply KVL in the same way that we did in
Figure 7.2 to find that vO = −vC (because vI = 0). The output voltage vO therefore
decreases linearly, at the rate of −(vIN/R1)/C .

If the voltage vIN in the circuit of Figure 8.5 is at first constant, as illustrated in
Figure 8.6, vO will continue to decrease at a constant rate. Now let us suppose that
instantaneously, at time t = 0 as shown in Figure 8.6, vIN changes sign, but not
magnitude. The current into the capacitor will now have the same magnitude, but
the opposite sign, so vO will now increase at the rate (vIN/R1)/C . Further regular
changes in vIN will thereby result in a triangular waveform for vO.

We have described the circuit of Figure 8.5 by working out its detailed behaviour
when driven by the particular waveform shown in Figure 8.6. But there is a simpler

time (ms)

vIN(t)

vO(t)

volts

0 12 24

10

6

– 6

–10

increase of 
1000 V/s increase of 

1000 V/s

decrease 
of 1000 V/s

Figure 8.6 The input and output voltages of the integrator of Figure 8.5 (numerical values
refer to Example 8.1)
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description of the circuit: it is an integrator. Equation (8.1) shows that current
(directly proportional to the input voltage vIN in the circuit of Figure 8.5) is the
derivative of the capacitor voltage (which apart from a sign is the output voltage
vO). The output voltage vO is, therefore, apart from the sign, the integral of the
input voltage, multiplied by a constant determined by the resistor and capacitor in
the circuit.

Example 8.1

We consider the integrator circuit of Figure 8.5, with R1 = 10 k� and C = 1µF.
The input waveform vIN is defined by the numerical values shown in Figure 8.6.
We are required to find the waveform of the output voltage vO.

From Ohm’s law we know that, while vIN = 10 V, i(t) = 10 V/10 k� = 1 mA.
Recalling that vO = −vC we can write, from Equation (8.1), that

dvO(t)/dt = −i(t)/C = −10−3/10−6 = −1000 V/s.

The output voltage will fall until the time (designated as t = 0 in Figure 8.6)
at which vIN changes sign. The voltage vO therefore begins to increase at the rate
1000 V/s until, at t = 12 ms, vIN again changes sign: since vIN is now 10 V, the
voltage vO will again decrease at the rate of 1000 V/s. For the given waveform of
vIN the waveform of vO will be as shown in Figure 8.6.

8.3 Dynamic Opamp Circuits

An illustration of the new possibilities opened up by the use of a capacitor is
provided by the circuit of Figure 8.7. At first this circuit appears to be a very
confusing collection of components, but insight into its operation is easily gained
if it is recognized as the combination of two functional blocks, as suggested by the
grey shading. We immediately recognize an integrator of the type just discussed
and the alternative trigger circuit introduced in Chapter 6. The output of the
integrator (v) provides the input to the trigger, and the trigger’s output (vO) in
turn provides the input to the integrator. To explain the operation of the circuit
we assume the component values shown in Figure 8.7, and that the limits to the
output voltage of each opamp are +10 and −10 V.
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Integrator

Trigger

vO(t)

i(t)

v(t)

vI

v+

v–

i(t)

1µF
10 kΩ

6 kΩ

10 kΩ

vI

v+

v–

Figure 8.7 The circuit analysed in Example 8.2

Example 8.2

The output of the trigger in Figure 8.7 can only be at +10 or −10 V. To begin our
analysis we shall assume that vO = 10 V, so that the input voltage to the integrator
has the same value. If the integrator opamp is operating in the linear region we
can apply the concept of the virtual earth and assume that v− = 0. Using Ohm’s
law we find the current i(t):

i(t) = (10 − 0)/10 k� = 1 mA

From our earlier discussion we know that the rate of change of the output voltage
of the integrator, here denoted as v(t), will be

dv(t)/dt = −10−3/10−6 = −1000 V/s.

The voltage v(t) is also the input to the trigger. We know that, at some point,
the input to the trigger will be sufficiently negative to cause its output to change
from +10 to −10 V. To determine this threshold value for v(t) we refer to a
calculation (Equation 6.1) made for the same circuit in Chapter 6: it is −6 V. The
decreasing output voltage v(t) of the integrator will eventually reach this value,
causing the output voltage vO(t) of the trigger to change from +10 to −10 V, as
shown in Figure 8.8.

The input voltage to the integrator has now changed sign, but has the same
magnitude, so its output voltage v(t) now begins to increase at 1000 V/s. However,
in view of the changed state of the trigger, the threshold voltage that v(t) needs to
achieve to cause a change of state back to an output voltage of +10 V has now
changed to +6 V. The cycle then repeats (Figure 8.8). Only one thing remains to
be done, and that is to check whether, for the integrator’s opamp, our assumption
of operation in its linear region is valid. Inspection of the waveform of v(t) in
Figure 8.8 shows that it is.
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From the resulting waveforms of vO and v shown in Figure 8.8 we see that the
circuit generates both square and triangular voltage waveforms, both of which
find use in a wide variety of applications. To calculate the frequency of these
waveforms we observe that half the periodic time T involves a change of 12 V
at the rate of 1000 V/s, occupying 12 ms so that T = 24 ms and the frequency is
1000/24 = 41.6 Hz. We also note that the rate of change of voltage at the output
of the integrator, and hence the periodic time of the waveforms generated, is con-
trolled by the product of the capacitor and the 10 k� resistor associated with the
integrator.

Two final questions remain. First, will the behaviour of the integrator, earlier
considered on its own, be affected by the connection of its output to the input
of the trigger? Also, will the performance of the trigger, again considered on its
own in Chapter 6, be affected by the fact that its output voltage must supply the
input current of the integrator? The answer in each case is ‘no’ because the output
voltage of an opamp is defined solely by its input voltage vI, and not by the current
supplied by the opamp via its output terminal.

Interesting modifications to the circuit of Figure 8.7 are possible: one is
shown in Figure 8.9. Here, a constant voltage source V supplies a current
V /R to the input terminal of the opamp, thereby adding to whatever current
arrives via the 10 k� resistor. Thus, if we choose R = 20 k� and V = 10 V
to provide a constant additional current of 0.5 mA, the current flowing into the
capacitor will be 1.5 mA (rather than 1 mA) when v = +10 V and −0.5 mA
(rather than −1 mA) when v = −10 V. The resulting waveforms will therefore be
asymmetrical.

Trigger

vO(t)
v(t)

1 µF 
10 kΩ 

6 kΩ 

10 kΩ 

R

V

Figure 8.9 Modification to the circuit of Figure 8.7, resulting in asymmetrical waveforms
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8.4 Problems

The capacitor

Problem 8.1

For the circuit of Figure P8.1(a) the current source i(t) has the waveform shown
in Figure P8.1(b). Sketch, on the same plot, the waveform of the capacitor voltage
v(t) whose value is zero at time t = 0.

1   Fµ
v(t)

i(t)

(a)

1

2

–1

–2

time (ms)

5 10

20 25 30

(mA)

(b)

i(t)

Figure P8.1

Problem 8.2

For the circuit of Figure P8.1(a) the voltage waveform shown in Figure P8.2 is
observed. Deduce the waveform of the current source.

1

2

–1

time (ms)5 10

20 25 30

(volts)

v (t)

40

3

15

Figure P8.2
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Dynamic circuits

Problem 8.3

The operational amplifiers shown in Figure P8.3 can all be assumed ideal, with
their output voltages saturating at ±10 V.

For the circuit shown as (a) choose a value for R1 to ensure that the voltage
v changes between −10 and +10 V when the voltage vIN(t) falls below −8 V or
rises above +8 V.

For the circuit shown as (b) calculate the value of R2 needed to ensure that the
rate of decrease of vO(t) is 200 V/s if the voltage applied to terminal A is 10 V
and the opamp remains in its linear region.

The circuits shown in (a) and (b) are now connected, as shown in Figure P8.3(c).
Provide a dimensioned sketch of the waveforms of the voltages vO(t) and v(t).

For the circuit shown as (d) provide a sketch of the relation between vB(t) and
vO(t) as vO(t) varies over the range from −10 to +10 V.

(a)

A

(b)

R1

10 k
R2

1 F

V  (t)O

V  (t)O

VIN(t)

V(t)

A

(c)

VIN(t)

R1

10 k

V(t)

R2

1 F

V  (t)

4 V

O
V  (t)B

(d)

Figure P8.3
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The circuit shown in (d) is now connected to the circuit of (c) at the point whose
voltage is denoted vO(t) in both circuits. Provide a dimensioned sketch of the
resulting waveform of vB(t); it may be convenient to show the waveform of vB(t)
on the previously sketched plot of the waveforms of circuit (c).

Problem 8.4

Design a circuit using opamps, resistors and a capacitor that will generate a
square-wave voltage having a peak-to-peak amplitude of 20 V and a periodic time
of 10 ms. The opamps available are characterized by limits of ±10 V on the output
voltage. Your answer should include the circuit diagram with component values,
and should identify the point at which a square-wave voltage appears.

Problem 8.5

Refer to Figure P8.3. In part (c) the negative input terminal of the integrator’s
opamp is now additionally connected to a resistor of 100 k� and a DC voltage
of 10 V, as shown in Figure P8.5. Calculate the new periodic time of the voltage
waveform appearing at A and provide a sketch of the voltage waveforms vO(t) and
v(t).

A
VIN(t)

R1

10 k

V(t)

R2

1 F

V  (t)O

100 k

10 V

Figure P8.5
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Overview: AC Circuits

There are many extremely useful circuits comprising, or modelled by, a combi-
nation of resistors, capacitors and inductors: they are usually referred to as AC
circuits (AC = ‘alternating current’). Capacitors and inductors are called reactive
components, and their presence in a circuit means that we cannot use, directly, the
methods of analysis we developed for DC circuits. Also, whereas the sources in
DC circuits are constant, circuits containing capacitors and inductors are usually
driven by sources that are not constant: frequently they are sinusoidal in nature.
Typical examples include the filters that separate the different speech channels in
a telecommunication system.

The main problem we face is how best to discuss these circuits and predict their
behaviour. We could, for example, draw graphs of all the sinusoidal voltages and
currents in a circuit, or perform a trigonometric analysis, but these approaches are
tedious and error-prone and don’t provide much insight.

A much better idea by far is to represent each sinusoidal voltage and current by
a single complex number, because the marvellous consequence of so doing is that
we can use all the techniques (KCL, KVL, superposition, etc.) that we learned in
the context of DC circuits. The only difference is that we have to handle complex
quantities rather than real ones.

A related method of representing sinusoidal voltages and currents – the phasor
diagram – also helps us to visualize AC circuit behaviour.

By making use of complex analysis we can easily compute the way in which the
AC performance of a circuit varies with the frequency of any voltage or current
sources; an example is the way in which the amplification of your HiFi varies from
bass to treble. This is often referred to as frequency domain performance.

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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9
AC Circuits and Phasor
Diagrams

Previous chapters have considered circuits in which voltages and currents are
constant or, in the case of Chapters 6 and 8, move between well-defined constant
values. There is, however, enormous interest in the way that circuits behave when
voltages and currents are sinusoidal in form.

Why is this? There are two reasons. For a long time the source of electrical power
for many applications has been a sinusoidally varying voltage, typically with a
frequency of 50 or 60 Hz. The other reason is that many of the signals involved
in communication systems can be considered to be the addition of a number of
sinusoids. For example (Figure 9.1) a square wave can be approximated by the
addition of four sinusoids of appropriate frequency and amplitude. Anyone pur-
chasing a HiFi amplifier, for example, will be concerned with its ability to amplify
the highest note from a piccolo as well as the lowest note from a 64 foot organ pipe.

In circuits designed to perform appropriately when the voltage and current
sources are sinusoidal rather than constant, two components – called reactive
components – are of special interest. We have already met one of them, the
capacitor, in Chapter 8. The other is the inductor, which we introduce below.

9.1 Reactive Components

The capacitor

We encountered our first reactive component in the form of a capacitor in Chapter
8, where it was found to be useful in circuits in view of its ability to integrate. Our

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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C

i(t)

v(t)V cos ωt

Figure 9.2 A capacitor with its voltage defined by a sinusoidal voltage source of radian
frequency ω

interest now is in its behaviour when the voltage across it is sinusoidal. To begin
to investigate why this is so we connect one to a sinusoidally varying voltage
V cos ωt , as shown in Figure 9.2. This figure also introduces the symbol for
an independent voltage source of sinusoidal waveform. In the expression for the
sinusoidal voltage source:

v(t) = V cos ωt (9.1)

V is known as the amplitude of the sinusoidal voltage source, and ω the radian
frequency.

Equation (8.1) describing a capacitor can be rewritten as

iC(t) = CdvC(t)/dt (9.2)

showing us that, for this simple circuit,

i(t) = CdvC(t)/dt = Cd(V cos ωt)/dt = −ωCV sin ωt (9.3)

Equation (9.3) can be rewritten as

i(t) = ωCV cos(ωt + π/2)

or

i(t) = I cos(ωt + π/2)

where

I = ωCV (9.4)

and is the amplitude of the sinusoidal current.



OTE/SPH
c09 JWBK236/Spence July 23, 2008 14:22 Char Count= 0

122 AC CIRCUITS AND PHASOR DIAGRAMS

If we plot i(t) and v(t) to a base of time (t) as well as angle (ωt) we arrive at
Figure 9.3. From this plot and the equations immediately above we can make some
useful observations:

� The sinusoidal current and voltage associated with a capacitor have the same
frequency;

� For the capacitor Equation (9.4) describes a component relation which has the
same form as Ohm’s law;

� There is a phase relation between the current and voltage: the capacitor current
leads the voltage in the sense that, for example, it reaches its maximum before
the voltage does.

The first observation, along with the same property we shall derive for an
inductor, means that if a circuit is connected to a sinusoidal source having a
frequency ω, then all voltages and currents in the circuit have the same frequency.
This property enormously simplifies the analysis of a circuit.

The second observation is also very important. Having studied the analysis of
DC circuits, it is encouraging to find a component relation having the same form as
Ohm’s law. If we know the voltage amplitude we only need to divide by a constant
(albeit one which is a function of frequency) to find the current amplitude. We
shall see the advantage of this relation soon.

Although the third observation is easily derived from the waveforms of Figure
9.3 we shall show that there is a graphical technique that makes it much easier to
visualize the phase relations among a number of waveforms.

Example 9.1

In the circuit of Figure 9.4 a sinusoidal voltage source whose amplitude is 4 V and
whose frequency is 159 Hz is applied to a 1 µF capacitor. Find an expression for
the capacitor current.

The frequency 159 Hz is, to a very good approximation, a radian frequency of
1000. From the relation between current and voltage for a capacitor we can write

i(t) = Cdv(t)/dt = 10−6 × d(4 cos 1000t)/dt = −10−6 × 4
× 1000 sin 1000t = −4 × 10−3 sin 1000t A

= −4 sin 1000t mA.

In other words, the capacitor current has an amplitude of 4 mA and a frequency
of 1000 rad/s (=159 Hz). Note that the amplitude of a sinusoidal source is often
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4 volts amplitude
159 Hz

1 µF

i(t)

Figure 9.4 A capacitor with its voltage defined by a sinusoidal voltage source of frequency
159 Hz

quoted as N volts peak-to-peak. In the present case the peak-to-peak amplitude of
the voltage source is 8 V.

The inductor

The other reactive component of importance is the inductor. Its symbol and asso-
ciated reference current and voltage are shown in Figure 9.5. The relation between
v(t) and i(t) for an inductor is

v(t) = Ldi(t)/dt (9.5)

where the constant L is the inductance in Henrys. Thus, if the voltage across an
inductor is held constant at a positive value (Figure 9.6), its current will increase
linearly. Once established, a current i(t) will continue to flow at a constant rate if
the voltage source is replaced by a short-circuit (e.g., at time T in Figure 9.6), just
as the voltage across a capacitor remains constant if the current through it is set to
zero.

Our current interest, however, is in the relation between a sinusoidal voltage and
current associated with an inductor. In that case we can proceed in the same way
as for a capacitor and consider the circuit of Figure 9.7 in which we use the same
symbol for a sinusoidal current source as before, the mathematical description

L

i(t)
v(t)

Figure 9.5 An inductor
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time

time

T

L
v(t)

v(t)

i(t)

i(t)

Figure 9.6 Reponse of an inductor to a time-varying voltage source

making it clear that it has a sinusoidal waveform. To show that an arbitrary phase
angle θ makes no difference to the outcome, we assume that the current source is
described by

i(t) = I cos(ωt + θ ) (9.6)

Recalling Equation (9.5) we can write:

v(t) = Ldi(t)/dt = ωL I [− sin(ωt + θ )] = ωL I cos [ωt + π/2 + θ ] (9.7)

so that v(t) = V cos (ωt + π/2 + θ )
where

V = ωL I (9.8)

If we plot i(t) and v(t) to a base of time (t) as well as angle (ωt) we arrive at
Figure 9.8. From this plot and from the equations immediately above we can make
some useful observations:

� The sinusoidal current and voltage associated with an inductor have the same
frequency;

L

i(t)

v(t)I cos(ωt +θ)

Figure 9.7 An inductor with its current defined by a sinusoidal current source of radian
frequency ω
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I

– π– θ

VL(t)

angle ωt (rad)
time t (s)

– θ π- θ 2π-θ

V

– V

– I

i(t)

Figure 9.8 The waveforms of sinusoidal current through, and sinusoidal voltage across,
an inductor

� For an inductor the component relation V = ωLI has the same form as Ohm’s
law;

� There is a phase relation between the current and voltage: the inductor current
lags the voltage in the sense that, for example, it reaches its maximum after the
voltage does.

The resistor

The resistor is not a reactive component: nevertheless it is essential that we be
clear about its behaviour when its voltage and current are sinusoidal. If, as in
Figure 9.9, we apply a sinusoidal voltage source Vcos ωt to a resistor, the current
i(t) will, by Ohm’s law, be given by

i(t) = (V/R) cos ωt

V cos ωt 

i(t)

v(t)
R

Figure 9.9 A resistor with its voltage defined by a sinusoidal voltage source of radian
frequency ω
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which we can write as

i(t) = I cos ωt

where

I = V/R (9.9)

As for the capacitor and inductor, we can make three observations about the
sinusoidal current and voltage associated with a resistor: that a sinusoidal current
results from the application of a sinusoidal voltage of the same frequency; that
Ohm’s law relates the amplitudes of current and voltage; and that there is no phase
difference between the current and voltage waveforms.

Summary

Before proceeding further it is useful to summarize what we know about the
components we shall call R (resistance), L (inductance) and C (capacitance)
when their currents and voltages are sinusoidal:

� All currents and voltages have the same frequency as the sinusoidal source

� All component relations have the same form as Ohm’s law

� There are specific phase differences between current and voltage for L and C

Simple circuits

What we have learned so far allows us to analyse simple circuits containing more
than one component, simply by employing the fundamental relations describing
the capacitor and inductor. An example will provide an illustration.

Example 9.2

Figure 9.10 shows a circuit containing a resistor and an inductor in series with
a sinusoidal current source. It is required to find an expression for the voltages
across the resistor and inductor and hence across the current source.

The resistor voltage is found by the application of Ohm’s law, and is

vR(t) = 100 × 2 cos (1000t + 20◦) = 200 cos (1000t + 20◦) mV
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100 mH100 Ω

iS(t) = 2 cos(1000t + 20°) mA

vR(t) vL(t)

Figure 9.10 The circuit discussed in Example 9.2

The inductor voltage is found from Equation (9.3) to be

vL(t) = Ldi(t)/dt = (100 × 10−3) 2000 cos (1000t + 110◦)
= 200 cos (1000t + 110◦) mV.

Noting that these two voltages have identical amplitudes and differ in phase by
90o we can express their sum, the voltage vS(t) across the current source, as

vS(t) = 282.8 cos (1000t + 65◦) mV

9.2 The Phasor Diagram

The question now arises as to how to determine the behaviour of a circuit containing
a number of reactive components and a source of sinusoidal voltage or current. At
the same time we look for a representation of sinusoidal currents and voltages that
can help one to visualize, perhaps better than may be possible with mathematical
equations, what is happening in such a circuit.

Fortunately, there is a representation of sinusoidal voltages and currents that
can provide useful insight into their relative magnitudes and phases. It is called the
phasor diagram. What is more, the phasor concept it embodies provides a good
stepping stone to the next chapter in which a very powerful method of analysis is
presented.

We start by considering the simple circuit of Figure 9.11: a capacitor of ca-
pacitance C whose voltage is determined by a sinusoidal voltage source v(t) of
amplitude V and radian frequency ω:

v(t) = V cos ωt
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C

i(t)

v(t)Vcos ωt

Figure 9.11 A capacitor with its voltage defined by a sinusoidal voltage source of radian
frequency ω

In the previous chapter we established that the resulting current i(t) is

i(t) = I cos (ωt + π/2)

where I , the amplitude of the current, is given by

I = ωCV

The phasor diagram representation of v(t) and i(t) is shown in Figure 9.12. The
two phasors labelled V and I have lengths proportional to the amplitudes V and I
of v(t) and i(t) respectively, the scale of proportionality being chosen to provide
a conveniently sized diagram. The phasors rotate anticlockwise at an angular fre-
quency ω. It is their projection onto a stationary reference axis that identifies the
actual values of v(t) and i(t), as shown in Figure 9.12. Because the phasors are
rotating at the frequency ω, the projections also vary at the frequency ω, with an
amplitude determined by the lengths of the phasors. Because the phasors are rotat-
ing, what we have in Figure 9.12 is a ‘snapshot’ taken at a particular instant of time.

ωt

ω
ωThe phasor I

length
= I

length
= V

The phasor V

reference axis

The instantaneous value of v(t)

The instantaneous 
value of i(t)

Figure 9.12 A phasor diagram showing phasors representing capacitor voltage and current.
Note that the phasors rotate at an angular frequency ω and it is their projection onto a
reference axis that determines the actual scalar instantaneous values of current and voltage
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ω
ωThe phasor V The phasor I

The instantaneous 
value of v (t)

The instantaneous 
value of i(t)

reference axis

length
= V

length
= I

ωt + θ

Figure 9.13 A Phasor diagram showing phasors representing inductor voltage and current

The phasor diagram of Figure 9.12 places clearly in evidence the relative phase
of the current and voltage, and the fact that the capacitor current leads the voltage
by 90o. In this sense it does not matter how the reference axis is oriented, because
projections onto it will still have the same amplitudes and relative phase; the only
effect is to change the time origin, and since the sinsusoidal voltage and current
are continuous this is immaterial.

The phasor representation for the voltage and current of an inductor (see Equa-
tions 9.6 and 9.7):

i(t) = I cos (ωt + θ )
v(t) = ωL I cos (ωt + θ + π/2)

is shown in Figure 9.13 from which it is clear that an inductor current lags the
voltage by 90o.

We must not forget that a phasor diagram can also represent the sinusoidal
voltage and current of a resistor, as shown in Figure 9.14: here there is no phase
difference between the voltage and current.

length = V ω

V cos ωt

I cos ωt

The phasor V

The phasor I

length = I

reference axis

The instantaneous
value of i(t)

The instantaneous
value of v(t)

Figure 9.14 The phasors representing the sinusoidal voltage and current of a resistor are
in phase. The current phasor has been offset slightly for clarity
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ω

ω

V

V1

V2

ω

v1(t)

v2(t)

v(t)

The instantaneous
value of v1(t)

The instantaneous
value of v2(t)

The instantaneous
value of v(t)

reference axis

Figure 9.15 A Phasor diagram showing that the phasor addition of voltages obeys KVL.
Hairlines are used to indicate construction

Kirchhoff’s laws

Figures 9.12, 9.13 and 9.14 have provided us with representations of component
relations. But what happens when we connect those components together? For DC
circuits the answer was provided by Kirchhoff’s laws; fortunately, they do so again
for sinusoidal voltages and currents.

That Kirchhoff’s voltage law applies to phasors can be illustrated by the simple
example of Figure 9.15 in which two sinusoidal voltage sources of radian frequency
ω are connected in series. We wish to represent, by a phasor, the resulting voltage
which, according to KVL, is the sum of the two source voltages. Each of the two
rotating phasors V1 and V2, when projected onto the reference axis, describes
one of the two sinusoidal voltages v1(t) and v2(t). Their phasor (also known as
vector) addition, shown as the phasor V, is also seen to provide a projection onto
the reference axis which defines the scalar time-varying value of the voltage v(t).
Figure 9.15 thereby illustrates the fact that KVL applies to voltage phasors. In a
similar way it can be shown that KCL also applies to current phasors. What Figure
9.15 also shows by example is that voltage amplitudes do not in general obey
KVL: the same applies to current amplitudes.

9.3 Constructing a Phasor Diagram

We can now combine knowledge of component properties, as represented by
phasors, and the fact that KCL and KVL apply to connections, to describe a
circuit by means of a phasor diagram. To illustrate how this is done we consider
the circuit shown in Figure 9.16.

To draw the phasor diagram we start (Figure 9.17) with the voltage across the
capacitor (Why? The answer is given later in this section). We arbitrarily draw
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v(t)

1 µF

1 kΩ 

1 H

X

= 2 cos 1000t 
volts

vS(t)

iR(t)

iC(t)

vL(t)

i(t)

Figure 9.16 The circuit whose phasor diagram is to be constructed

(Figure 9.17a) its phasor V along the reference line. We do not yet know its
amplitude so we simply indicate that the length of this phasor is V .

The voltage v(t) appears across the resistor so the phasor IR representing the
current through it is parallel to V (i.e., it is ‘in phase’ with it). Again we have to
choose what we hope is a suitable length (Figure 9.17b) for the phasor IR. However,
we do know the relation between the amplitude of the current and voltage of the
resistor (I = V/R), so we can label the length of the phasor IR as V /1000.

The voltage v(t) also appears across the capacitor. Knowing that capacitor
current leads voltage we know the direction in which to draw (Figure 9.17c) the
current phasor IC and we can also compute its length from Equation (9.4):

I = ωCV = 103 × 10−6V = V/1000

so that the phasors IR and IC are of equal length.
We now invoke KCL at node X in the circuit of Figure 9.16. The phasor I

representing the current i(t) is (Figure 9.17d) the phasor addition of IR and IC

and therefore has a length V
√

2/1000 and subtends an angle of 45o with the
phasor V.

The current i(t) also flows through the inductor, so the phasor VL representing
(Figure 9.17e) the voltage vL(t) across the inductor is 90o in advance of the
phasor I. Its length can be found from the equation 9.8 (V = ωLI) to be 1000 ×
1×V

√
2/1000 which is V

√
2.

In view of the dimensions of the phasors V and VL it is easy to see that their
phasor addition (Figure 9.17f) to obtain the phasor VS by KVL shows that VS is
90o in advance of V and has the same magnitude.

It is at this point that we can refer to the actual amplitude (2 V) of the voltage
source vS(t) and thereby calculate the amplitude (2 V) and phase (90o lagging with
respect to vs(t)) of the voltage v(t) represented by the phasor V. In the same way,
for example, we can calculate the amplitude of the current through the resistor as
V /1000 = 2/1000 = 2 mA. In other words, the current iR(t) in the resistor can
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(a) (b)

(e)

V V V V
IR

(d)

V

IR

IC I

V

(c)

V

IR

IC

V

V

IR

IC I

V

VL

V√2 V√2

(f)

V

IR

IC
I

V

VL
VS

V

Ohm’s Law

KCL

KVL

Capacitor relation

Inductor relation

V√1000
V√2/1000

V√1000

V√1000 V√1000

V√1000

V√1000

V√1000

V√2/1000

Figure 9.17 Steps in the construction of a phasor diagram for the circuit of Figure 9.16.
Where possible phasor lengths have been indicated beside the phasor. Some overlapping
phasors have been offset slightly for clarity. Hairlines are included to indicate constructions
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v(t) 100 Ω 10 mH 1 µF

X
i(t)

= 2 cos ωt volts

iR(t) iL(t) iC(t)

Figure 9.18 A resonant circuit

be expressed as

iR(t) = 2 cos (1000t − π/2) mA

In drawing the phasor diagram for the circuit of Figure 9.16 we began by
drawing the phasor representing the voltage v(t) across the resistor. We did so
because we could then determine, in turn, the phasors IR, IC, I, VL and hence VS.
If we had started by drawing the phasor VS we would have been unable to make
any further progress.

Resonance

A phasor dagram can effectively illustrate the important phenomenon of
resonance and thereby provide an example in which the radian frequency of a
source is allowed to vary.

Consider the circuit of Figure 9.18 in which the independent source is a sinu-
soidal voltage of constant amplitude V (= 2 V) and whose frequency ω may vary.
It is of interest to see how the amplitude of the sinusoidal current i(t) changes as
we vary ω.

We saw in the first example of this chapter that the lengths of the current and
voltage phasors were related by the Ohm’s law-like expressions I = ωCV for a
capacitor and V = ωL I for an inductor. In preparation, therefore, we calculate
in Table 9.1 the values of V/I for the capacitor and inductor at two different
frequencies.

Table 9.1 Relevant to the analysis of
the circuit of Figure 9.18

C 1/ C L

The values of V/I for the inductor and 
capacitor of Figure 9.18 for two values of ,
the radian frequency of the current source

104 10-2 100 100

104 √2 √2 /100 100/√2 100√2

radians/sec siemens ohms ohms
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V

IRV/100

(a)

V

reference axis

V/100

V/100

(d)

V

IR = I

V

reference axis

IC

IL

V/100

20 mA

VIR

(e)

locus of I

(b)

IL

VV

reference axis

IC

IR

V  2/100

V/100  2V/100

(c)

V(  6/2)/100
IR

I

IC

IC + IL

V

IC

reference axis

length represents 2 volts

V  2/100

V/100  2√

√ V /100

Figure 9.19 Construction of phasor diagrams for the circuit of Figure 9.18. Some over-
lapping phasors have been offset for clarity

To investigate the circuit of Figure 9.18 we first assume that ω = 104√2 rad/s.
We start the phasor diagram (Figure 9.19a) by arbitrarily drawing the phasor V,
of length V , representing v(t) along a reference axis. The phasor IR, representing
the current iR(t) in the resistor of 100 � is then in phase with V as shown and its
length is V /100.

At the radian frequency ω = 104√2, the phasor IC representing iC(t) leads V by
90o (Figure 9.19b) and its length will be ωCV which for ω = 104√2 is V

√
2/100.



OTE/SPH
c09 JWBK236/Spence July 23, 2008 14:22 Char Count= 0

136 AC CIRCUITS AND PHASOR DIAGRAMS

The phasor IL representing the inductor current iL(t), on the other hand, lags V by
90o and its length (V /ωL) is V /100

√
2, half that of IC.

We now apply KCL at node X, remembering that phasor addition, and not
amplitude addition, is required. We first note that IC + IL is a phasor 90◦ in
advance of V and of amplitude V /100

√
2. As shown in Figure 9.19c its phasor

addition to IR yields the phasor I representing the current i(t). Knowing the length
of IR and of IC + IL we can calculate the length of I to be V (

√
6/2)/100. Since we

know that the length of V represents 2 V, we can calculate the corresponding value
of I (24.5 mA), the amplitude of i(t), as well as the phase difference (tan−1√2/2)
between i(t) and the voltage source.

Of more interest at the moment is what happens if we now vary the radian
frequency ω. By reference to Table 9.1 we see (Figure 9.19d) that at a new
frequency of 104 rad/s phasors IC and IL are of equal length, so that their phasor
addition is zero and the current i(t) represented by the phasor I flows entirely in
the resistor. Currents still flow in the capacitor and inductor (as represented by
the phasors IC and IL), but cancel each other out in their contribution to i(t). We
see, in fact, that i(t) and the voltage source are in phase so that, to the source,
the circuit ‘looks like’ a resistor of 100 �. The phasor diagram of Figure 9.19(d)
shows that for a given V , the length (V /100 = 20 mA) of the current phasor I has
been reduced from the value it had for ω = 104√2 (24.5 mA).

What we seen in this example is the phenomenon of resonance which occurs
when the two currents iC(t) and iL(t) are equal in magnitude but opposite in phase.
Indeed, if we equate the magnitude of the two currents:

ωCV = V/ωL

we find an expression for the resonant frequency:

ω = 1/
√

(LC) (9.10)

Visualization of the effect of variation in ω can be helped by Figure 9.19(e)
which shows the locus of the phasor I. From this diagram it can be appreciated that,
especially if the resistance is high (i.e., small |IR|) the magnitude of the current i(t)
can vary substantially as ω moves through the resonant frequency. Another view of
the resonance phenomenon can be obtained if we examine a circuit identical to that
of Figure 9.18 but with the sinusoidal voltage source replaced by a current source
of amplitude 1 mA. Resonance is again experienced, but now with the voltage
v(t) exhibiting the variation with frequency sketched in Figure 9.20. At resonance
the capacitor and inductor currents ‘cancel each other out’ and the voltage is
due entirely to the current 1 cos ωt mA flowing in the 100 � resistor. It will be
noted that, for convenience, logarithmic scales are adopted for amplitude and
frequency, a technique introduced and fully explained in Chapter 11.

The examples presented above are important for two reasons. First, to show
how phasor diagrams can help us to visualize circuit behaviour over a range
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100
80

50

Amplitude of v(t)
in the circuit of
Figure 9.18 when
modified to replace
the voltage sourse
by a current source

(millivolts)

20

10
8

5

2

1
1000 2000 5000 10,000 20,000

Radian frequency ω

50,000 10,000

Figure 9.20 Pertinent to the circuit of Figure 9.18 in which the sinusoidal voltage source
is replaced by a sinusoidal current source of 1 mA amplitude. The sketch shows the
variation of the ampitude of the voltage v(t) as the source frequency ω varies

of frequencies. Second, through the phenomenon of resonance, to introduce the
important concept of selectivity. If, in place of the single current source to which
Figure 9.20 refers, we had a collection of current sources in parallel representing
a number of TV transmissions, then only that transmission occurring within a
specified ‘bandwidth’ determined by the values of R, L and C would generate a
significant voltage amplitude: in other words, all other frequencies lying outside
that bandwidth would to a greater or lesser degree be filtered out. In telephone
communication systems, where we need to separate different conversations, the
principle of filtering is again employed, though usually with circuits containing
many inductors and capacitors.

9.4 Problems

Single capacitors and inductors

Problem 9.1

Derive an expression for the current i(t) flowing in the capacitor in the circuit
of Figure P9.1. Sketch at least one cycle of the voltage and current waveforms,
indicating values of both time and angle (ωt) on the horizontal axis.
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2 cos 100t
volts

1 F

i(t)

Figure P9.1

Problem 9.2

Derive an expression for the voltage v(t) across the capacitor in the circuit of
Figure P9.2

Amplitude
= 4 mA

Frequency
= 159 Hz

100 nF

i(t)

v(t)

Figure P9.2

Problem 9.3

Derive an expression for the voltage v(t) across the inductor in the circuit of Figure
P9.3.

2 cos 100t
mA

10 mH

v(t)

Figure P9.3

Problem 9.4

As shown in Figure P9.4, a resistor and a capacitor are connected in parallel across
the terminals of a sinusoidal voltage source. Derive expressions for the currents
in the resistor and capacitor, and hence the total current supplied by the voltage
source.
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2 cos (100t + 20°) mV 1 k

10   F

Figure P9.4

Phasor diagrams

Problem 9.5

Sketch a dimensioned phasor diagram representing all the currents, as well as the
voltage, in the circuit of Figure P9.5.

1 k 5 F

I

IR IC

2 cos 400t volts

Figure P9.5

Problem 9.6

Sketch a dimensioned phasor diagram showing all component currents and volt-
ages in the circuit of Figure P9.6.

500

1 H

10 mA amplitude
159 Hz

Figure P9.6
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Problem 9.7

Sketch a dimensioned phasor diagram for the circuit of Figure P9.7, and thereby
obtain expressions for the component voltages as well as the current supplied by
the voltage source. Begin your diagram with the phasor representing the resistor
voltage.

1 H

2 cos 1000t volts

1 H

1 k

Figure P9.7

Problem 9.8

Draw a phasor diagram for the circuit shown in Figure P9.8 and hence determine the
magnitude and phase of the voltage ratio V2/V1 where V1 and V2 are, respectively,
the amplitudes of the voltages v1(t) and v2(t). What is the phase difference between
v1(t) and v2(t)?

v1(t)

v (t)

v2(t)

1 H
ω=1000

1 k

1 k

1 F

Figure P9.8
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10
Complex Currents
and Voltages

While the concept of phasor diagrams introduced in Chapter 9 provides a useful
representation of sinusoidal currents and voltages that helps one to visualize circuit
behaviour, it has some disadvantages:

� Phasor diagrams require graphical construction, unsuited to computers;

� They refer to a single frequency of operation, notwithstanding examples (such
as the resonant circuit treated in the previous chapter) where performance over
a frequency range can be visualized to some extent;

� The ‘starting phasor’ in a phasor diagram construction can be difficult to identify
or may not even exist.

There is, therefore, a need for a much simpler way of analysing circuits in which
voltages and currents are sinusoidal, one which is amenable to computer imple-
mentation and one that can easily handle performance over a range of frequencies.

10.1 Euler’s Theorem

The basis of the principal approach to AC circuit analysis is Euler’s theorem, which
states that:

e jθ = cos θ + j sin θ (10.1)

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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Imaginary

Real

ejθ

cos θ

sin θ
unity

θ

Figure 10.1 Representation of e jθ in the complex rane

Here, j rather than i is used to denote the square root of minus one to avoid
confusion with the symbol for current. The representation of e jθ in the complex
plane with real and imaginary axes is shown in Figure 10.1. We see that the real
component of e jθ is a cosine term which can conveniently be used to describe a
sinusoidal voltage or current having a value such as 4 cos ωt . So if we choose
θ = ωt , the real part of e jθ is cos ωt , a term that has often appeared in our
expressions for current and voltage.

With θ = ωt , Euler’s theorem (Equation 10.1) becomes:

e jωt = cos ωt + j sin ωt (10.2)

an expression whose graphical representation is shown in Figure 10.2. Note that
the point e jωt is not stationary; like the phasors we have met it rotates in a circular
trajectory of unity radius at a radian frequency ω. Therefore, whereas we earlier
described a sinusoidal voltage by an expression such as

v(t) = V cos(ωt + θ )

we can now write, by reference to Figure 10.2,

v(t) = Re[Ve j(ωt+θ)] = Re[Ve jθ e jωt ]

The term Ve jθ is a constant and in general complex: we shall call it V, so that
we can write

v(t) = Re[Ve jωt ] (10.3)
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ejωt

cos ωt

ωt

1−1

−1

Real

Imaginary

ω

length = 1

1

Figure 10.2 Properties of e jωt in the complex plane

where we use the bold V to denote what we shall call the complex voltage. The
close relation between the phasor representation of a voltage (by a rotating line)
and the complex representation by a point describing a circular trajectory is clear,
and justifies use of the same symbol (V) in both cases.

The obvious question at this point is ‘why do we need to involve complex
quantities? Why can’t we just use trigonometric functions and write, for example,
v(t) = 4 sin 100t V?’. The answer lies in the fact that, as we shall shortly see,
complex voltages and currents obey similar laws to the ones that govern voltages
and currents in a DC circuit, with the valuable bonus that we can use the same
approach to AC circuit analysis as the one we learned in Chapters 3 and 4 for DC
analysis!

10.2 Component Relations

The capacitor

As presented in Chapter 8, the fundamental relation between the current and
voltage of a capacitor is

i(t) = Cdv(t)/dt
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where C is called the capacitance and has the units of farads. Thus, if the voltage
across a capacitor is expressed as

v(t) = V cos(ωt + θ )

then i(t) = ωCV cos(ωt + θ + π/2).
Using Euler’s relation we can express i(t) alternatively as

i(t) = ωCV Re[e j(ωt+θ+π/2)] = Re[ωCVe j(θ+π/2)e jωt ]

In Chapter 9 we denoted ωCV by I . If we now denote the constant Ie j(θ+π/2) by
I (a complex quantity), we can express i(t) as

i(t) = Re[Ie jωt ] (10.4)

which is of the same form as the expression for voltage (Equation 10.3):

v(t) = Re[Ve jωt ] (10.3)

If we are given the value of I or V as well as the radian frequency ω we can
easily determine, from Equation (10.4) or (10.3), the actual value of i(t) or v(t).

In a DC circuit we found that Ohm’s law defined the relation between the
current and voltage of a resistor. It is helpful now to discover the relation between
the complex voltage V and the complex current I imposed by a capacitor.

We defined

I = ωCVe j(θ+π/2) = ωCVe jθe jπ/2 (10.5)

and we also defined

V = Ve jθ (10.6)

Combining these two relations we find

I = ωCVe jπ/2

But since, from Euler’s theorem, e jπ/2 = j , we can now write

I = ( jωC)V (10.7)
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The importance of this relation is that it has the same form as Ohm’s law. In
exactly the same way we can show that the relation between the complex current
I of an inductor and the complex inductor voltage V (both defined as in Equations
10.3 and 10.4) is

V = ( jωL)I (10.8)

Also, for a resistor,

V = RI (10.9)

The last three equations show that, just as Ohm’s law relates DC currents and
voltages, a relation of the same form exists between the complex currents and
voltages of capacitors, inductors and resistors. There is therefore considerable
motivation now to see if complex currents obey Kirchhoff’s current law and
complex voltages obey Kirchhoff’s voltage law. If that is the case, the same
approach developed for DC circuit analysis can be used for AC circuit analysis.

10.3 Interconnection

We consider the case of three sinusoidal currents flowing into a node (Figure 10.3).
According to KCL,

i1(t) + i2(t) + i3(t) = 0

If all currents are sinusoidal and have the same frequency we can rewrite the
expression as

I1 cos(ωt + φ1) + I2 cos(ωt + φ2) + I3 cos(ωt + φ3) = 0

By reference to Euler’s theorem we can rewrite this equation as

Re[I1e jφ1 e jωt ] + Re[I2e jφ2 e jωt ] + Re[I3e jφ3 e jωt ] = 0

or, with reference to Equation (10.4),

Re[I1e jωt ] + Re[I2e jωt ] + Re[I3e jωt ] = 0



OTE/SPH
c10 JWBK236/Spence August 4, 2008 13:47 Char Count= 0

146 COMPLEX CURRENTS AND VOLTAGES

i1(t) i2(t)

i3(t)

Figure 10.3 Relevant to the discussion of whether KCL is valid for complex currents

where I1, I2 and I3 are the complex currents representing the actual sinusoidal
currents i1(t), i2(t) and i3(t). The last equation can be rewritten as

Re[(I1 + I2 + I3)e jωt ] = 0

Since e jωt is never equal to zero, it follows that

I1 + I2 + I3 = 0

In other words, for the example considered, Kirchhoff’s current law holds for
complex currents. While KCL holds for complex currents Ix and instantaneous
currents ix (t), it does not hold for current amplitudes Ix .

In a similar way it can be illustrated by example that Kirchhoff’s voltage law
holds for complex voltages.

10.4 AC Circuit Analysis

The important conclusion we can now draw is that, for a circuit in which all currents
and voltages are sinusoidal of a given frequency, the constraints upon voltages and
separately upon currents imposed by connection, and the relations between the
currents and voltages imposed by individual components, are of precisely the same
form as for DC circuits if the sinusoidal currents and voltages are represented by
their complex values I and V, as expressed in Equations (10.3) and (10.4). It
follows, therefore, that analysis can proceed in the same way as for DC circuits.
The similarities between DC and AC currents and voltages are set out in Table 10.1.

To illustrate AC circuit analysis, and to emphasize that it has much in common
with DC analysis, we shall work through a simple example in Example 10.1 below.
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Example 10.1

In view of what we have discovered about the ease 

Our task is to determine the waveforms of the voltages and currents in the circuit shown in Figure 10.4a

with which complex currents and voltages can be 
predicted, we now redraw the circuit and show complex 
currents and voltages (Figure 10.4b).  For convenience 
we label two nodes as A and B. 

For comparison we carry out, simultaneously, the DC
analysis of a circuit having the same layout as the AC
circuit to be analysed (Figure 10.4c).

VR = R1 I

VL  =  (j L2) I

VS = VR + VL

ZAB = R1 + j L2
Total impedance
between A and B

VS  =  20 + j0 volts

R1 = 50 ohms
L2 = 50 ohms

ZAB = 50 + j50 ohms

I = VS/ZAB = (20 + j0)/(50 + j50)
   = 0.2 - j0.2 amps
VR = R1 I = 50x(0.2 - j0.2) 
   = 10 - j10 volts

VL  =  j L2 I = j50x(0.2 - j0.2) 
      = 10 + j10 volts

VR = R1 I
Ohm’s LawVL = R2 I

VS  =  VR + V L

RAB = R1 + R2
Total resistance
between A and B

VS  =  20 volts
R1 = 50 ohms
R2 = 50 ohms

RAB = 100 ohms
Ohm’s LawI =  VS /RAB = 20/100 = 0.2 amps

VR = R1 I = 50x0.2 = 10 volts Ohm’s Law

VL = R2 I = 50x0.2 = 10 volts Ohm’s Law

VR + V L =  20 = VS
VR + VL = 20 + j0 = VS

DC analysis
At this point the DC analysis is complete

AC analysis
At this point the AC analysis is incomplete because
sinusoidal currents and voltages are represented by complex 
quantities.  We have reaped the benefit of such a 
representation (simple analysis, just like DC analysis) but
now we must convert the complex currents and voltages to
the sinusoidal currents and voltages they represent.

We recall that we have represented a current i(t) in the form

i(t)  =  Re[Ie jωt]

In the centre we indicate the steps taken. A new term, explained later, is introduced in boldface. Quotes are used
to draw attention to similarities between equations.

Figure 10.4  Relevant to a demonstration of the similarities between DC and AC analysis

‘Ohm’s Law’

‘Ohm’s Law’

‘Ohm’s Law’

‘Ohm’s Law’

Substitution in 1

Check

Ohm’s Law

KVL

Values

Equivalence (1)

R1=50

vR(t) vL(t)

L2=100 mH

vS(t)

i(t)

(40 V amplitude, 500 rad/s)

R1=50

VL

L2=100 mH

VR

VS

I
R1=50

VL

R2=50

VR

VS

A B A B

(a)

(b)(c)

I
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Consider the current flowing through the resistor and inductor. Its complex
representation is

I = 0.2 − j0.2 A

which can be represented by a point in the complex plane, as shown in Figure
10.5(a).

Real0.2

−0.2 I
(a)

Real
ωt 

ejωt

ω

(b)

(c)

Real

0.2 2

ω
Iejωt

Imaginary

Imaginary

Imaginary i(t =0)

Figure 10.5 Steps in the transformation from a complex current to the actual value at a
particular time

To find i(t), however, we need the product of I and e jωt (see Equation 10.4),
the latter quantity described by the point shown in Figure 10.5(b). Recalling that
the product of two complex numbers is obtained by multiplying their magni-
tudes and adding their angles, and for convenience selecting t = 0, we obtain the
representation of Figure 10.5(c).

We now have the actual value of i(t) at time t = 0: it is the projection of the
point Ie jωt on the real axis. More generally we see that the current i(t) is a sinusoid
having an amplitude of 0.2

√
2 V. It is useful also to show all other voltages and

currents in the complex plane (Figure 10.6) from which we can see, for example,
that the amplitude of vL(t) is 14.14 V and that it leads the source voltage vS(t) by
45◦. If required, waveforms can easily be derived from the diagram of Figure 10.6
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as we have shown for vS(t) and i(t) in Figure 10.7. At this point the AC analysis
of the circuit of Figure 10.4(a) can be said to be complete.

VL

VS

VR

I

Imaginary

20 volts

20 volts

0.2 amps

0.2 amps

−0.2 amps

−20 volts

Real

Figure 10.6 Complex representation of voltages in the circuit of Figure 10.4a

–20 V

20 V
VS(t)

i(t)

5.44 10.87 time t (ms)

–0.283 A

0.283 A

0

Figure 10.7 One cycle of the waveforms of vS(t) and i(t)

Having carried out the analysis and compared it to the analysis of a DC circuit
of similar form we can make a number of useful observations and also clarify
some points.

10.5 Observations

First, by standing back from detail we can summarize our approach to AC analysis
by the diagram of Figure 10.8. The original problem is formulated in the time
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v(t) transform

transform

I V

I V

i(t)

v(t)i(t)

analyse

Figure 10.8 Illustrating the approach to AC analysis based on the use of complex currents
and voltages

domain: we identify currents and voltages which are functions of time and we
wish to describe them in detail. To do that we transform our problem into the
complex domain in which we can easily calculate the complex representations
of all currents and voltages. Finally we transform our results back into the time
domain.

Next, we used the term impedance to describe the relation between a complex
current and a complex voltage. Just as in DC circuits where we called the ratio
V /I the resistance, in the complex domain we are also interested in the ratio V/I
and we use the term impedance. Since impedance is a complex quantity we need
to talk about its real and imaginary parts which we call, respectively, resistance
and reactance. Thus:

impedance = resistance + j(reactance) (10.7)

and has the dimensions of ohms. Typically we denote the quantities in Equation
(10.7) by Z, R and X as in

Z = R + jX (10.8)

Sometimes, when dealing with DC circuits, we referred to the conductance of a
resistor when discussing the ratio I /V : similarly, when dealing with AC circuits,
we often wish to discuss the ratio I/V in which case we define that ratio as:

I/V = admittance = conductance + j(susceptance) (10.9)

often written as:

Y = G + jB (10.10)
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Just as, in a DC circuit, a resistor’s conductance is the reciprocal of its resistance
(G = R−1), for an AC circuit we can similarly write

admittance = (impedance)−1 (10.11)

or Y = Z−1. However, with reference to Equations (10.8) and (10.10), we must
be careful to note that, except in special conditions, G is not the reciprocal of R.

Example 10.2

Find the impedance and admittance between the terminals A and B for each of the
two circuits shown in Figure 10.9 at a frequency of 1000 rad/s.

1 kΩ
1 µF

A B

A B

(a) (b)

100 mH

1 kΩ

Figure 10.9 Relevant to Example 10.2

In the circuit of Figure 10.9(a) there are two components connected in series.
To find the total impedance we add the impedances of the two components just as
we would add the resistances of two resistors connected in series. The impedance
of the resistor has only a real part, equal to 1k�. The impedance of the capacitor
is imaginary, and equal to 1/jωC (see Table 10.1). For the given values of ω and
C the impedance of the capacitor is – jk�. The impedance between A and B (we
shall call it ZAB) is the sum of these two impedances and is therefore given by:

ZAB = 1 − j1 k�

The admittance YAB between terminals A and B is the reciprocal of ZAB and is
therefore given by

YAB = 1/ZAB = 1/(1 − j1) = 0.5 + j0.5 mS

In the circuit of Figure 10.9b there are two components connected in parallel.
So we find the total admittance between A and B by proceeding as we would with
two conductances connected in parallel: that is, by adding the admittance of the
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resistor (1 mS) to the admittance of the inductor (1/jωL) to get

YAB = 1 − j0.1 mS

Then, to obtain the impedance between A and B we find the reciprocal of YAB:

ZAB = 1/(1 − j0.1) = (1 + j0.1)/1.01 k� = 0.99 + j0.99 k�

Example 10.3

Figure 10.10 shows the circuit for which we derived a phasor diagram in the
previous chapter. We shall now predict its behaviour using the complex approach
to AC analysis.

We immediately represent all currents and voltages by complex quantities (Fig-
ure 10.11). We also calculate, for the radian frequency of the source, the reactance
of the inductor (ωL = 1 k�) and the susceptance of the capacitor (1/ωC = 10−3

S).
First we calculate the impedance between X and Y (recall the expression for the

resistance of two resistors in parallel):

ZXY = R(1/jωC)

R + (1/jωC)
= 0.5 − j0.5 k�

Alternatively, we could first have calculated the admittance YXY between X and
Y (recalling the equation for the conductance of two resistors in parallel):

YXY = (1/R) + jωC = 1 + j1 mS

from which it follows that ZXY = 1/YXY = 1/(1 + j) = 0.5 − j0.5 k� which
checks with the earlier calculation. The impedance ZXY is in series with the

iR(t) 1 kΩ 

1 µFiC(t)i(t)

1 H
v (t)

volts

vS(t)
vL(t)= 2 cos 1000t

Figure 10.10 The circuit to be analysed in Example 10.3
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IR

VL
VS

V

ICI

1 kΩ 

1 H

X YA

B

1 µF

Figure 10.11 The circuit of Figure 10.10 with currents and voltages represented by com-
plex quantities

inductor so, recalling the expression for the resistance of two resistors connected
in series, we can express the total impedance between A and B as:

ZAB = ZXY + jωL = 0.5 + j0.5 k�

If we now connect terminals A and B to the voltage source we can calculate the
resulting current:

I = VS/ZAB = (5 + j0)/(0.5 + j0.5) = 5 − j5 mA

Thus, the current in the inductor has an amplitude
√

(52 + 52) = 5
√

2 mA.
Other currents and voltages can easily be calculated. For example, the complex

voltage across the inductor is I jωL = 5 + j5 V, which represents a sinusoidal
voltage of radian frequency 1000 and amplitude 5

√
2 V.

Note that our selection of zero imaginary part for VS is arbitrary. The choice of
VS = 0 + j5 V would lead to the same amplitudes of the sinusoidal currents and
voltages and the same relative phases between them.

The results of our AC analysis will be seen, by reference to Chapter 9, to be in
agreement with the results obtained from the phasor diagram construction.

Example 10.4

Complex quantities can be characterised in polar form as well as rectangular. For
example, the impedance ZAB in the circuit of Figure 10.11, which we expressed in
rectangular form as 0.5 + j0.5 k� can also be expressed in polar form as having
a magnitude of 0.5

√
2 and an angle of 45◦, written as 0.5

√
2� 45◦. This alternative
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representation can be useful when working with the product or division of two
complex quantities. Thus, in calculating the value of I we could write:

I = VS/ZAB = (5� 0◦)/(0.5
√

2� 45◦) = 5
√

2� − 45◦

Since the reader may have been introduced to the concept of complex quantities
only recently, a useful point to make concerns the appearance of the complex
quantity j in the equations involved in AC analysis. As we have seen, to make
use of the simple approach to analysis we work in the complex domain in which
quantities are necessarily complex, whereas the actual currents and voltages of
interest do not involve j – they are functions of time. Mistakes can easily be made
if the j involved in an AC analysis is removed too soon. To take a specific instance
from Example 10.1, we found that the current I was 0.2 – j0.2 A. The temptation
to drop the j would result in a current of zero value! Similarly, we found that
VL = 10 + j10 V; again, ‘losing’ the j would result in a voltage amplitude of
20 rather than 14.14 V. The essential thing to remember is to conduct the AC
analysis entirely within the complex domain until the (complex) representations
of the currents and voltages of interest have been found and then, and only then,
to perform the transformation back into the time domain.

Finally, it should be mentioned that the systematic method of circuit analysis
introduced in the context of DC circuits in Chapter 4 is equally applicable to
AC circuits. If, for example, the circuit has two unknown voltages VA and VB,
application of KCL at two nodes will result in two complex equations and hence
four real equations whose solution will yield the real and imaginary parts of the two
complex voltages. Such a systematic approach forms the basis of many computer
programmes for the analysis of AC circuits.

10.6 Problems

Problem 10.1

For each of the 12 circuits shown in Figure P10.1, and for the stated frequency,
express both the impedance and admittance between terminals A and B in complex
form. Also derive the magnitude and phase of each impedance and admittance.

Problem 10.2

For the circuit of Figure P10.2, where voltages and currents are represented by
complex quantities, find the values of VR, VC and I. Express these quantities in
polar form.

If the input voltage were equivalently represented as 10 + j0, write down by
inspection (NOT by reanalysis) the new values of VR, VC and I.
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1 Henry

BA
ω = 1000 r/s

1 k

BA
ω = 1000 r/sω = 1000 r/s

1 µF

(a) (b) (c)

A B

100 mH
100 Ω

f = 159 Hz A B
1 µF

1 k

ω = 500 r/s

(d) (e)

0.1 µF

100 mH

A B

ω = 1000 r/s

0.1 µF

100 mH

A B

ω = 10,000 r/s

100 mH

0.1 µF

A B

ω = 10,000 r/s

100

(f) (g) (h)

100 mH

A B

ω = 1000 r/s

50 mH

(i)

0.1 µF
100 mHA B

ω = 1000 r/s

(j)

(l)

0.1 µF
100 mHA B

ω = 10,000 r/s

(k)

ω

Ω

 = 10,000 r/s

0.1 µF
100 mHA B

100

A B

Figure P10.1

VS = 0 - j10 volts

ω = 1000 radians per second

R = 1 k C = 1 Fµ

VR VC

I

Figure P10.2
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Problem 10.3

For the circuit of Figure P10.3 derive an expression for the complex voltage VO

in terms of G, R, C , ω and VIN. At what frequency will VO lead VIN by 225◦? At
this frequency what is the value of |VO/VIN| ?

100 Ω
R C

10
µF

G V*

V*VIN VO

G = 10 mA per volt

Figure P10.3

Problem 10.4

For the circuit shown in Figure P10.4 determine the radian frequency for which
the current i(t) is zero whatever the amplitude of the voltage source.

i(t)

10 mH 1 µF

Figure P10.4

Problem 10.5

Calculate the peak-to-peak amplitude of the voltage vO(t) in the circuit of Figure
P10.5. What capacitance should be connected across the inductor to ensure that
vO(t) is in phase with vIN(t)? What is then the ratio of the amplitudes of vO(t) and
vIN(t)?

2 k

2 k 2 H
vO(t)4 cos 1000t mV

vIN(t) =

Figure P10.5
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Problem 10.6

For the circuit of Figure P10.6 determine the magnitude of the complex voltage
VO. What is the phase relation between VO and VIN ?

VVIN O
10 + j10 volts
ω = 1000 r/s

1 µF

1 Fµ 1 k 

Figure P10.6

Problem 10.7

For the circuit of Figure P10.7 express the complex impedance between the ter-
minals A and B in terms of R, R1, L , C and the radian frequency ω. For what
numerical value of ω will the impedance be purely resistive?

R

LR1

C

100

10 mH

1 F300

A B

Figure P10.7

Problem 10.8

For the circuit of Figure P10.8 derive an expression for the voltage v(t) appearing
across the sinusoidal current source.

100 mH 1 H

i(t) = 20 cos 100t mA

v(t)

Figure P10.8
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Problem 10.9

In the circuit shown in Figure P10.9, VS represents a sinusoidal voltage of radian
frequency ω. Derive an expression for the complex voltage V as a function of R, L ,
C and ω. Hence show that V = 0 if R = √

(L/C). Show that if this relation between
R, L and C holds, the circuit between terminals X and Y is indistinguishable
electrically from a resistor of value R.

VS

V
R

RC

L

X Y

ω

Figure P10.9

Problem 10.10

For the circuit shown in Figure P10.10 the relation between the components is R =√
(L/C). Derive an expression for the complex voltage amplification VOUT/VIN.

VIN R

R
C

L

ω

VOUT

Figure P10.10

Derive an expression for the radian frequency at which the phase shift of the
voltage amplification is −90◦. Show that, at that frequency, the magnitude of the
voltage amplification is 1/(2

√
2).

Show that, at the same frequency, the input impedance ‘seen’ by the voltage
source is ZIN = R[4/3 + j(2

√
2)/3]

Problem 10.11

A circuit discussed in Chapter 9 is reproduced as Figure P10.11. Determine the
relation between the complex voltages V and V2 and check against the phasor
diagram generated in Chapter 9.
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V1

V2

V

1 H

1 k

1 k

1 µF

ω = 1000 radians/sec

Figure P10.11

Problem 10.12

Measurements of impedance and admittance are made on five two-terminal ‘black
boxes’, in every case at two different frequencies. The results are recorded in the
table in Figure P10.12. It is known that each box can only contain either one or
two components, which can be resistors, capacitors or inductors. Determine the
circuit within each of the black boxes.

Measurements at 103  and 106 radians per second on some two-
terminal black boxes

Impedance Z (ohms) or 
Admittance Y (siemens) 
at ω = 103

Impedance Z (ohms) or 
Admittance Y (siemens) 
at ω = 106

Box 1

Box 2

Box 3

Box 4

Box 5

Z = 1000

Z = j103

Z = 0

Z = 100 + j1000

Y = 0.001 + j0.001

Z = 1000

Y = 0.001 + j

Z = j106

Z = j106

Z = 100 + j106

Figure P10.12
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11
Frequency Domain
Behaviour

We have seen in the last chapter how to determine the behaviour of a circuit whose
source is a single-frequency sinusoid. However, many circuits are specifically
designed to exhibit different behaviour at different frequencies. One example is a
filter that will provide amplification for frequencies within a specified frequency
range, but will provide little amplification outside that range: the example of a
tuned circuit in Chapter 9 provides some indication about how this might be
achieved by means of a resonant circuit. Another example is provided by the
amplifier inside a portable CD player: here it is essential to provide the same
amplification over a wide range of frequencies – the same for a piccolo as for a
double bass – and to ensure that the inevitable drop in amplification at very low
and very high frequencies is suitably placed in the frequency range (Figure 11.1)
and does not limit the enjoyment of listening to a musical performance.

We also saw in the last chapter that equations describing the performance of
an AC circuit contain the radian frequency ω of the sinusoidal source. For that
reason it would appear that there is no need to search for a new approach to
circuit analysis: one can substitute a number of values for ω and compute what
circuit performance is of interest. Why, therefore, do we need a separate discussion
of what is known as frequency domain behaviour? The reason is that for some
common circuits their frequency domain behaviour exhibits interesting properties
that can be of considerable help, both to the circuit designer and to anyone trying
to understand the performance to be expected of a circuit.

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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amplification

frequency

Figure 11.1 Typical form of the frequency dependence of an amplifier’s gain

11.1 Asymptotic Behaviour

We choose to illustrate an approach to frequency domain analysis by using the
circuit of Figure 11.2(a). It is a simple circuit, but recall that the combination of
voltage source and resistor could be the Thévenin equivalent of a large resistive
circuit. The currents and voltages of interest are sinusoidal functions of time.
Following the analysis procedure established in Chapter 10, we transform the
original circuit to obtain another identical in form (Figure 11.2.b), but with all
currents and voltages represented by complex quantities.

For the circuit of Figure 11.2(a) a typical question is ‘how does the ratio VC/VS

of “input” and “output” voltage amplitudes vary with frequency?’ To find the
answer we carry out the following analysis for the circuit of Figure 11.2(b). From
Ohms law:

VR = RI (11.1)

VS

VR

(a)

(b)

vS(t) vC(t)

i(t)

C

R

VC

I

C

R

ω

ω

Figure 11.2 (a) The circuit whose currents and voltages are of interest; (b) the same circuit
with currents and voltages represented by complex values
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From ‘Ohm’s law’ for a capacitor:

VC = (1/ jωC)I (11.2)

From KVL:

VS = VR + VC = I[R + 1/( jωC)] (11.3)

Combining the last three equations we find:

VC/VS = (1/ jωC)/[R + 1/ jωC] (11.4)

which, of course, we could have derived directly using the voltage divider principle.
Simple rearrangement of the last equation gives

VC

VS
= 1

1 + jωCR
(11.5)

Many circuit properties vary with frequency in this way.
That, however, is not the end of the story, because much is to be gained by the

way in which the function in Equation (11.5) is plotted.
If, as often happens, we are interested in how the magnitude of the voltage

amplification |VC/VS| varies with frequency we could simply plot |VC/VS| versus
ω on a conventional graph (Figure 11.3). There is nothing wrong with that graph:
we can see, for example, that the amplification tends to unity at low frequencies
and to zero at high frequencies. There is, however, an equivalent, but much more
informative way of illustrating and gaining insight from Equation (11.5).

Instead of plotting |VC/VS| versus ω we shall now plot log10|VC/VS| versus
log10ω. This would appear to be more complicated – but it isn’t, as we shall see –
and seems to require us to compute new quantities to plot – but it doesn’t.

We start by looking at high values of the radian frequency ω. To be specific, we
examine Equation (11.5) for values of ω which are much greater than 1/CR. For

VC

1

VS

ω

Figure 11.3 A plot of |VC/VS| for the circuit of Figure 12.2 (linear scales)
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those values of ω we can state that

|VC/VS| tends to 1/ωCR as ω tends to infinity (11.6)

If we plot

|VC/VS| = 1/ωCR (11.7)

using the axes log10|VC/VS| and log10ω we get the straight line shown in Figure
11.4(a). For convenience the corresponding values of |VC/VS| and ω are shown
alongside the log scales. A check shows that the amplification |VC/VS| decreases
by ten times for a ten times increase in ω, which agrees with Equation 11.7.

Three points should be noted. First, one can purchase what is called log–log
graph paper, so designed that there is no need to take logs: in Figure 11.4(a) it is the
scale to the left of the vertical axis we shall use, because a point on that scale (which
is more meaningful to us) corresponds to the correct point on the log scale. The
same comment applies to the horizontal axis. Second, the plot of Figure 11.4(a)

VC

VS

log10

0

1

−2

−1

1/CR 10/CR

VS

log10

ω

ω

ω

1

0.1

0.01

10 VC
= 1/ωCRVS

(a)

High-frequency
asymptote

Low-frequency
asymptote

(c)
1/CR

VC

VS

1

0.1

0.01

10

Equation 11.5
(smooth line)

VC

ω1/CR 10/CR 100/CR0.1/CR

1

0.1

0.01

10

High-frequency
asymptote

Low-frequency
asymptote

(b)

VS

VC

numerical values
depend upon C and R

0.707

0.1/CR 100/CR

100/CR0.1/CR 10/CR

Figure 11.4 Plot of |VC/VS| versus frequency ω for the circuit of figure 11.2 using loga-
rithmic scale. (a) The asymptote for high frequencies; (b) the asymptote for low frequencies
is added: logarithmic scales are still employed but values not shown; (c) the smooth curve
of Equation (11.5) is added, showing a value of |VC/VS| of 1

√
2 at the frequency ω = 1/CR



OTE/SPH
c11 JWBK236/Spence August 4, 2008 13:36 Char Count= 0

ASYMPTOTIC BEHAVIOUR 165

provides an approximation to the relation (11.5). The approximation is excellent for
very high values of ω, but decreases in accuracy as ω approaches the value 1/CR.
Third, although the axes in Figure 11.4(a) are continuous they have purposely been
drawn to avoid any crossing which might suggest a zero value for the |VC/VS| and
ω axes. Because we are using log scales the zero values of |VC/VS| and ω appear
at minus infinity!

We now turn our attention to values of ω much less than 1/CR. We can state
from examination of Equation (11.5) that

|VC/VS| tends to a value of unity as ω tends to zero

If we now add a plot of

|VC/VS| = 1

to Figure 11.4(a) – again plotting log10|VC/VS| versus log10ω – we obtain the plot
shown in Figure 11.4(b). In this plot we have intentionally not shown numerical
values on the log axes to emphasize the fact that we do not need to take logs – the
printer of the log–log paper has done that for us! Like the straight line drawn for
high values of ω, the line we have just added is also an approximation to Equation
(11.5): in each case the actual value of |VC/VS| asymptotes to these lines at low
and high values of ω. It is for this reason that the two straight lines are referred
to as the low-frequency and high-frequency asymptotes of equation 11.5. We note
that they intersect at ω = 1/CR.

The actual relation between |VC/VS| and ω is, of course, a smooth and contin-
uous one as seen from Equation (11.5). If we now add a plot of Equation (11.5)
to what we have already we obtain Figure 11.4(c). It is easy to see from Equation
(11.5) that at the frequency ω = 1/CR the value of |VC/VS| is 1/

√
2.

It may seem surprising that the continuous plot of Equation (11.5) is not always
of primary interest. The reason is that, when designing a circuit, the primary
interest may well be the general positioning of the asymptotes. For example, if
the circuit of Figure 11.2(a) is that of a filter, designed to allow low frequencies
in the source voltage to pass essentially undiminished in amplitude to the output,
but to attenuate high frequencies, then the plot of Figure 11.4(b) shows that the
amplification experienced by frequencies up to a value of about 1/CR will be
approximately unity, whereas amplification decreases significantly beyond that
frequency. Moreover, it is clear to the circuit designer that it is the product CR
which determines when the amplification decreases, and also that variation in C
and/or R will not affect the low frequency asymptote. For larger circuits containing
many components whose value has to be chosen by a designer, such information is
extremely valuable, and it will often be the case that, in the early stages of design,
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the designer will focus on the position – and positioning – of the asymptotes rather
than a precise plot of a circuit property.

Example 11.1

The circuit of Figure 11.5(a) contains a resistor and an inductor connected to a
sinusoidal voltage source. We are asked to sketch a plot of the magnitude of the
ratio |V2/V1| of the amplitudes V1 and V2 of the input and output voltages v1(t)
and v2(t) versus the radian frequency ω of the source.

(a) (b)

v1(t) v2(t)

R = 1 kΩ

L = 100 mH

V1 V2

R = 1 kΩ

L = 100 mHω ω

Figure 11.5 (a) The circuit of Example 11.1; (b) the same circuit with sinusoidal voltages
represented by complex voltages

Following the analysis procedure discussed in Chapter 10 we redraw the circuit,
but show the complex representations of voltage, as in Figure 11.5(b). Using the
voltage divider principle we can write:

V2/V1 = jωL/(R + jωL) = 1

1 − j
/ (

ωL

R

) (11.8)

which has a similar form to Equation (11.5).
The low-frequency asymptote relevant to frequencies less than ω = R/L is

given by

|V2/V1| = ωL/R

which describes, when log scales are employed for |V2/V1| and ω, a straight line
whose slope is unity if the same log scales are used for both variables (see Figure
11.6). As the frequency ω increases beyond R/L the value of |V2/V1| approaches
the high-frequency asymptote given by

|V2/V1| = 1
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VC

VS

1

0.1

0.01

R/L0.1R/L 10R/L

High-frequency
asymptote

10,0001000 100,000 (radians per second)
ω

Low-frequency
asymptote

Figure 11.6 The asymptotes associated with the voltage ratio |V1/V2| in the circuit of
Figure 11.5

which is also plotted in Figure 11.6. The two asymptotes intersect at

ωL/R = 1
or ω = R/L

Since |V2/V1| is identical with |V2/V1|, the plot of Figure 11.6 provides the re-
quested information about the performance of the circuit of Figure 11.5(a).

The continuous plot of Equation (11.8) has intentionally not been shown in
order to emphasize the considerable value of the asymptotes on their own. For the
given values of R and L (such that R/L = 104r/s) the ω axis has been assigned
corresponding values.

11.2 Extreme Frequencies

For a circuit containing sinusoidal sources a useful part-check on its performance
can be carried out by examining that performance at the extreme frequencies
of zero and infinity. Fortunately, this check can easily be carried out, often by
inspection. Take, for example, the circuit of Figure 11.2(a). At zero frequency the
impedance of the capacitor is infinite, allowing the circuit to be represented as
shown in Figure 11.7(a), from which it is clear that the magnitude of the voltage
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R

 VS VC = 0 VS

(a) (b)

VC =VS

ω ω

Figure 11.7 (a) At zero frequency the impedance of a capacitor is infinite and the capacitor
acts as an open-circuit; (b) at infinite frequency the capacitor acts as a short-circuit

amplification, |VC/VS|, is unity. Similarly, when ω is infinite, the impedance of
the capacitor is zero and can be represented by a short-circuit as shown in Figure
11.7(b), leading to an output voltage of zero at this extreme frequency. Even with
a much more complicated circuit, conclusions regarding the values of currents
and voltages at extreme frequencies are fairly straightforward, avoiding a detailed
analysis, and can often be useful as a check on a detailed circuit analysis.

11.3 Opamp Limitations

In Chapter 7 we employed an opamp within an inverter circuit (repeated as Figure
11.8) and discovered that the magnitude of the voltage amplification was equal
to the ratio of the two resistors R2/R1. For illustration we chose R2 = 10R1, but
acknowledged that the resulting amplification of ten times seemed disappointingly
low compared with the voltage gain (typically 104 to 106) provided by the linear
region of the opamp. One reason for making that choice of R2/R1 can now be
discussed, because we now have the analytical basis for explanation.

First, it is a fact that the very high voltage gain provided by the linear region of
the opamp remains high only if the frequency of the voltages VI and VO remains

V2

R1

R2

VIN

VO

I V−

V+

VI

Figure 11.8 The inverter circuit
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106

104

103

102

101

10 100 1k 10k 100k 1M
frequency (Hz)

105

gain = A0 

gain = A0 f0/f 

VO

VI

gain

Low-frequency
asymptote

High-frequency
asymptote

Figure 11.9 Typical low- and high-frequency asymptotes of the gain of an opamp

relatively low. How low can be quite surprising (Figure 11.9): it would not be
unusual to find the gain beginning to reduce at frequencies as low as 10Hz!

To investigate what effect this rather severe limitation has on a circuit containing
such an opamp we need to characterize the sort of performance shown in Figure
11.9 analytically. Fortunately, it turns out that the performance illustrated in Figure
11.9 can be expressed as

VO

VI
= A0

[
1

1 + j f/ f0

]
(11.9)

where A0 is the low-frequency gain of the opamp. For the opamp whose perfor-
mance is illustrated in Figure 11.9 the value of f0 is 10 Hz and the value of A0 is
105. Thus, the functional dependence of VO/VI upon frequency is the same as that
of the RC circuit of Figure 11.2(a) and expressed in Equation (11.5). Figure 11.9
additionally shows and characterizes the low- and high-frequency asymptotes of
Equation (11.9).

With the help of Equation (11.9) we can now undertake a new analysis of the
inverter circuit, repeated in Figure 11.8. However, to take into account frequencies
for which the opamp’s gain is not high, we must discard the notion of a virtual
short circuit (VI = 0) and use instead the Equation (11.9) containing VI. Thus, by
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Ohm’s law we can write

I = [VIN − (−VI)]/R

From KVL we can write

VO = −IR2 − VI

Eliminating I from these two equations yields

VI[R−1
1 + R−1

2 ] = −VIN/R1 − VO/R2 (11.10)

If we now substitute, in Equation (11.10), the relation between the opamp’s input
and output voltages as expressed by Equation (11.9), we eliminate VI to obtain:

VO[A−1
0 {(R1 + R2)/R1 R2} + R−1

2 + j( f/ f0)A−1
0 {(R1 + R2)/R1 R2}]

If we make the reasonable assumptions that A0 � 1 (A0 is typically at least 103)
and R2/R1 � 1 (because that is a typical choice to achieve reasonable voltage
amplification) we can write

VO

VIN
= − R2

R1

[
1

1 + j f / f ′
0

]
(11.11)

where f ′
0 = f0[A0/(R2/R1)].

A first glance at Equation (11.11) shows that, at low frequencies, the voltage
amplification is equal to −R2/R1, as we would expect. Moreover, as the frequency
f increases, the amplification decreases as again we might expect. But what is
interesting is the expression for f ′

0, the ‘cut-off’ frequency of the inverter. We
see that the product of (R2/R1), (which is the magnitude of the low-frequency
amplification) and f ′

0 (the new ‘cut-off’ frequency) is a constant A0 f0, defined
solely by the opamp: A0 is its low-frequency amplification, and f0 is its (low)
cut-off frequency. We have, in fact, discovered a trade-off (something common
to all engineering design) in this case showing that the greater the low-frequency
amplification (R2/R1) of the inverter, the smaller is its cut-off frequency f ′

0. It is
interesting to show this trade-off on a plot (Figure 11.10) of the opamp’s frequency
characteristic, using some examples of designs involving different values of R2/R1,
the magnitude of the low-frequency gain.

This analysis has provided one answer to the question posed in Chapter 7 regard-
ing the inverter: ‘why employ such low vales of R2/R1 (and hence amplification)
when the opamp has such a high gain in its linear region?’
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11.4 Problems

Log-log paper for use in all problems
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Problem 11.1

For the circuit shown in Figure P11.1 sketch, on the log–log paper provided, the
low- and high-frequency asymptotes of the magnitude of the voltage amplifica-
tion |V2/V1| where V1 and V2 are the complex voltages representing sinusoidal
voltages. Put numerical values on the axes.

V1
V2

ω 

10 mH

10 k

Figure P11.1

Problem 11.2

Sketch the low- and high-frequency asymptotes of the magnitude of the current
ratio I2/I1 for the circuit shown in Figure P11.2. I1 and I2 are complex quantities
representing sinusoidal currents. Use the log–log paper provided and label the
axes appropriately.
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I2I1

10 nF
ω 1 k

Figure P11.2

Problem 11.3

In the active filter shown in Figure P11.3 Vin and Vout are complex quantities
representing sinusoidal voltages. Assuming that the operation of the opamp re-
mains in its linear high gain region, choose values for R, RA and C to ensure that
the voltage gain Vout/Vin has a magnitude of 15 at low frequencies and a ‘cut-off
frequency’ of 100 kHz. On the log-log paper provided sketch the gain asymptotes
of the filter you have designed.

Which components affect the gain at low frequencies? Which components
determine the cut-off frequency?

Vin
Vout

R

CRA

Figure P11.3

Problem 11.4

The series connection of a resistor, a capacitor and an inductor is shown in Figure
P11.4.

First, derive an expression for the complex impedance Z between terminals A
and B at a radian frequency ω in terms of R, L , C and �.

Next, using the numerical component values given, plot on the log–log paper
provided the asymptote (NOT the actual values) of |Z| for high frequencies, where
the inductor is dominant. Then plot the asymptote of |Z| for low frequencies, where
the capacitor is dominant. Finally, under the assumption that there are frequencies
for which the resistance is dominate, calculate and plot the asymptote to which
|Z| tends at those frequencies.
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For the two frequencies at which the asymptotes intersect identify the corre-
sponding radian frequencies in terms of R, L and C . For these two frequencies
calculate the value of |Z|, plot it on the graph, and sketch (don’t calculate) the
actual variation of |Z| with frequency.

A B
R CL

10 0.1 mH
100 µF

Figure P11.4

Problem 11.5

Measurements have been made on a circuit comprising the series connection of a
resistor, a capacitor and an inductor. The measured magnitude of the impedance
of the series connection is plotted against frequency in Figure P11.5. Estimate,
with explanation, the capacitance of the capacitor, the inductance of the inductor
and the combined series resistance of the resistor and inductor.

10G

10

100

1k

10k

100k

10 100 1k 10k 100k 1M 10M 100M 1G1

Impedance
magnitude
(ohms)

Frequency (Hz)

Figure P11.5

Problem 11.6

Figure P11.6(a) shows the circuit of a filter using an operational amplifer. Figure
P11.6(b) shows the specifications placed by a customer on a filter. Any design
falling within the shaded area is acceptable.

Derive expressions for the low-frequency, mid-frequency and high-frequency
asymptotes of the magnitude of the voltage gain VO/VIN, where VO and VIN are
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complex voltages representing the sinusoidal input and output voltages of the
circuit.

If possible choose values of the two resistors and two capacitors such that the
circuit will satisfy the customer’s specification.

VIN
VO

R2

C2R1

C1

(a)

10 kHz

(b)

100 kHz

frequency (log scale)

|VO/VIN|

(log scale)

10

1

Figure P11.6
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Overview: The Analysis
of Change

The last type of circuit behaviour we shall examine is concerned with change.
One example of change that is of considerable interest is when you connect a

load to a power supply, because the resulting change in power supply voltage may
be significant and unacceptable. Sometimes these changes can be quite large (and,
for example, affect other circuits connected to a power supply) so we must be able
to predict them.

Another extremely important example of change is that which is inherent when
a sinusoidal voltage source is applied to a circuit. We have of course dealt with this
situation in the AC chapters, but only for linear circuits. Many circuits of practical
importance (e.g., amplifiers) are nonlinear because they contain components such
as diodes and transistors, but are operated at sufficiently small amplitudes that
essentially linear operation results. Nevertheless we need to know how to handle
such nonlinear components under these circumstances, by using what is known as
small-signal analysis.

Fortunately we shall find that the equations relating changes in currents and
voltages obey the same sorts of laws as do simple DC currents and voltages, so
that analysis is reasonably straightforward.

In the course of the following chapters we shall meet two new components –
the Zener and exponential diodes – and see how they can be usefully employed in
circuits.

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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12
Change Behaviour

Many of the circuits we have examined have either contained ideal voltage sources
or have indicated that a voltage supply is required to ensure that a circuit performs
as required. The problem remains as to how one obtains something approximating
to an ideal voltage source.

A number of solutions are possible. A familiar one is to use batteries. Another
is to exploit the fact that the voltage across a forward-biased diode is relatively
insensitive to the current through it (Figure 12.1a) so that, within a circuit (Figure
12.1b), if sufficient current can be made to flow through a series connection
of diodes, the voltage across that connection is relatively stable. Usually, the
stabilized voltage will be an integer multiple of 0.7 V in view of the nature of the
diode characteristic.

12.1 Voltage Stabilization

To introduce an important concept we consider a third approach to the generation
of an essentially constant voltage. It is made possible by the unique characteristic
of the Zener diode (Figure 12.2). Over a substantial part of its current range (called
the Zener breakdown region) its voltage is essentially independent of the current
through it. Therefore, if we can ensure that its current stays within that current
range, the voltage across it will approximate to that of an ideal voltage source.

A very simple circuit that exploits this property of a Zener diode is shown in
Figure 12.3. At the left we have a 15 V ideal source which we shall for the moment
assume to be of constant value. On the right we have a resistor R (the ‘load’)
representing a piece of equipment that requires an essentially constant voltage of
5 V. We shall also assume that this load resistance is liable to vary over quite a

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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I

I

V

(a) (b)

0.7 
volts

V

approx
2.1 volts

Figure 12.1 A diode characteristic, and the use of diodes to establish a fixed voltage within
a circuit

large range. In the middle we have a resistor RS and a Zener diode whose Zener
voltage VZ (Figure 12.2) is 5 V.

To see how the circuit works consider the situation in which the current IL

through the load is 100 mA (in other words, R = 50 �), and that the voltage across
the load is 5 V. Assume we need at least 1 mA through the Zener to keep the
diode in its breakdown region. By KCL the current through the resistor RS will be
101 mA so that the value of RS is, by Ohm’s law, (15 – 5)/101 mA = 99 �. That
choice of RS will ensure that 5 V will appear across R. The operating point of the
Zener is shown as A in Figure 12.2.

Now suppose that the load resistance is increased so that IL = 50mA. If the
voltage across the load is still 5 V, such that the voltage across RS is still 10 V, the
same current as before (101mA) will flow into the combination of load resistance
and diode. Since the load current is 50 mA this means that we now have 51 mA
flowing in the diode (operating point B in Figure 12.2). Finally, we suppose that
the load resistance is disconnected, so that IL = 0. Then, the whole of the 101 mA
flows through the diode, such that its operating point C is as shown in Figure 12.2.
Overall we have a constant current (of 101 mA) diverted to the load and Zener
diode according to the value of the load resistance R.

We can draw two conclusions from this exercise. First, that a Zener diode is
capable of maintaining an essentially constant voltage across a resistive load, even
when the current drawn by that load varies considerably. This ability fails when
an attempt is made to draw too much current through the load (>100 mA in the
example discussed). Second, we note that because the Zener characteristic does
not quite correspond to a constant voltage in the breakdown region, the voltage V
across the load, which is nominally 5 V, actually decreases slightly as more current
is taken by the load (from point C to point A in Figure 12.2). The extent to which
the voltage decreases depends upon the slope of the Zener characteristic. We shall
see how to calculate this decrease in the next section.
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5 volt

IL
V

R

RS

15 V

Zener
diode

Figure 12.3 A circuit in which the Zener diode helps to maintain the voltage V at approx-
imately 5 V

As well as introducing an interesting circuit technique, the example we have
studied serves another purpose. It is to show that there are occasions when it is not
particularly a voltage or current that is of interest, but rather the change in a voltage
or current arising from some change in a circuit condition – a variation of load
resistance, for example. We need some approach to analysis that will allow such
changes to be predicted and which will not require a graphical construction (as
might be suggested by Figure 12.2). That is the purpose of the following section.

Before proceeding it should be noted that because the product of V and I for a
Zener diode is always positive (see Figure 12.2) it cannot on its own supply energy:
it is a passive component. In Figure 12.3 it is the combination of Zener diode,
voltage source and resistor RS that supplies energy to the load resistor. Because it
receives energy from external sources, the Zener diode will dissipate the received
energy as heat, and it is for this reason that a Zener diode will have a maximum
power rating associated with it. Indeed, a maximum value of dissipated power will
correspond to the plot (VI)max = Pmax as illustrated in Figure 12.4.

(b)

I

VVI>0

VI>0

Black
Box

V

I

I

(a)

Power supplied to box = VI

maximum
power rating

maximum
power rating

For a Zener diode the product of V
and I is always positive, so it
dissipates power as heat. Such a
diode will have a maximum
permissible power dissipation,
indicated by the boundaries for which
the product VI is a constant

Figure 12.4 (a) The condition for a component to be passive; (b) a Zener diode is passive:
it cannot supply energy
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12.2 The Analysis of Change

Connections

In our search for a method of analysis we follow the same route as for DC and AC
circuits. We first explore to see if Kirchhoff’s current law applies to the connections
between components. Figure 12.5(a) shows part of a circuit in which currents I1, I2

and I3 flow into a particular node. We know from KCL that I1 + I2 + I3 = 0. Now
imagine that changes take place in the external circuit and cause changes in these
currents (Figure 12.5b) so that they become I1 + �I1, I2 + �I2 and I3 + �I3.
Again, these currents must sum to zero, and therefore we can say that

�I1 + �I2 + �I3 = 0 (12.1)

which provides an illustration of the fact that KCL applies to changes in currents
as well as to the currents themselves. We note that there is no restriction on the
magnitude of the changes.

A similar example can illustrate the fact that Kirchhoff’s voltage law also applies
to changes in voltage.

Component relations

Having looked at the effect of connections on voltage and current changes we now
examine the relations imposed between changes in voltage and current by compo-
nents: obviously it would be fortunate if we can find Ohm’s law-type relations!

We begin with the linear resistor, described by Ohm’s law V = RI . It follows
that changes in voltage �V and changes in current �I must also be related by a

(a) (b)

I2 � �I2

I3 � �I3

I1 � �I1  I1
I2

I3

Figure 12.5 (a) The currents flowing into a node and; (b) new values of those currents
following a change somewhere in the external circuit



OTE/SPH
c12 JWBK236/Spence August 4, 2008 13:39 Char Count= 0

184 CHANGE BEHAVIOUR

similar law:

�V = R�I (12.2)

Next we examine an ideal voltage source of constant value. Clearly, if a voltage is
constant, its change must be zero. Thus, for an ideal voltage source,

�V = 0 (12.3)

Similarly, an ideal current source of constant value is characterised by zero changes
in current:

�I = 0 (12.4)

We now turn to a more complex component, the Zener diode. It may seem odd
that we might be hoping for a linear model of such a nonlinear component, but if
we concentrate our attention on that part of the Zener diode’s characteristic that
we are making use of, we easily find a linear relation. Thus, whereas the Zener’s
actual characteristic is shown in Figure 12.6(a), we model it by the linear relation
shown in Figure 12.6(b): we know that (provided we design our circuit correctly!)
the currents expected will always lie in the Zener breakdown region. The linear
model in Figure 12.6(b) is described by

V = IRZ − VZ

so that changes in V and I are related by

�V = �IRZ (12.5)

In other words, as far as changes in voltage and current are concerned, the Zener
‘looks like’ a resistor RZ .

Two more components must be examined. They are the changes in current
and voltage responsible for causing current and voltage changes elsewhere in a
circuit. If, for example, a voltage supply (such as the 15 V source in Figure 12.3) is
unreliable and may vary, we can model this variation by a voltage source. Similarly,
if the current drawn by a resistive load changes, we can model that effect by a
current source equal to the change.
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Change analysis

A remarkable result follows from our discovery that Kirchhoff’s laws apply to
changes in current and voltage, and from our derivation of the relations between �I
and �V imposed by different components. Table 12.1 summarizes our findings, but
places them alongside our earlier findings for DC circuits (see, for example, Table
3.1). We see that the same form of connection constraints and component relations
apply both to DC currents and voltages on the one hand and, on the other, to
changes in those currents and voltages. We can draw the important conclusion that
an analysis to establish the changes in current and voltage in a circuit can proceed
in exactly the same way as for DC analysis, provided we maintain component
interconnections and replace each component by the representation shown in the
right-most column of Table 12.1. The currents and voltages in this new circuit
(we’ll call it the ‘change circuit’) are the changes in the currents and voltages of
the actual circuit.

Example 12.1

We can illustrate this valuable conclusion by reference to the circuit discussed
above and repeated as Figure 12.7(a), but with one addition: we now assume that
the 15 V source is in practice a rather unreliable source of voltage which may
drift by as much as 2 V: this change is represented by a separate 2 V source. To
calculate the effect of this 2 V change on the voltage across the load resistance we
simply draw the new ‘change circuit’ (Figure 12.7b) in the manner suggested by
Table 12.1, so that each component in the actual circuit is replaced by its change
equivalent from the right-hand column of Table 12.1. Remember that the Zener
diode is modelled (Figure 12.6b) by an ideal voltage source (now replaced by a
short-circuit) and a resistor (now appearing in the change circuit). As an example
we shall assume that R = 100 � and RZ = 10 �. To analyse the circuit of Figure
12.7(b) we first note that the parallel connection of 10 and 100 � is equivalent to
9.09 �. By voltage divider action, it follows that

�V = 2 × 9.09/(99 + 9.09) = 169 mV

Thus, a percentage change of 13.3 in the nominal voltage source of 15 V is reduced
to a percentage change of 3.38 in the voltage V .

It is important to note that the change circuit of Figure 12.7(b) relates only
changes in current and voltage. The 15 V appearing in the actual circuit does not
appear anywhere in the change circuit; neither does the 5 V we wish to achieve
across the Zener nor the 101 mA flowing through RS.
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(a) (b)

15 volt source 
replaced by a 
short circuit

This voltage is the
change in V due to the
2 volts change from the
original 15 volts

2 V

99 Ω

100 Ω

RZ

10 Ω
∆V R

5 volt
Zener
diode

IL
V

2 V

15 V

RS RS

R

Figure 12.7 An actual circuit (a) and, (b), the change circuit relevant to the calculation of
the effect of a 2 V change in the voltage source whose nominal value is 15 V

Example 12.2

As a second illustration we calculate the effect on the voltage V in the circuit of
Figure 12.3 of an increase in load current of 10 mA, now assuming that the 15 V
source is not liable to change. The relevant circuit and its change model are shown
in Figure 12.8. In the change model a current of 10 mA is applied to three resistors
in parallel whose equivalent resistance can be calculated to be 8.33 �. The change
in load voltage is therefore

�V = −10 × 10−3 × 8.33 = −0.0833 V or − 83.3 mV

R
V

Representation of 
a change in load
current

RS 10 mA

5 volt Zener diode
replaced by its
change model

∆V R
100 Ω10 Ω

RS

RZ

10 mA

15 V

(a)

5 volt
Zener
diode

99 Ω

(b)

Figure 12.8 An actual circuit (a) and, (b), the change circuit relevant to the calculation of
the effect of a 10 mA change in the load current

This represents a 1.6% decrease in the nominal value of 5 V for V . That a
decrease was expected is suggested in Figure 12.2 by the movement of the operating
point of the Zener from C to B and then A as the load current was increased.
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Changes in nonlinear circuits

One limitation of the analysis approach discussed in this chapter is the assumption
of linear components. In the next chapter we see how the method can easily be
extended, under certain restrictions, to circuits containing nonlinear components.

12.3 Problems

Problem 12.1

The circuit of Figure P12.1 is designed to provide, at the output terminal B, a
voltage approximating closely to 10 V. The Zener diode has a Zener voltage of
10 V and an internal resistance of 10 �.

1 k
B20 V

V R

Figure P12.1

What is the approximate minimum value for R for which the circuit is able to
maintain the output voltage at 10 V?

Calculate, to a good approximation, the current in the diode, and the value of
the voltage V , for three values of the load resistor R: 5, 2 and 0.5 k�.

What change occurs in the voltage V if the supply voltage (nominally 20V)
changes from 20 to 22 V when R = 20 k�?

Problem 12.2

The circuit of Figure P12.2 must be designed to provide a stabilized voltage V
of approximately 6 V for load currents I less than or equal to 10 mA. The Zener
diode shown has a Zener voltage of 6 V, an internal resistance of 10 � and should
conduct a current of at least 1 mA to ensure operation in the Zener region.

Choose and justify a value of the resistance R that will ensure that the circuit
meets the requirements set out above.

If, with your chosen value of R, the load resistance RL is made equal to 3 k�,
what is the approximate value of the voltage V ?

If, with your chosen value of R, the load resistance is made equal to 400 �,
what is the approximate value of the voltage V ?
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R

RL
V

I

10 V

Figure P12.2

If, when I = 5 mA, the value of the voltage source is increased from 10 to 12 V,
what is the resulting increase in the voltage V ?

Assume that the voltage source is restored to a fixed value of 10 V. The load
current is now increased from 5 to 5.5 mA. Calculate the approximate value
(including the sign) of the resulting change in V .

Problem 12.3

For the circuit of figure P12.3(a) calculate the value of the voltage V .

5 k

V20 V 10 V

5 k 5 k

V+ ∆V
20 V 10 V

5 k

0.5 mA

Figure P12.3

The circuit now undergoes the change indicated in Figure P12.3(b): a current
source of 0.5 mA is introduced. Calculate the change �V in the voltage V . Check
your answer by carrying out a conventional analysis of the new circuit of figure
P12.3(b).

The 20 and 10 V sources in Figure P12.3(a) are now replaced, respectively, with
50 and 2 V sources, leading to a new value of the voltage V . Without carrying out
any calculation, but purely by reasoning based on the earlier calculation, state the
change �V in V that will occur when a 0.5 mA current source is connected in the
same manner as in Figure P12.3(b).
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13
Small-signal Analysis

In the last chapter we saw how we could predict the effect of changes in a linear
circuit. We now extend our discussion to accommodate two new features. First,
many useful circuits contain nonlinear components such as diodes, so that the
approach to change analysis we have developed, based on the property of linearity,
is no longer applicable without modification. Second, whereas the examples we
have discussed referred to ‘unwanted changes’, the changes in current and voltage
may often be extremely useful in that they represent information. For example,
the varying voltage from a CD player may represent an orchestral concert, and our
circuit may be an amplifier that accepts these changes in voltage and generates
larger voltage changes – but of the same waveform – to apply to a loudspeaker.
There is therefore a need to be able to predict the performance of a circuit that
contains one or more nonlinear components and whose currents and voltages are
varying in response to a source of varying voltage.

In this chapter we also take the opportunity to consider circuits in which the
voltage at any node may be composed of two parts: a constant voltage to which is
added a time-varying voltage, the latter usually being a useful signal of some sort.
To distinguish the various components of a voltage at node Y we typically denote
the actual voltage as vY(t), its (constant) average value as VY and its time-varying
component of average value zero by vy(t), so that

vY(t) = VY + vy(t) (13.1)

13.1 The Extension of Change Analysis

If we are to handle the presence of nonlinear components, only a simple modifica-
tion is required to the method of change analysis developed in Chapter 12. To take

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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an example, Figure 13.1(a) shows the voltage–current characteristic of a diode. It
is certainly nonlinear, but we could take the view that, if changes in current and
voltage are sufficiently small, then there will be an approximately linear relation
between them. However, it is clear from Figure 13.1(a) that the value of �I /�V
depends upon the values of current and voltage around which the changes occur,
values we call the quiescent, bias or average values. For example, if the diode is
operating at point A the ratio �I /�V is smaller than at point B. By contrast, for
a linear resistor (Figure 13.1b), the ratio �I /�V is independent of the current
and voltage around which the changes occur. Thus, the method of change anal-
ysis developed in Chapter 12 is perfectly valid for circuits containing nonlinear
components provided that we: (1) restrict the magnitude of the changes so that we
can use a linear approximation to part of a nonlinear function; and (2) employ as
a change model for each nonlinear component a resistance corresponding to the
value of �I /�V at the operating point. Thus, the right-hand column of Table 12.1
undergoes the minor, but important addition highlighted in Figure 13.2. When
changes are small the value of �I /�V is called the incremental conductance and
denoted by gd: its reciprocal rd is called the incremental resistance.

It is because we have to restrict the magnitude of the changes that we refer
to small-signal operation. The term ‘signal’ is used because the small variations
in current and voltage usually represent a signal of some sort, such as speech or
music. The obvious question ‘How small is small?’ will be addressed later.

13.2 The Calculation of Incremental Resistance

Before the small-signal analysis of a circuit can be carried out, the incremental
resistance of each nonlinear component must be found. There are many nonlinear
components that could appear in a circuit, so to illustrate the method of analysis
we shall assume that the circuit contains one exponential diode, so-called in view
of the relation it imposes between voltage and current.

The symbol for an exponential diode and the general nature of its current∼
voltage relation were shown in Figure 13.1(a). The relation between the diode
current iD and diode voltage vD can be derived from a knowledge of semiconductor
physics and is

iD = IS[exp(vD/vT) − 1] (13.2)

where vT is called the ‘thermal voltage’ and has a value of 25 mV at room
temperature. When the diode is in its ‘forward’ bias condition (vD is positive) the
current rises rapidly with increase in voltage: when reverse-biased by more than
100 mV the reverse current is approximately IS in magnitude. IS is usually very
small and can be as low as 10−8A.
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�V � R.�I 

�I � G�V 

�V = 0

�I = 0 

�V = constant

�I = constant

diode �V � rd.�I
rd

R
resistor

voltage source

current source

VCCS

voltage source
      change

current source
      change

Changes in current and voltage

G

Figure 13.2 Modification (highlighted) required to Table 12.1 to account for the small-
signal operation of a nonlinear component. For a nonlinear component the value of the
incremental resistance rd will vary with quiescent condition

In order to carry out a small-signal analysis of a circuit containing an exponential
diode we must be able to calculate the value of diD/dvD for any operating point.
Differentiating Equation (13.2) with respect to vD we obtain

diD/dvD = (IS/vT)exp(vD/vT) (13.3)

If the diode voltage vD exceeds 100 mV (i.e., vD/vT � 1) then, to a good approx-
imation, Equation (13.2) can be rewritten as iD = ISexp(vD/vT) so that Equation
(13.3) becomes

diD/dvD = ID/vT (13.4)

The term on the left of Equation (13.4) has the dimensions of conductance, so
we can say that the incremental conductance of the diode when the direct current
through it is ID is given by

gd = ID/vT (13.5)

If, as pointed out at the beginning of this chapter, we denote changes in currents
and voltages around their average values by lowercase i and v, both with lowercase
subscripts, we can rewrite Equation (13.4) as:

id = gd vd (13.6)
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or, if one’s preference is for working in terms of resistance,

vd = rd id (13.7)

where rd = 1/gd.
The advantage of the relation shown as Equation (13.6) is, of course, that it

is linear. It is also useful to ask whether Eqaution (13.5) appears reasonable.
Examination of Figure 13.1(a) will show that it is, because at the lower quiescent
condition (A) – i.e., the lower value of ID – the slope is smaller.

From this, we see that, when applying change analysis to a circuit containing
an exponential diode, that diode must be represented in the change model by a
resistance having a value rd equal to the thermal voltage vT (= 25 mV) divided by
the quiescent diode current ID .

How small is ‘small’?

We have suggested – and illustrated in Figure 13.1(a) – that it might be acceptable to
approximate a limited region of a nonlinear characteristic by a linear segment. How
small must this linear segment be for the approximation to be acceptable? The an-
swer can be obtained by taking the expression for diode current (Equation 13.2), by
assuming that vD is sufficiently high for the minus one term to be negligible, and by
expressing the diode voltage vD as the sum of its quiescent and signal components:

iD(t) = ISexp[{VD + vd(t)}/vT] = ISexp(VD/vT)exp(vd(t)/vT)

Recalling the series expression for ex :

ex = 1 + x + x2/2 + x3/6 + . . . .

we can write that, if vd(t)/vT � 1,

iD(t) = ISexp(vD/vT)[1 + vd(t)/vT]

Since, to a good appoximation, ISexp(vD/vT) = ID, the quiescent value of the
diode current, the signal component of iD(t) is

id(t) = ID vd(t)/vT

which is in agreement with Equation (13.6). Thus we see that a linear
approximation is valid if vd(t) � vT.

This result has been derived for an exponential diode, and is not necessarily
valid for other nonlinear components.
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Example 13.1

Figure 13.3 shows a circuit containing one exponential diode. We are required
to calculate the total voltage appearing across the diode, i.e., both average and
time-varying (signal) component. Because the method of obtaining the solution
is common to many problems involving small-signal analysis, we shall formalize
the solution into five identifiable steps (in italics) and concurrently apply those
solution steps to the circuit of Figure 13.3 (non-italic text).

vD(t)

20 V

1 sin 100t volts

10 kΩ

Figure 13.3 A circuit containing a nonlinear component (an exponential diode) and both
a constant source and a small-signal source

Step 1

If the circuit contains
one or more
nonlinear
components, find
their quiescent
conditions with signal
amplitudes set to
zero.

We shall assume in this example that the direct current through the diode is
sufficient to establish a voltage vD of 0.7 V across the diode. Then, by Ohm’s
law, the current through the resistor (and hence the diode) is (20 – 0.7)/10 =
1.93 mA. This is the value of ID required in Equation 13.5.

Step 2

Find the small-signal
model of each
nonlinear component
at its quiescent
condition.
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From Equation (13.5), gd = ID/vT = 1.93/25 = 0.077 S, or rd = 12.95 �

Step 3

Create the small-
signal equivalent of
the actual circuit by
replacing each
component with its
small-signal model.

See Figure 13.4

10 kΩ 

12.95 Ω vd(t)

1 sin 100t volts

Figure 13.4 The small-signal equivalent of the circuit of Figure 13.3

Step 4

Analyse the small-
signal equivalent
circuit to find the
signal components of
the required voltages
and currents.

By the voltage divider principle, vd(t) = [12.95/(10000 + 12.95)] × 1 sin
100t = 1.29 sin 100t mV, to a good approximation

As a reminder, we mention that none of the constant voltages in the actual
circuit (e.g., the 20 V source and the 0.7 V across the diode) appear in the
small-signal equivalent circuit.

Step 5

Check that signal
amplitudes are
sufficiently small for
the linearity
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assumption to be
valid (e.g., vd/vT � 1
for an exponential diode).

For the diode, vd(t) is always much less than 25 mV because its maximum
value is 1.29 mV as found in step 4.

The original problem was to find the voltage vD(t) across the diode. This is
the sum of its quiescent and signal components, i.e.:

vD(t) = 0.7 + 0.00129 sin 100t V

13.3 Problems

Problem 13.1

Find the incremental resistance of the exponential diode in the circuit of Figure
P13.1 for the quiescent current determined by the current source. If the value of
the current source is increased by 0.1 mA what change can be expected in the
diode voltage vD?

2 mA vD

Figure P13.1

Problem 13.2

For the circuit shown in Figure P13.2 determine the quiescent current flowing
in the diodes by making a reasonable assumption about the voltage across each
diode.

For each diode determine its incremental resistance
Under the assumption that the capacitors possess negligible impedance at the

frequency of the sinusoidal voltage source, draw the small-signal equivalent circuit
of the actual circuit. Hence calculate the amplitude of the sinusoidal voltages va(t)
and vb(t).

If the amplitude of the sinusoidal voltage source is increased above its current
value of 2 mV, what is the approximate maximum value it can assume without vio-
lating the assumption that both diodes are operating in an essentially linear manner?
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330Ω

100 Ω 100 Ω

3.3 kΩ

4 V

va(t) vb(t)

2sin ωt mV

Figure P13.2

Problem 13.3

The circuit shown in Figure P13.3 is a voltage-controlled voltage divider: the
direct voltage V determines the quiescent current through the exponential diodes,
thereby affecting their incremental resistance. The terms vin(t) and vout(t) denote,
respectively, the small-signal voltages at the input and output of the voltage divider.

Assume that the capacitor has negligible impedance at the frequency of the
sinusoidal source, and that the voltage V can range between 5 and 20 V.

For each of the extreme values of V (5 and 20 V) calculate the small-signal volt-
age amplification vout/vin and the maximum magnitude of vout for the calculation
to be reasonably accurate. For each diode it may be assumed that, for iD > 0.1 mA,
vD = 0.7 V.

5 kΩV

1 kΩ

vout(t)vin(t)

Figure P13.3

Problem 13.4

In the circuit of Figure P13.4 the voltage across each exponential diode can be
assumed to be approximately 0.7 V if the diode current exceeds 0.2 mA.

Apply Kirchhoff’s current law at point X and hence determine the quiescent
voltage at this point and the current in each of the diodes.
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1 kΩ

1 kΩ

2 kΩ

2 kΩ
v(t)

12 V

X

0.1 sin 500t volts

Figure P13.4

Determine the small-signal resistance of each diode.
Assuming that the impedance of the capacitor is negligible, draw the small-

signal equivalent of the circuit and hence calculate the peak-to-peak amplitude of
the sinusoidal voltage v(t).
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Appendix: Answers
to Problems

Answer 3.1

(a) I = 0, V = 6 V

(b) I = 0, V = −10 V

(c) I = 2 mA

(d) I = −4 mA, V = 0

(e) V = 14 V

(f) I = 2 mA

(g) V = −3 V

(h) I = 4 mA, V = −10 V

(i) I = 6 mA

(j) V = 8 V, V = 4 V

(k) V = 14 V, V = 20 V

(l) V = −14 V

(m) V = 2 V

(n) I = 1 mA

(o) V = −8 V

Introductory Circuits Robert Spence
C© 2008 John Wiley & Sons, Ltd
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(p) I = 4 mA, I = 2 mA, V = 8 V

(q) I = 0, V = 3 V

(r) V = 2 V, I = 26/7 mA

(s) V = −2 V, I = 2 mA

(t) I = 3 mA, V = 0

Answer 3.5

Equivalence: 6 k� and 6 k� in series is equivalent to a 12 k� resistance.

Equivalence: 12 k� in parallel with 4 k� is equivalent to 3 k�.

Equivalence: 3 k� in series with 4 k� and 3 k� is equivalent to 10 k�.

Equivalence: 10 k� in parallel with the actual 10 k� resistor is equivalent to 5 k�.

We now have the circuit of Figure A3.5(a).

12 V

12 V

1 kΩ
1 kΩ

5 kΩ

10 kΩ

4 kΩ

3 kΩ
4 kΩ 12 kΩ

3 kΩ

IA

IA IB

(a)
2 mA 1 mA

1 mA 1 mA

(b)
1 mA

1 mA

0.75 mA

(c)

Figure A3.5

From Ohm’s law, IA = 2 mA.
We now ‘back track’ to examine the actual 10 k� in parallel with the equivalent
10 k� (see Figure A3.5b). As shown, the current of 2 mA will split equally because
the voltage across each 10 k� resistance is the same.
Now (Figure A3.5c) we examine what the equivalent 3 k� resistance represents.
The current of 1 mA will split to result in the same voltage across the 4 and 12 k�

resistances, so IB = − 0.75 mA

Answer 3.7

By Ohm’s law V1 = − (2 mA) × (1 k� ) = −2 V.

By KCL, the current through the ‘vertical’ 1 k� resistor is 2 + 2 = 4 mA.

By Ohm’s law, V2 = (4 mA)×(1 k�) = 4 V.

Note that V1 and V2 are completely independent of the 17 k� and 2� resistors.
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Answer 3.10

For convenience of reference we redraw the circuit and label the nodes A, B and
C (Figure A3.10).

KCL at node C gives I2 = 6 A.

From Ohm’s law, the voltage VAC across the 3 � resistor is 18 V.

From Ohm’s law, the voltage VBC across the 4 � resistor is 8 V.

KVL applied around the loop A–B–C–A gives 18 – V – 8 = 0 so that V = 10 V.

KCL at node B indicates a current of 1 A flowing towards node A through the
voltage source. Therefore, application of KCL at node A shows that I1 = 5 A.

I1

I2

VAC VBC

V

3 Ω 4 Ω

3 amps

2 amps

−8 amps

A B

C

Figure A3.10

Answer 3.11

Device Y takes 1 mA at 2 V and can therefore be represented by a resistance of
2 k�. Similarly, device X can be represented by a resistance. We see that the 9 V
source is connected to a purely resistive circuit which, by the use of equivalences,
could be represented by a single resistor. Current therefore flows out of the positive
terminal of the voltage source. That current must be 1.5 mA for the device X to
operate correctly. Since the voltage across the device X is 4 V, the voltage V (see

R1

R2 Y

9 volts

X

1.5 mA

4 volts

V

2 volts

1 mA

A

Figure A3.11
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Figure A3.11) will (by KVL) be 5 V. Again by KVL the voltage across R1 is
therefore 3 V. But since the current through it is 1.5 mA, Ohm’s law tells us that
R1 = (3 V)/(1.5 mA) = 2 k�. Since device Y takes 1 mA, KCL applied to node A
tells us that the current through R2 is 0.5 mA. Since the voltage across R2 is 2 V,
Ohm’s law gives R2 = (2 V)/(0.5 mA) = 4 k�.

Answer 4.3

Application of KCL at node A (IN) gives

− VA

1
+ (VB − VA)

2
= 0 which simplifies to

−3 VA + VB = 0 (4.1)

Application of KCL at node B (IN) gives

1 + (VA − VB)

2
− VB

3
= 0 which simplifies to

3 VA − 5 VB = −6 (4.2)

Adding these two nodal equations gives −4 VB = −6 so VB = 1.5 V.
Substitution in Equation (4.1) gives VA = 0.5 V.

By KVL the voltage across the 2 k� resistor in the reference direction shown in
Figure A4.3 is VA − VB = −1 V. From Ohm’s law we can find the current in the
1 k� resistor to be 0.5 mA, that in the 2 k� resistor to be 0.5 mA and that in the
3 k� resistor to be 0.5 mA, all in the reference directions added to the diagram in
Figure 4 A.3. As a check, the currents into nodes A and B do obey KCL.

A B2 kΩ

1 kΩ 3 kΩ
VA

1 mA

VB

VA−VB

Figure A4.3

Answer 4.8

Refer to Figure A4.8, which shows the selected reference node (indicated by an
‘earth’ symbol). There are two nodes, designated A and B, for which the voltage
is unknown, and the relevant nodal voltages VA and VB are shown. The voltage
at the extreme right-hand node is known because it is connected directly to the
reference node by a voltage source.
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We apply KCL at nodes A and B and choose (arbitrarily) to sum currents
entering the nodes. Thus, using the ‘mA, V, k�’ set of units,

8 kΩ
4 kΩ

1 kΩ2 kΩ

1 mA 5 V

2 mA

A B

VA VB

Figure A4.8

KCL at A (IN):

2 + (−1) + (VB − VA)

2
− VA

8
= 0

giving − VA(5/8) + VB/2 = −1 (4.3)

KCL at B (IN):

(VA − VB)

2
+ (5 − VB)

1
− VB

4
= 0

giving VA/2 − VB(7/4) = −5 (4.4)

Equations (4.3) and (4.4) are one possible set of nodal equations describing the cir-
cuit. There are two linear equations in two unknown voltages, which can therefore
easily be solved to find VA and VB.

Answer 4.10

The circuit for calculating the voltage across the 12 k� resistor due to the voltage
source is shown in Figure A4.10(a). By voltage divider action the voltage is seen
to be 4 V. Note that this result is independent of the 3 k� and unknown resistors
because they cannot affect the voltage across a voltage source.

The circuit for calculating the voltage across the 12 k� resistor due to the current
source is shown in Figure A4.10(b). A current of 1 mA flows through the parallel
combination of the 6 and 12 k� resistors (equivalent to a 4 k� resistor), setting
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6 V

4 V

1 mA

−4 V

(a) (b)

3 kΩ

12 kΩ

6 kΩ
12 kΩ

6 kΩ

Figure A4.10

up a voltage of –4 V across them in the same reference direction as employed in
Figure A4.10(a).

The actual voltage across the 12 k� resistor in the actual circuit is, by the
superposition principle, the sum of the voltages due to the independent sources
taken alone: thus, the voltage is 4 − 4 = 0 V

Answer 4.12

To find the Thevenin equivalent circuit we first find the open-circuit voltage VOC

between terminals A and B. By voltage divider action VOC = 4 V.
We next set the voltage source to zero – in other words, replace it by a short-

circuit – and find the resistance between terminals A and B to find the Thevenin
resistance RO. RO is seen to be the parallel connection of a 6 and a 4 k� resistor,
and equivalent to 2.4 k�, The Thevenin equivalent circuit is shown in Figure
A4.12(a).

4 V

A

B

1.67 mA 1.67 mA

A A A

B B B

4 V

(a) (b) (c) (d)

2.4 kΩ 2.4 kΩ 2.4 kΩ 1.6 kΩ 1.6 kΩ2.4 kΩ

Figure A4.12

We can find the Norton equivalent of the original circuit directly from the
Thevenin equivalent. The current source (Figure A4.12 b) is VOC divided by RO,
giving ISC = 1.667 mA, and the resistance in the Norton equivalent is the same as
for the Thevenin equivalent.

We now connect a 1.6 k� resistor between terminals A and B using both
the equivalent circuits (Figure A4.12 c and A4.12 d). When using the Thevenin
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equivalent circuit the current through the 1.6 k� resistor is easily found by Ohm’s
law as 4/(2.4 + 1.6) = 1 mA.

Just as the voltage divider principle can be applied to a circuit of the form of
Figure A4.12(c), a ‘current divider’ principle can be applied to analyse the circuit
of Figure A4.12(d). The conductance of the 1.6 k� resistor is 0.625 mS, and that
of the 2.4 k� resistor is 0.4167 mS. By the current divider principle the current
through the 1.6 k� resistor is (1.667).[0.625/(0.625 + 0.4167)] which is 1 mA.

Answer 4.13

The open-circuit voltage between terminals A and B is, by KVL, −8 +
(5 k�×4 mA) = 12 V (there is no voltage drop across the right-hand 5 k� re-
sistor because no current flows in or out of terminal A).

To find the Thevenin resistance RO we set the values of the voltage source and
current source to zero, thereby resulting in two 5 k� resistors connected in series
between A and B: the equivalent resistance, RO, is 10 k�.

The connection of a 12 V source in the polarity described would result in no
current flow (since the external 12 V source directly opposes the internal 12 V
source in the Thevenin model).

Answer 5.2

We select a voltage reference node indicated by the earth symbol in Figure A5.2
and label the nodes (A, B) for which the nodal voltage is unknown.

20 V

0.2 V*

5 Ω 4 Ω

2 A

V *

VOC

A B

VA VB

Figure A5.2

By application of KCL at node A we obtain:

(20 − VA)

5
+ (VB − VA)

4
+ 0.2(VA − VB) = 0

which can be rearranged as

−0.25 VA + 0.05 VB = −4 (5.1)
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The application of KCL at node B leads to

2 + (VA − VB)

4
= 0

which can be rearranged as

0.25 VA − 0.25 VB = −2 (5.2)

Addition of these two nodal Equations (5.1) and (5.2) yields VB = 30 V.
Since VB and VOC are identical, VOC = 30 V.

Answer 5.4

To find the resistance between the external terminals of the grey box we connect
(Figure A5.4) a current of 1 A between them and calculate the voltage V that
appears: the ratio V /(1 A) is then the required resistance.

0.2 V*

5 Ω 4 Ω

V *

1 A

V

0.2 A 1 A

−0.8 A

Figure A5.4

From the circuit we see, from Ohm’s law, that V ∗ = −4 V. The value of the
controlled source is therefore 0.2 (−4) = −0.8 A. By KCL it follows that the
current through the 5� resistor is 0.2 A (right to left). By Ohm’s law the voltage
across the 5� resistor is 1 V. Using KVL we can write

V = 1 + 4 = 5 V.

A two-terminal box whose current is 1 A and whose voltage is 5 V is equivalent
to a resistance RO of 5 �.

Answer 5.5

We first create the circuit of Figure A5.5(a) to calculate the current I due to the
voltage source acting alone. With the reference node for voltage as shown we
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apply KCL at node A to obtain

− V

1
+ 0.2 V + (3 − V )

1
= 0

which gives V = 1.666 V. By KVL the voltage across the top 1 k� resistor is
1.333 V and the current I = −1.333 mA in the reference direction shown.

3 volts

V

0.2V mA

1 kΩ 1 kΩ

1 kΩ

1 kΩ
1 kΩ

1 kΩ

1.25 kΩ

1.25 kΩ

1 kΩ1 kΩ

A B

I
VOC

3V

V

0.2V mA6 mA

A B

V

0.2V mA6 mA

A B

I

V

0.2V mA

A B

1 volt

I IN
I

4.5 V

I

3.6 mA

A B
A B

(a) (b) (c)

(d) (e) (f)

Figure A5.5

We now create the circuit of Figure A5.5(b) to calculate the current I due to
the independent current source acting alone. With the reference node as shown,
application of KCL at node A gives

6 − V

1
+ 0.2 V − V

1
= 0

which gives V = 3.333 V and, by Ohm’s law, I = 3.333 mA in the reference
direction shown.
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Application of the superposition principle allows us to say that the actual value
of I in the original circuit in the reference direction shown is 3.333 − 1.333 =
2 mA,

To obtain the requested Thevenin equivalent circuit we first find the open-
circuit voltage VOC between terminals A and B (see Figure A5.5c). With the
chosen voltage reference node, application of KCL at node A leads to

6 − V

1
+ 0.2 V = 0

such that V = 7.5 V and, by KVL, VOC = V − 3 = 4.5 V.
To find the Thevenin resistance RO we set the independent sources to zero,

leaving the VCCS in place, to obtain the circuit of Figure A5.5(d). Here we are
applying a voltage of 1 V between terminals A and B and calculating the resulting
input current IIN, because (1 V)/IIN will then be the resistance between terminals
A and B. Noting that V = 1 V we apply KCL to obtain

IIN + 0.2 = 1/1 giving IIN = 0.8A.

The resistance RO is therefore 1/0.8 = 1.25 k�.
We now connect the 1 k� resistor to the terminals A and B of the Thevenin

equivalent circuit (Figure A5.5e) and calculate the current I to be 2 mA, which is
in agreement with the value obtained by application of the superposition principle.

The Norton equivalent is easily derived from the Thevenin model: the current
source is the Thevenin voltage source VOC divided by RO and the resistance is
identical with RO (Figure A5.5f). By applying the current divider principle we can
write that

I = 3.6[1/1 + 0.8)] = 2 mA.

By reference to Figure A5.5(e) we see that if the external 1 k� resistor were to be
replaced by a 4.5 V source with its positive terminal connected to A, the current I
would be zero.

Answer 5.6

To find the Thevenin equivalent circuit we first analyse the circuit with nothing
attached to the external terminals (Figure A5.6a). Application of KCL at node A
leads to

(20 − VOC)

1
− (VOC − 20) − VOC

1
= 0 which gives

VOC = 13.33 V.
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20 volts
V mA

V

VOC

A

V mA

V

RO

333 Ω

13.33 V

(a) (b)

(c)

1 kΩ 1 kΩ

1 kΩ1 kΩ

Figure A5.6

To find the Thevenin resistance RO we set the independent voltage source equal
to zero and remember not to set the dependent source to zero (Figure A5.6b). The
calculation of the resistance RO between the external terminals is considerably
simplified by observing that the voltage controlling the current source appears
directly across the current source, which is therefore equivalent to a resistance, in
this case of value 1 k� (A voltage V across a two-terminal component creating a
current of V mA through it is characteristic of a resistance of value 1 k�). Thus,
by reference to the figure, we have three 1 k� resistors in parallel, equivalent to
333�. Thus, RO = 330 �. The complete Thevenin equivalent circuit is shown in
Figure A5.6(c).

Answer 5.9

In Figure A5.9 the added points correspond to a constant product (300 mW) of V
and I , and the boundary sketched in indicates the permissible region of operation.
The plotted load-line is associated with the series connection of the 8 V source
and the resistor R for the case in which the intersection of the load-line and the
Zener diode characteristic is at the minimum, for R, consistent with the 300 mW
limit of dissipated power. If the intersection of the load-line with the diode current
axis is estimated to be 160 mA, the corresponding value of R is (8 V)/(160 mA) =
50 �.
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20

40

−20

−40

−60

−80

−100

Power
dissipated
= 300 mW

−120

(mA)
I

V (volts)−5−10 −8

Load-line

Figure A5.9

The load-line intersects the Zener characteristic at about 5.5 V, so the volt-
age across the resistor R would be 8 − 5.5 = 2.5 V. The intersection indicates
a current of approximately 50 mA, so the power dissipated by the resistor is
(2.5 V) × (50 mA) = 125 mW.

Answer 6.1

(a) V + > V − therefore VI > 0. Hence VO is also positive and equal to +10 V.

(b) V + = 0, so VI = V + − V − = 0 − 4 = −4 V. Since VI is negative VO must
be negative and equal to −10 V.
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(c) VI = (−5) − (−4) = −1 V. Since VI is negative VO must be equal to −10 V.

(d) VI = 4 − 5 = −1 V. Therefore VO = −10 V.

Answer 6.3

The circuit is a cascade of two triggers.
We first examine the trigger involving opamp X in order to determine the

threshold values at which the voltage at A will cause a change of state. When the
voltage at C is 15 V, then V + = 4 V. Therefore the voltage at C changes from +15
to −15 V when the voltage at C exceeds 4 V. Similarly, the voltage at C changes
from −15 to +15 V when the voltage at A falls below −4 V.

We now examine the trigger involving opamp Y. To establish the threshold
voltage levels pertinent to the voltage at C we examine the circuit of Figure
A6.3(a). The opamp Y changes state (voltage at B changes from +15 to −15 V)
when the voltage at X just starts to go negative. With VX = 0 the current through
the 10 k� resistor is 1.5 mA. This current flows through the 5 k� resistor, cre-
ating a voltage of 7.5 V so that the voltage at C is −7.5 V. Thus the output of
opamp Y changes from +15 to −15 V when the voltage at C decreases below
−7.5 V, and it changes back from −15 to +15 V when the voltage at C increases
above 7.5 V.

At t = 2 T the voltage at A increases above 4 V, so the voltage at C drops from
+15 to −15 V. As a result the voltage at B also drops to −15 V.

At t = 4 T there is no effect because the threshold for the voltage at A is now
−4 V.

At t = 4.5 T the voltage at A decreases below −4 V so the voltage at C changes
from −15 to +15 V. As a result the voltage at B also changes from −15 to +15 V.

Waveforms of the voltages at B and C are shown in Figure A6.3(b)
The current I has two components. The current through the series connection

of the 11 and 4 k� resistors (equivalent to 15 k� since no current is drawn by
the positive input terminal of opamp X) is 1 mA when the voltage at C is +15 V
and −1 mA when it is −15 V. The other component of the current I is the current
through the 5 k� resistor. But since the voltages at C and B are always identical
this current has a value of zero. Thus, the waveform of the current I is as shown
in Figure A6.3(b).

Refer to the circuit of Figure A6.3c. If the voltage at B stays at 15 V when the
voltage at C falls to −15 V the voltage V + at node X is −5 V because the current
through the 10 k� resistor is (30 V)/15 k� = 2 mA. To maintain the input voltage
VI of opamp Y positive (to keep B at +15 V) the voltage V − at the negative input
terminal of opamp Y must therefore be less than −5 V. The connection of a 6 V
source (note the polarity shown in Figure A6.3 c) would ensure that the value of
VI for opamp Y is positive so that the voltage at B remains unchanged at +15 V.
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(a)

(b)

(c)

C X B

5 kΩ

5 kΩ 10 kΩ

10 kΩ 15 volts0 volts

T 3T 4T 5T (time)

15
volts

−15
volts

2T

voltages at B and Ccurrent I
1 mA

−1 mA

C X B

15 VV+

6 V

V−

VI

−15 V

Figure A6.3
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Answer 6.4

The same voltage V is applied to two comparators (but note the polarity of the
opamp input terminals). For any value of V , therefore, it is possible to determine
the output voltage of each opamp. Only when these two voltages are the same will
no current flow in the 10 k� resistor.

Corresponding values of V and the outputs VL and VR of the left-hand and
right-hand opamps respectively are (in volts):

V −1 0 0.99 1.1 1.9 2.1 3
VL −10 −10 −10 −10 −10 +10 +10
VR +10 +10 +10 −10 −10 −10 −10

In fact, the critical transitions occur when V = 1.0 and 2.0 V. Within that range the
output voltages of the two opamps are identical and no current will flow through
the 10 k� resistor.

Answer 7.3

Since no current enters the negative input terminal of the opamp we can apply the
voltage divider principle to calculate the voltage at the junction of the 4 and 1 k�

resistors: it is (4/5)×V = 0.8V . Again, because there is no voltage drop across
the 11 k� resistor, the voltage at the negative input terminal is also 0.8V .

With negative feedback we assume a virtual short circuit between the input
terminals of the opamp, so the voltage at the positive input terminal is also 0.8V .
The voltage at this point is also equal to 4 V because there is no current through,
and therefore no voltage across, the 17 k� resistor. Thus,

0.8 V = 4 giving V = 5 V.

Note the redundant nature of the 17 and 11 k� resistors.

Answer 7.5

Since the voltage at the negative input terminal of the opamp is essentially the
same as at the positive input terminal (i.e., there is a virtual short-circuit between
the two terminals) and hence at earth voltage, the direct voltage provided by the
voltage source appears directly across the photodiode and provides it with the
reverse bias necessary to its successful operation. The only factor that controls
the current through the photodiode is the incident radiation.

Any current ID passed by the diode must flow through the resistor R, setting up
a voltage ID R across it. Thus, the voltage measured by the voltmeter is, by KVL,
equal to −ID R since the negative input terminal is essentially at zero voltage. For
each microwatt of radiation the diode generates 0.5µA and sets up a measured
voltage having a magnitude of (0.5µA)×R. But we are told that the scale factor
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of the voltmeter is to be 2.5 µW/mV, so the measured voltage corresponding to a
microwatt of incident radiation is 0.4 mV. Thus,

(0.5 µA) × R × (2.5) = 1 mV, giving R = 800 �.

Answer 7.7

Because there is a virtual short-circuit between the input terminals of each opamp,
the voltage V2 appears at the top of the 10 k� resistor and the voltage V1 at the
bottom. The voltage across the 10 k� resistor is therefore (V1 − V2) and the current
through it is (V1 − V2)/10 k� upwards. All this current must flow in the 50 k�

resistors because no current can flow into the negative terminals of the opamps.
Thus, by Ohm’s law,

VY = V2 − 5(V1 − V2) = −5 V1 + 6 V2

VX = V1 + 5(V1 − V2) = 6 V1 − 5 V2

In calculating VOUT we can regard VX and VY as fixed at the values given above
and we can otherwise ignore the circuit to the left of the 5 k� resistors.

We now employ superposition to calculate the effects of VX and VY. If we
set VX = 0 the voltage at the positive input terminal of the right-hand opamp
is zero. Recalling the expression for the voltage gain of an inverter we can
write:

VOUT due to VY = −(50 k�/5 k�) × VY = −10 VY

If we now set VY = 0 the voltage at the negative input terminal of the right-hand
opamp is, by voltage divider action, VOUT[5/(5 + 50)] = VOUT/11. This must also
be the voltage at the positive input terminal in view of the virtual short-circuit
between the input terminals. But, again by voltage divider action, this voltage must
be VX[50/(50 + 5)]. Thus,

VX(50/55) = VOUT/11 giving VOUT (due to VX) = 10 V1

Adding the contributions of VX and VY we find that

VOUT = 10(VX − VY) = 110(V1 − V2).

Answer 7.9

First, we calculate the open-circuit voltage between terminals A and B.
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With negative feedback applied to both opamps, a virtual short-circuit will occur
between their input terminals (see Figure A7.9a). Because VI = 0 for each opamp,
the voltage of 6 V appears across the 6 k� resistor, giving rise to a current of 1 mA
flowing in the direction X to Y. That current must flow through the 10 and 1 k�

resistors, setting up voltages of 10 and 1 V, respectively. So, the voltage between P
and Q is, by Ohm’s law, 1 mA×(10 k� + 6 k� + 1 k�) = 17 V. There is no current
through the 5 k� resistor and therefore no voltage across it, so the open-circuit
voltage is 17 V.

5 kΩ

6 kΩ

1 kΩ

10 kΩ
6 V

A

B

X

Y

P

Q

VI

VI

17 V

A

B

(a) (b)

5 kΩ

Figure A7.9

To find the Thevenin resistance RO we set the independent sources to zero: in
this case we replace the 6 V source by a short-circuit. There is now no voltage
across the 6 k� resistor and hence no current through it. There is therefore no
current through the 10 and 1 k� resistors. By Ohm’s law there is therefore no
voltage between terminals P and Q. The resistance between terminals A and B is
therefore 5 k�.

The Thevenin equivalent circuit of the shaded box is as shown in Figure A7.9(b).

Answer 7.12

No current flows into the positive input terminal of the opamp so we can apply
the voltage divider principle to calculate the voltage at that terminal to be zero.
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With a virtual short-circuit between the opamp’s input terminals the voltage at the
negative input terminal must also be zero. The current through the left-hand 4 k�

resistor is therefore, by Ohm’s law, 1 mA. Again by Ohm’s law, the current through
the 8 k� resistor is zero. Applying KCL at the negative input terminal shows that
1 mA flows through the left-hand 2 k� resistor, creating a voltage of 2 V across it.
Since the voltage at the negative input terminal is zero, V = −2 V.

Answer 8.1

The relevant equation is i = Cdv/dt where i and v are the capacitor current and
voltage.

From t = 0 to t = 5 ms, i = 1 mA. Substituting in the equation we have 10−3 =
10−6 dv/dt , so dv/dt = 1000 V/s. The voltage v therefore increases linearly by 5
×10−3 × 1000 = 5 V.

From t = 5 to t = 10 ms, i = 0, so v does not change.

From t = 10 to 15 ms, i = 2 mA, so dv/dt = 2000 V/s and v changes by 10 V.

From t = 15 to 20 ms, i = −1 mA, so dv/dt = −1000 V/s and v decreases by 5 V.

From t = 20 to 25 ms, i = 0, so v does not change.

From t = 25 to 30 ms, i = −2 mA so v decreases by 10 V, its final value being
zero.

1

2

−1

− 2

time (ms)

5 10

20 25 30

 (mA)

i(t)
i(t)20

15

5

v(t)
v(t)

(volts)

Figure A8.1
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Note that this final value is consistent with the fact that the area under the plot
of i(t) is zero. Figure A8.1 shows the waveform of v(t) superimposed on the
waveform of i(t).

Answer 8.3

The sub-circuit governing the switching of the trigger circuit is shown in Figure
A8.3(a), from which we calculate that R1 = 8 V/1 mA = 8 k�.

Current into capacitor when voltage at A is 10 V is 10/R2. Substituting in the
equation i = Cdv/dt , and observing that the capacitor voltage is equal to −VO

(due to the virtual short circuit between the opamp input terminals) we find that
10/R2 = 10−6 × 200 and R2 = 50 k�.

A dimensioned sketch of the waveforms vO(t) and v(t) appears in Figure
A8.3(b).

The relation between vB(t) and vO(t) for the circuit shown in Figure P8.3(d) is
shown in Figure A8.3(c).

When the circuits in Figure P8.3(c, d) are connected as described, the waveform
of vB(t) is as shown dashed in Figure A8.3(b). Note that when vO > −4 V, vB =
10 V, and when vO < −4 V, vB = −10 V.

10 kΩ +10 V0 V−8 V R1

1 mA1 mA

(a)

−4

−8

−10

10

8

(volts)

decrease of 200 V/s
over 16 volt range
takes 80 ms

vIN(t)

vB(t)

vB(t)

vB(t)

vB(t)

vB(t) vB(t) vB(t)

vO(t) vO(t)

80 ms 80 ms

(b)

Figure A8.3
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−10 0−4 10

10

0

−10

vB

vO (volts)

(volts)

(c)

Figure A8.3 (Continued )

Answer 8.4

Figure A8.4(a) shows the form of the required circuit, for which the values of
the components R1, R2, R3 and C must be calculated. The square-wave voltage
appears at the output of the trigger circuit.

A

R1

R2

R3

C

Square wave
voltage

v(t)

(a)

R2 +10 V0 V–5 V R1

(b)

Figure A8.4

We arbitrarily choose the threshold voltage for the trigger circuit to be −5 V
at terminal A when the trigger output voltage changes from +10 to −10 V, and
+5 V for the reverse transition. At the moment of switching, when the output
voltage changes from +10 to −10 V the circuit of Figure A8.4(b) is relevant.
For the voltages indicated, the voltage divider principle requires that R2 = 2R1.
Arbitrarily we choose R1 = 5 k� and R2 = 10 k�.

We turn now to the integrator circuit. We need the voltage at terminal A to de-
crease from +5 to −5 V in 5 ms. In other words, dvA/dt = −(5 − −5)/5 × 10−3 =
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−2000 V/s. The current flowing into the capacitor is (10 V)/R3. Substituting in the
equation relating capacitor current and voltage (and recalling that the capacitor
voltage is −vA) we can write that

10/R3 = C× 2000 so that CR3 = 5 × 10−3.

Arbitrarily we choose R3 = 5 k� and C = 1 µF.

Answer 8.5

Refer to Figure P8.4, and recall that R2 was chosen to be 50 k�. The connection
of the 100 k� resistor and 10 V source will not affect the threshold voltages for
the trigger (they are determined by R1 and the 10 k� resistor) or the voltages
(±10 V) between which the output voltage of the trigger varies. Thus, the current
through R2 (50 k�) will continue to be 10/R2 = 10/50 = 0.2 mA when VIN = 10 V
and −0.2 mA when VIN = −10 V. Before the connection of the 100 k� resistor
and 10 V source these currents alone charged the capacitor. However, because
there is a virtual short-circuit at the input to the right-hand opamp, a constant
current of 10/100 = 0.1 mA will be added to the charging current. Thus, when
VIN = 10 V, the capacitor charging current is 0.2 + 0.1 = 0.3 mA, but is −0.2 +
0.1 = −0.1 mA when VIN = −10 V. From the equation i = Cdv/dt it follows that
the corresponding rates of change of the voltage at the output of the integrator are,
respectively, −0.3/C and 0.1/C . Since C = 1 µF, these rates are −0.3 × 10−3 ×

10

8

–8

–10

(volts)

decrease of 300 V/s

(time)
vO(t)

vO(t)
–4

v(t)

v(t) v(t)

v(t)

160 ms 53.3 ms

increase of 100 V/s

Figure A8.5
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106 = −300 V/s and 0.1 × 10−3 × 106 = 100 V/s. The corresponding times taken
to traverse 16 V are, respectively, 53.3 and 160 ms. The new periodic time of the
voltage waveform appearing at A will therefore be 160 + 53.3 = 213.3 ms. The
waveforms of the voltages vS(t) and v(t) are shown in Figure A8.5.

Answer 9.1

i(t) = Cd(2 cos 100 t)/dt = −200 Csin 100 t = −200 × 10−6 (cos 100 t + π/2)
A = 0.2 cos (100 t + π /2) mA

(mA)(Volts)
2

2

31.4 62.8

π 2π

2cos(100t+π/2) mA

2cos(100t) V

angle ωt (rad)
time t (ms)

−2

−2

Figure A9.1

Details are shown on the plot in Figure A9.1

Answer 9.4

iR(t) = [2cos (100 t + 20◦)]/1 k� = 2cos (100 t + 20◦)mA

iC(t) = Cdv/dt = 10−5× 200cos (100 t + 110◦) A = 2 cos (100 t + 110◦) mA

The total current supplied by the voltage source is therefore

2cos (100 t + 20◦) + 2 cos (100 t + 110◦) = 2
√

2 cos(100 t + 65◦)mA

Answer 9.5

For the radian frequency of 400 the reactance (1/ωC) of the capacitor is 1/400 ×
10−6 = 2.5 k�. We start the phasor diagram (Figure A9.5) with a phasor V (of
arbitrary length) representing the voltage source. Its length represents 2 V. The
current through the resistor IR is in phase with this voltage and is represented by
a phasor whose length represents (2 V)/(1 k�) = 2 mA. The current through the
capacitor IC is 90◦ in advance of the source voltage phasor and its length is (2 V)/
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(2.5 k� ) = 0.8 mA. To find the phasor I representing the current supplied by
the source we carry out the phasor addition of IR and IC (see Figure A9.5). The
length of that phasor represents a current whose magnitude is

√
(22 + 0.82) = 2.15

mA. Note: otherwise overlapping phasors have been offset slightly for ease of
interpretation.

V2 volts

IR2 mA

IC

0.8 mA 2.15 mA

I

Figure A9.5

Answer 9.7

Refer to the phasor diagram and labelled circuit in Figure A9.7. The reactance of
each inductor ωL is 1000 �. Assume the phasor V is at zero phase angle and has
a magnitude V . The current phasor IR is therefore of length V /1000 = V mA,
also at zero phase angle. The current phasor I1 lags V by 90◦ and has a magnitude
V /1000 = V mA. The current phasor I2 is, by KCL, the phasor sum of IR and I1:
its magnitude is V

√
2 mA and its phase is minus 45◦ with respect to the phasor

V. The current represented by I2 flows through the left-hand inductor, setting
up a voltage V2 which leads I2 by 90◦. The magnitude of V2 is therefore (V

√
2

mA).(1000 �) = V
√

2. The source voltage VS, whose amplitude we are told is 2
V, is, by KVL, the phasor sum of V and V2 and therefore has a magnitude V

√
5.

Since V
√

5 = 2, the magnitude of V is 0.893 V. Again, in the phasor diagram,
overlapping phasors have been offset slightly for ease of interpretation.

1 H 1 H

1 kΩ

VS

V2 V

I1

IR

I2

V

VS

V2

I1

IR

I2

V

V mA

V mA

V 2 V 5

Figure A9.7
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Answer 9.8

We first calculate the reactances of the capacitor and inductor. As ω = 1000 the
capacitor reactance (1/ωC) is 1 k�. The reactance of the inductor (ωL) is also
1 k�.

The circuit is reproduced in Figure A9.8(a) in order to identify voltages and
currents. The phasor diagram is shown in Figure A9.8(b). It was constructed in
the following sequence:

VY VX

V2 V1

V
IR

IC I

V

V mA

2V

V mA

V 5

V 2

V 2
1 H

1 kΩ

1 kΩ

1 µF

V2

VX

VY

V

IC

I IR

V1

Figure A9.8

V is arbitrarily drawn as shown, of length V .

IR is in phase with V. By Ohm’s law its length is V /1 k� = V mA.

IC leads the phasor V by 90◦. Its length is also V /1 k� = V mA.

I is the phasor addition of IR and IC. Its length is therefore V
√

2 mA.

VX is in phase with I. By Ohm’s law its length is (V
√

2 mA) × 1 k� = V
√

2 V.

VY across the inductor leads the inductor current by 90◦. Its length is
(V

√
2 mA) ×ωL = V

√
2 V.

V2 is, by KVL, the phasor addition of VX and VY. Its length is 2 V V.

V1 is, by KVL, the phasor addition of V2 and V. Its length is V
√

5 V.

From the phasor diagram we see that |V2/V1| = 2/
√

5 and the angle of V2/V1

is tan−1 0.5.
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Answer 10.1

A selection:

(a) Z = jωL = j × 103 × 1 = j k�, Y = 1/Z = − j mS, |Z | = 1 k�, � Z =
90◦, |Y | = 1 mS, � Y = −90◦

(b) Z = R = 1 k�, Y = 1/Z = 1 mS, |Z | = 1 k�, � Z = 0, |Y | = 1 mS, � Y = 0

(c) Z = 1/jωC = 1/j × 103 × 10−6 = − j k�, Y = 1/Z = 1/(− j) = j mS,
|Z | = 1 k�, � Z = −90◦, |Y | = 1 mS, � Y = 90◦

(d) ω = 2π × 159 = 1000 rad/s, Z = R + jωL = 100 + j × 103 × 10−1 =
100 + j100 �, Y = 1/Z = 1/(100 + j100) = 5 − j5 mS, |Z | = 100

√
2 �,

� Z = 45◦, |Y | = 5
√

2 mS, � Y = −45◦

(e) Y = G + jωC = 0.001 + j500 × 10−6 = 1 + j0.5 mS, Z = 1/Y = 1/

(1 + j0.5) = 0.8 − j0.4 k�, |Y | = √
(1 + 0.25) = 1.12 mS, � Y tan−1 0.5 =

−26◦33′ |Z = 0.896 k�, � Z = tan−1 0.5 = 26◦33′

(f) Y = jωC + 1/jωL = j × 103 × 0.1 × 10−6 + 1/j × 103 × 0.1 = (approx.)
j10−2 S = j10 mS, Z = 1/Y = − j0.1 k�, |Y | = (approx.) 10 mS, � Y =
−90◦, � Z = 90◦, |Z | = (approx.) 0.1 k�

Answer 10.2

I = VS/(R + 1/jωC) = (0 – j10)/[1 + 10−3/( j×103×10−6)] = – j10/(1 – j) = 5
– j5 mA

VR = RI = 5 – j5 V, VC = I/jωC = (5 – j5) × 10−3/ j×103×10−6 = –5 –
j5 V. As a check we note that the sum of VR and VC is − j10 V

If VS is changed to 10 + j0 we note that its magnitude is unchanged, but its
angle increased by 90◦. The same will then be the case for all other voltages and
currents in the circuit. In other words, I = 5 + j5 mA, VR = 5 + j5 V and VC =
5 – j5 V (as a check, VR + VC = VS)

Answer 10.4

For the current i(t) to be zero irrespective of the amplitude of the voltage source
the impedance presented by the two components connected in parallel must be
infinite. In other words the admittance must be zero. The admittance of the two
components connected in parallel is

Y = jωC + 1/jωL = jω × 10−6 − j/ω × 10−2.
For Y = 0, ω = 104 rad/s.

Answer 10.9

See Figure A10.9 in which various complex voltages and currents are identified.
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By the voltage divider principle

VA = [R/(R + jωL)]VS

and

VB = [(1/jωC)/(R + 1/jωC)]VS

By KVL V = VB − VA

So V = VS[(1/(1 + jωCR) − 1/(1 + jωL/R)]

Substitution of R = √
(L/C) shows that V = 0, independent of frequency.

Current I1 in upper branch is given by I1 = VS/(R + jωL)

Current I2 in lower branch is given by I2 = VS/(R + 1/jωC)

The total current supplied by the voltage source is, from KCL, the sum of I1 and
I2. Substituting R = √

(L/C) we find

IS = VS/R

In other words, the current supplied by the source is the same as would be supplied
if the source were connected to a resistance of value R.

VS

V
R

R

C

L

X Y

ω

VA

VB

I1

I2

IS

Figure A10.9

Answer 10.12

Box 1
There is no indication of any reactive component since the impedance has no
imaginary part. The box could contain one 1 k� resistor, or two resistors in series
whose total resistance is 1 k�, or two in parallel with a combined conductance of
1 mS.
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Box 2
An admittance with a real part which is independent of frequency indicates a
resistor in parallel with a reactive element. The constant real part is a conductance
of 0.001 S, in other words a resistance of 1 k�. The imaginary part is seen to be
proportional to frequency, indicating a capacitor in parallel with the resistor. The
admittance of a capacitor is jωC and is seen to be 0.001 S at ω = 103. Therefore,
C = 0.001/103 = 10−6 F or 1 µF.

Box 3
The impedance has no real part at either frequency, and its imaginary part is directly
proportional to frequency, indicating an inductor. Taking the higher frequency of
106 we see that ωL = 106 �, giving L = 1 H.

Box 4
The measurements indicate a series resonant circuit (capacitance and inductance
in series), with resonance occurring at ω = 103. At the higher frequency, far
removed from resonance (ω = 106), the impedance will be almost entirely due to
the inductance and equal to jωL. Therefore ωL = 106, so L = 1 H. At resonance,
the impedances of the inductor and capacitor are equal in magnitude, but opposite
in sign, so ωL = 1/ωC when ω = 103. At this frequency ωL = 103 �, so 103 =
1/ωC, giving C = 1/106 = 1 µF.

Box 5
The impedance has the same real part at the two frequencies, indicating the series
connection of a resistance of 100 � and a reactive component. The imaginary part
of Z is directly proportional to frequency, indicating an inductor. The reactance
of the inductor (ωL) is 1000 � for ω = 103, so L = 1 H. As a check we would
expect the imaginary part of Z to be 106 � for ω = 106, which is what has been
measured.

Answer 11.1

Denote the resistance by R and the inductance by L . By voltage divider action we
can write

V2

V1
= R

(R + jωL)
= 1

(1 + jωL/R)

The low-frequency asymptote is

|V2/V1| = 1
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The high-frequency asymptote is

|V2/V1| = R/ωL

The required plot is shown in Figure A11.1. The intersection of the asymptotes is
given by 1 = R/ωL, i.e., ω = R/L = 104/10−2 = 106 rad/s.

10

0.1

0.01
106105104103 107 108

1

Frequency (radians per second)

V2

V1

Figure A11.1

Answer 11.3

Figure A11.3 shows the complex quantities involved in our calculations.
Let Z be the impedance of R and C in parallel. Then, from our treatment of the

inverter in Chapter 7 (see equation 7.3) we can write

Vout = −(Z/RA)Vin

Now Z = R(1/jωC)/(R + 1/jωC) so Vout/Vin = −(R/RA)/(1 + jωCR).
At low frequencies |Vout/Vin| asymptotes to a constant value of R/RA which

must be chosen to have a value of 15.
At high frequencies |Vout/Vin| asymptotes to the function R/ωCRRA =

1/ωCRA.
The two asymptotes intersect at ω = 1/CR so that C and R must be chosen to

satisfy the requirement

1/CR = 2π × 100 × 103.

Many designs are possible: one is C = 1 nF, R = 1.59 k�, RA = 106 ohms. The
corresponding gain asymptotes are seen in Figure A11.3.
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Gain at low frequencies is controlled by the ratio R/RA. The cut-off frequency
is determined by R and C .

Vin
Vout

R

CRA

VC

VI

100
Frequency (kiloHertz)

Vout

Vin

0.1

1

10

101

100

1000 10,000

Figure A11.3

Answer 11.4

The impedance Z of the series connection of R, L and C can be expressed as

Z = R + jωL + 1/jωC

For high frequencies, where the inductor’s contribution to the impedance is domi-
nant, the asymptote of |Z | is given by

|Z | = ωL

which gives, for a sample frequency of 107 rad/s, |Z | = 107 × 10−4 = 1000 �. The
high frequency asymptote of |Z | is drawn in Figure A11.4 at 45◦ (since horizontal
and vertical scales are the same) through the point ω = 107 rad/s, |Z | = 1000 �.
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For low frequencies, where the capacitor’s contribution is dominant, the asymp-
tote of |Z | is given by

|Z | = 1/ωC

which gives, for a sample frequency of 100 rad/s, |Z | = 0.01 × 10−4 = 100 �. We
can therefore draw (Figure A11.4) the low-frequency asymptote of |Z | through
the point ω = 100 rad/s, |Z | = 100 �.

1

10

100

1000

10 100 1k 10 k 100 k 1M 10M1

Impedance
magnitude
      |Z| 
(ohms)

Frequency (radians per second)

14.14

low-frequency
asymptote

high-frequency
asymptotecalculated

point

calculated
point

Figure A11.4

If there are frequencies for which the resistance is dominant, then |Z | = R
at those frequencies. This relation describes the asymptote |Z | = 10 � shown in
Figure A11.4 from which it can be seen that R is indeed the dominant contribution
to |Z | over a range of frequencies for which R � ωL and R � 1/ωC .

At the intersection of the mid- and high-frequency asymptotes the effect of the
capacitor is so small it can be neglected. Thus, to a very good approximation,
Z = R + jωL . At the intersection |Z | = R and |Z | = ωL, so ω = R/L =
105 rad/s. At this frequency Z = R – jR = R(1 – j) and |Z | = R

√
2 = 14.14 �.

Similarly, at the intersection of the mid- and low-frequency asymptotes the
effect of the inductor is so small that it can be neglected. Thus, to a very good
approximation, Z = R + 1/jωC. At the intersection |Z | = R and |Z | = 1/ωC so
ω = 1/CR = 1000 rad/s. At this frequency Z = R – jR = R(1 – j) and |Z| = R

√
2 = 14.14 �.
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These two points are plotted in Figure A11.4. Together with the three asymptotes
they allow one to sketch the variation of |Z | with frequency with an accuracy that
is sufficient for initial design purposes.

Answer 11.6

With negative feedback from the opamp output to its negative input terminal
we assume a virtual short circuit between the opamp’s input terminals. We can
therefore write that

IIN = VIN/(R1 + 1/jωC1)

The admittance of R2 and C2 in parallel is Y = 1/R2 + jωC2 so that the impedance
is

Z = R2/(1 + jωC2 R2)

The voltage VO is therefore equal to –IIN Z which can be expressed as

VO/VIN = – [1/(R1 + 1/jωC1)] × [R2/(1 + jωC2 R2)] which simplifies to

VO

VIN
=

(
− R2

R1

)
1

1 + 1/jωC1 R1
· 1

1 + jωC2 R2

At mid-frequencies |VO/VIN| asymptotes to R2/R1 (recall the gain of an inverter).
At low frequencies where the term involving C1 is dominant, the corresponding

asymptote is

|VO/VIN| = ωC1 R2

and intersects the mid-frequency asymptote at ω = 1/C1 R1.
At high frequencies where the term involving C2 is dominant, the corresponding

asymptote is

|VO/VIN| = 1/ωC2 R1

and intersects the mid-frequency asymptote at ω = 1/C2 R2

At this point it is useful to lay three straight edges on the specification, two of
them at 45◦, and move them around until the actual variation of |VO/VIN| with
frequency, as suggested by the asymptotes, appears to satisfy the specification.
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Two of many possible designs are shown in Figure A11.6. Design A has a mid-
frequency gain of 10, and intersections at 10 and 100 kHz. For this design,

2π×104 = 1/C1 R1

and 2π×105 = 1/C2 R2

Many choices of C1 and R1 are possible: we choose R1 = 2 k� and C1 =
7.96 nF.

Since R2/R1 has been chosen to be equal to 10, R2 = 20 k�. The corresponding
value of C2 is therefore 79.6 nF.

In Figure A11.6 an alternative design (B) is illustrated for which the mid-
frequency gain is 5 and the asymptote intersections occur for frequencies different
from those associated with design A. To confirm the validity of the designs it
would be normal to calculate the actual value of |VO/VIN| at the ‘intersection
frequencies’ to make sure that they lie within the acceptable (shaded) region.

10 kHz 100 kHz

frequency (log scale)

|VO/VIN|

(log scale)

10

1

1MHz1 kHz

design A (bold)
design B (light)

Figure A11.6

Answer 12.1

When V = 10 V, the current in the 1 k� resistor is (20 − 10)/1 = 10 mA
Allow a minimum current of 1 mA through the Zener diode. Then, the maximum

current in R is I = 10 − 1 = 9 mA, corresponding to a value of R equal to (10
V)/9 mA = 1.11 k�.
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If V = 10 V and R = 5 k� then, by Ohm’s law, I = 2 mA so that the current
in the Zener is, by KCL, 10 − 2 = 8 mA, sufficient to maintain V at 10 V.

If V = 10 V and R = 2 k�, I = 5 mA so that the diode current is 10 − 5 = 5
mA, sufficient to maintain V at 10 V.

If V = 10 V and R = 0.5 k�, I would be 20 mA, but this exceeds the 10 mA
available through the 1 k� resistor (if V = 10). Instead, the value of V is found by
assuming zero current through the Zener diode and applying the voltage divider
principle to calculate V to be [0.5/(0.5 + 1)] 20 = 6.66 V. As a check on our
assumption, the current through the Zener is zero at this value of V .

The change equivalent circuit is shown in Figure A12.1. Neglecting the 20 k�

resistor in parallel with 10 � we see, by using the voltage divider principle, that,
to a good approximation, �V = (10/(1010) which is approximately 20 mV.

2 V

1 k

10
20 k ∆V

Figure A12.1

Answer 12.2

For I = 10 mA, and with 1 mA minimum flowing in the Zener diode, the current
through R is 11 mA. Hence, by Ohm’s law, R = (10 − 6)/11 = 364 �.

When RL = 3 k� and V = 6 V, I = 2 mA and the total current through the
Zener is 11 − 2 = 9 mA.

When RL = 400 � then, if V were to be 6 V, I would be equal to 15 mA which
is more than would be available through R if V were maintained at 6 V. The only
possible state of the circuit is to assume that the Zener current is zero and therefore
V can be calculated by the voltage divider principle as 400/(364 + 400) = 5.26 V.

When the 10 V source increases by 2 V the change circuit is as shown in Figure
A12.2(a). To a good approximation, �V = [10/(10 + 364)] × 2 = 53 mV.

2 V

364

10
1.2 k ∆V

∆V
364

10
1.2 k

0.5 mA

Figure A12.2

When the current drawn by the load increases by 0.5 mA the change circuit
is as shown in Figure A12.2(b), from which a good approximation to �V can
be calculated by the voltage developed across a 10 � resistor by a current of
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0.5 mA, i.e., −5 mV. The minus sign indicates that V decreases as the load current
increases.

Answer 12.3

By Ohm’s law the current through the 5 k� resistors is (20 − 10)/(5 + 5) = 1 mA.
The voltage V is therefore 20 − (5 k�× 1 mA) = 15 V.

When the current source is connected to the circuit the change circuit is as
shown in Figure A12.4(a). From the circuit we calculate, by Ohm’s law, that �V =
1.25 V.

As a check, the new currents and voltages are shown in Figure A12.4(b).

0.5 mA

5 k 5 k∆V

0.5 mA 2.5 k

∆V = 0.5mAx2.5
= 1.25 volts 

k

(a)

5 k

V+ ∆V
= 16.25 volts

20 V 10 V

5 k

0.5 mA

3.75 volts 6.25 volts

0.75 mA 1.25 mA

(b)

Figure A12.4

With the new voltage sources, the change in voltage �V resulting from the
connection of the 0.5 mA current source will be the same (1.25 V) as for the
original circuit, simply because in the change circuit the voltage sources – whatever
their values – are replaced by short-circuits.

Answer 13.2

Assume the voltage across each diode is 0.7 V.
By Ohm’s law, current in left-hand diode = (4 − 0.7)/330 = 10 mA: assumption

justified.
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By Ohm’s law, current in right-hand diode = (4 − 0.7)/3.3 k� = 1 mA: as-
sumption justified.

For the left-hand diode rd = 25 mV/10 mA = 2.5 �.

For the right-hand diode rd = 25 mV/1 mA = 25 �.

The small-signal equivalent circuit is shown in Figure A13.2.

2 sin ωt
mV

100

25 3.3 k

100

2.5330 vb(t)va(t)

Figure A13.2

Because 330 � � 2.5 � and 3.3 k� � 25 � we can write, to a good approxi-
mation, that, by the voltage divider principle, va(t) = (2.5/102.5)× 2 sin ωt mV =
0.049 sin ωt mV. Similarly, vb(t) = (25/125)×2 sin ωt mV = 0.4 sin ωt mV.

The assumption of linearity is valid if the amplitude of va(t) and vb(t) is much
less than 25 mV. Assume a ‘safe’ limit of 5 mV.

The largest voltage amplitude is vb(t), equal to 0.4 mV. Thus, an amplitude of
5 mV at vb(t) would, in view of the linearity of the small-signal circuit, require a
source amplitude of (5/0.4)×2 = 25 mV. With this source amplitude the amplitude
of va(t) would be much less than 25 mV. Thus, the maximum source amplitude
for the linearity assumption to be valid for both diodes is 25 mV.

Answer 13.3

Consider V = 5 V.
Assume that there is sufficient current in the diodes for there to be 0.7 V across

each one. Then, by Ohm’s law, ID for each diode is (5 − 2.1)/5 = 0.58 mA, thereby
justifying the assumption.

Incremental resistance is therefore rd = 25 mV/0.58 mA = 43.1 �.
The small-signal equivalent circuit is shown in Figure A13.3. It is important

to note that the voltage source V is replaced by a short-circuit in the small-
signal equivalent circuit. The parallel connection of 129.3 � and 5 k� is 126 �.
Therefore, by applying the voltage divider principle the voltage gain is given by

vout/vin = 126/1126 = 0.111

Now consider V = 20 V.
Using the same approach as for V = 5 V we find ID = 3.58 mA and rd =

6.98 �. The small-signal equivalent circuit has the same form as in Figure A13.3,



OTE/SPH
app JWBK236/Spence August 7, 2008 19:37 Char Count= 0

236 APPENDIX: ANSWERS TO PROBLEMS

1 k

129.3 5 k
vout(t)vin(t)

Figure A13.3

but the 129.3 � resistance is replaced by a resistance of 20.94 �, leading to a
voltage gain of 0.0204.

The maximum magnitude of vO for the assumption of linearity is given by vd/25
mV � 1. If we select vd = 5 mV as maximum for each diode we find that the
maximum vO is 3 times 5 mV, i.e., 15 mV.

Answer 13.4

Assume 0.7 V across each diode. Then, applying KCL at X we obtain

(12 − VX)

2
= (VX − 2.8)

1
+ VX

2

giving VX = 4.4 V
Thus, current through each diode is (VX − 2.8)/1 = 1.6 mA, justifying the

assumption about diode voltages.
The small-signal model of each diode is a linear resistor given by rd = 25

mV/1.6 mA = 15.625 �. The small-signal equivalent circuit and its simplified
form is therefore as shown in Figure A13.4.

0.1 sin 500t
volts

1 k

15.62
2 k

15.62

15.62

V

1 k

2 k
1 k

60.62
0.1 sin 500t
volts

V

Figure A13.4

By voltage divider action

V = (60.62/1060.62) × 0.1 sin 500 t V = 0.0057 sin 500 t V.

So the peak-to-peak amplitude of V is 11.4 mV.
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change analysis, extension 191
change behaviour 179
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charged 106
circuit analysis 11, 35
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conductance, incremental 192
constructing a phasor diagram 131
controlled sources 12, 55
current 5
current, sinusoidal 119
customer’s specification 1

D
DC circuits 11
DC currents and voltages 147, 187
dependent sources 12, 56
differential amplifier 69, 73
diode 12, 62
diode, exponential 177, 192
diode, Zener 177, 179
digital-to-analog conversion 94
dynamic opamp circuits 105, 109

E
earth symbol 36
electronic circuits 5
energy 9
equivalences 13, 23
Euler’s theorem 141
exponential diode 177, 192
extension of change analysis 191
extreme frequencies 167

F
feedback 90
filters 117, 137
forward-biased diode 179
free electrons 6
frequency domain behaviour 161
frequency domain performance

117

G
gain, of opamp 169
graphical construction 141

H
heat 10
high impedance 7
high-frequency asymptote 165

I
ideal current source 17
ideal voltage source 16, 179
impedance 151
incremental conductance 192
incremental resistance 192
incremental resistance, calculation 192
independent source 56
inductance 124
inductor 117, 119, 124
instability 90
instantaneous change 106
insulator 6
integrated circuit 3
integrator 107, 109
interconnection 20, 145
inverter 85, 88

J
j 142

K
KCL 21, 183
KVL 21
Kirchhoff’s current law 11, 20, 131, 146,

183
Kirchhoff’s laws 131
Kirchhoff’s voltage law 11, 21, 131, 183

L
large-signal operation 73
limitations of opamps 168
linear operation of opamps 85
linear region 71, 85
linear resistive circuits 11
linear resistor 13
linearity 12
load-line 12, 63, 64
low-frequency asymptote 165
low impedance 7

M
manufacturing variation 88
mathematical model 3
mixed opamp circuits 105
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model, change 195
model, Thevenin 46, 60
multimeter 8
mutual conductance 55

N
negative feedback 91
nodal analysis 12, 35
nodal equations 38
nodal voltage equations 38
node 20, 25
non-inverting connection 91
nonlinear component 12, 55, 62,

191
Norton equivalent circuit 49

O
ohm 13
Ohm’s law 11, 13, 122, 127, 145
opamp 69, 71
opamp gain 169
opamp limitations 168
open-circuit 17
operational amplifier 69, 71
oscilloscope 7
output resistance 46

P
parallel connection 25
passive component 10, 19, 182
peak-to-peak 124
performance 1
phase relation 122
phasor 132
phasor diagram 117, 119, 128
phasor diagram, construction

131
phasor representation 143
positive feedback 91
power 9
power rating 10, 182
principle of superposition 12

Q
quiescent value 192

R
reactance 151
reactive components 119
reference directions 15
reference for voltage 36
relations describing DC circuits 23
required performance 1
resistance 13, 151
resistance, incremental 192
resistor 11
resonance 134, 136, 151

S
Schmitt trigger 76
selectivity 137
series connection 24
short-circuit 17
Siemens 14
simple circuit analysis 25
simulated circuit performance 3
sinusoidal currents 119
sinusoidal sources 117
sinusoidal voltages 119
small-signal analysis 177, 191
small-signal operation 192
sources 11, 16
sources, sinusoidal 117
specifications 1
square root of minus one 142
square voltage waveform 112
stability 89
stabilization of voltage 179
starting phasor 141
superposition 42, 59
superposition principle 42
susceptance 151
systematic circuit analysis 36

T
thermal voltage 192
Thevenin equivalent circuit 44
Thevenin model 46, 60
Thevenin’s theorem 12
threshold voltage 76
time domain 150, 155
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transistor 56, 62
triangular voltage waveform 112

V
VCCS 55
virtual short-circuit 85
voltage 5, 7
voltage, complex 141, 144
voltage divider 27
voltage follower 92, 93
voltage, sinusoidal 119
voltage source 39

voltage stabilization 179
voltage summing 96
voltage, thermal 192
voltage-controlled current source 55
voltage-controlled voltage source 89
voltmeter 98
volts 7

Z
Zener breakdown region 179
Zener diode 177, 179
Zener diode, maximum power rating 182
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