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Preface

My interest in oscillators started many years ago when I was an undergraduate
student and one of the laboratory experiments was the design of a Colpitts oscillator.
It was amazing to see how a sinusoidal signal appeared when the power supply
was turned on. What an interesting way of controlling the motion of electrons in
the circuit! My fascination with oscillators has remained to this date and, hopefully,
this book will be a reflection of it.

Electronic oscillator theory and design is a topic that, in general, is barely
covered in undergraduate electronic courses. However, since oscillators are one of
the main components in many electronic circuits, engineers are usually required
to design them. Sinusoidal carrier signals are needed in transmitters and receivers,
and timing signals (square-wave signals) are needed in digital circuits.

The purpose of this book is to cover the foundations of oscillator circuit design
in a comprehensive manner. The book covers the theory and design of oscillators
in the frequency range that extends from the audio range to the microwave range
at about 30 GHz. In this large range of frequencies the active element is usually a
semiconductor, such as a BJT or FET, or an op amp. The techniques involved in
the design of oscillators at the lower frequencies are different from those used at
the higher frequencies. An important feature of this book is the wide and rather
complete coverage of oscillators, from the low-frequency oscillator to the more
complex oscillator found at radio frequencies (RF) and microwave (MW) frequen-
cies. This book emphasizes the use of simulation techniques (i.e., CAD techniques) in
the design of oscillators. In many cases the performance observed in the simulation is
very similar to that obtained in the laboratory. This is mostly true for oscillators
working at the lower frequencies and up to a few megahertz. As the frequency
increases, the practical implementation is highly affected by the layout and by the
parasitics associated with the components used. In such cases the simulation should
provide a starting point to the associated practical implementation.

The advances in CAD techniques since the 1980s have certainly changed the
approach to the design of many oscillators. Before the advent of advanced CAD
techniques, oscillator design involved a significant amount of theoretical work,
especially for those oscillators operating in the RF and MW-frequency regions.
While a solid theoretical foundation is still needed, the modern CAD programs
can perform a lot of nonlinear simulations that were once only a dream in oscillator
analysis and design. In my experience the best oscillator designers are those who
have a good understanding of the fundamental principles involved, experience with
an appropriate CAD program, and a good practical sense.

ix



x Preface

In undergraduate courses I have used the transient simulator available in SPICE
to analyze and design oscillators. Transient simulators work well, but in many
cases it takes a lot of simulation time to get to the steady-state oscillatory waveform.
As one matures in the field of oscillators, an advanced CAD program with harmonic
balance capabilities is a must. The main program used in this book is the Advanced
Design System (ADS) from Agilent. One of the many uses of this very powerful
and state-of-the art program is for oscillator analysis and design since it contains
a transient simulator, a harmonic balance simulator, a statistical design simulator,
and an envelope simulator. The ADS program and associated licenses were donated
by Agilent to the Department of Electrical and Computer Engineering at the Univer-
sity of Miami for teaching and research purposes.

One objective of this book is to cover the fundamentals of oscillator design
using semiconductor devices as the active devices. A second objective, in spite of
the fact that the material in electronic oscillators is volumetric, is to present the
foundations of modern oscillators’ design techniques. In this book the reader is
first exposed to the theory of oscillators. Then, a variety of techniques that are
used in the design of oscillators are discussed.

The Table of Contents clearly indicates the choice of material and the order
of presentation. In short, Chapter 1 provides a general introduction to the theory
of oscillators and discusses in detail several low-frequency oscillators. Chapter 2
discusses the oscillator characteristics such as frequency stability, quality factors,
phase noise, and statistical considerations. Chapter 3 presents the design of tuned
oscillators using BJTs, FETs, and op amps. Chapter 4 treats the design of oscillators
using crystals, ceramic resonators, surface acoustic wave resonators, and dielectric
resonators. The theory and design methods using the negative-resistance approach
are presented in Chapter 5. Relaxation oscillators and other nonsinusoidal oscilla-
tors are discussed in Chapter 6.

This book can be used in a senior graduate-level course in oscillators. It is also
intended to be used in industrial and professional short courses in oscillators. It
should also provide for a comprehensive reference of electronic oscillators using
semiconductors for electrical engineers.

Two large-signal simulators that are used to analyze and design oscillators are
the harmonic balance simulator and the transient simulator.

The harmonic balance simulator in ADS performs a nonlinear steady-state
analysis of the circuit. It is a very powerful frequency-domain analysis technique
for nonlinear circuits. The simulator allows the analysis of circuits excited by large-
signal sources. Also, ADS provides the function ‘‘ts’’ which calculates the time-
domain signal from its frequency spectrum.

Transient-analysis simulation is performed entirely in the time domain. It also
allows the analysis of nonlinear circuits and large-signal sources. The data displayed
from the transient simulation shows the time-domain waveform. From the time-
domain waveform, the oscillation build-up and the steady-state results can be
viewed. The transient simulator requires an initial condition for the oscillator to
begin. The initial condition can be an initial voltage across a capacitor, a voltage
step for the power-supply component, or the use of a noise source. ADS provides
the function ‘‘fs,’’ which calculates the frequency spectrum from the time-domain
signal.
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C H A P T E R 1

Theory of Oscillators

1.1 Introduction

There are many types of oscillators, and many different circuit configurations that
produce oscillations. Some oscillators produce sinusoidal signals, others produce
nonsinusoidal signals. Nonsinusoidal oscillators, such as pulse and ramp (or saw-
tooth) oscillators, find use in timing and control applications. Pulse oscillators are
commonly found in digital-systems clocks, and ramp oscillators are found in the
horizontal sweep circuit of oscilloscopes and television sets. Sinusoidal oscillators
are used in many applications, for example, in consumer electronic equipment
(such as radios, TVs, and VCRs), in test equipment (such as network analyzers
and signal generators), and in wireless systems.

In this chapter the feedback approach to oscillator design is discussed. The
oscillator examples selected in this chapter, as well as the mix of theory and design
information presented, help to clearly illustrate the feedback approach.

The basic components in a feedback oscillator are the amplifier, an amplitude-
limiting component, a frequency-determining network, and a (positive) feedback
network. Usually the amplifier also acts as the amplitude-limiting component, and
the frequency-determining network usually performs the feedback function. The
feedback circuit is required to return some of the output signal back to the input.
Positive feedback occurs when the feedback signal is in phase with the input signal
and, under the proper conditions, oscillation is possible.

One also finds in the literature the term negative-resistance oscillators. A
negative-resistance oscillator design refers to a specific design approach that is
different from the one normally used in feedback oscillators. Since feedback oscilla-
tors present an impedance that has a negative resistance at some point in the circuit,
such oscillators can also be designed using a negative-resistance approach. For a
good understanding of the negative resistance method, a certain familiarity with
oscillators is needed. That is why the negative resistance method is discussed in
Chapter 5.

1.2 Oscillation Conditions

A basic feedback oscillator is shown in Figure 1.1. The amplifier’s voltage gain is
Av ( jv ), and the voltage feedback network is described by the transfer function
b ( jv ). The amplifier gain Av ( jv ) is also called the open-loop gain since it is the

1



2 Theory of Oscillators

Figure 1.1 The basic feedback circuit.

gain between vo and vi when vf = 0 (i.e., when the path through b ( jv ) is properly
disconnected).

The amplifier gain is, in general, a complex quantity. However, in many oscilla-
tors, at the frequency of oscillation, the amplifier is operating in its midband region
where Av ( jv ) is a real constant. When Av ( jv ) is constant, it is denoted by Avo .

Negative feedback occurs when the feedback signal subtracts from the input
signal. On the other hand, if vf adds to vi , the feedback is positive. The summing
network in Figure 1.1 shows the feedback signal added to vi to suggest that the
feedback is positive. Of course, the phase of vf determines if vf adds or subtracts
to vi . The phase of vf is determined by the closed-loop circuit in Figure 1.1. If
Av ( jv ) = Avo and Avo is a positive number, the phase shift through the amplifier
is 0°, and for positive feedback the phase through b ( jv ) should be 0° (or a multiple
of 360°). If Avo is a negative number, the phase shift through the amplifier is ±180°
and the phase through b ( jv ) for positive feedback should be ±180° ± n360°. In
other words, for positive feedback the total phase shift associated with the closed
loop must be 0° or a multiple n of 360°.

From Figure 1.1 we can write

vo = Av ( jv )vd (1.1)

vf = b ( jv )vo (1.2)

and

vd = vi + vf (1.3)

Thus, from (1.1) to (1.3), the closed-loop voltage gain Avf ( jv ) is given by

Avf ( jv ) =
vo
vi

=
Av ( jv )

1 − b ( jv )Av ( jv )
(1.4)

The quantity b ( jv )Av ( jv ) is known as the loop gain.
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For oscillations to occur, an output signal must exist with no input signal
applied. With vi = 0 in (1.4) it follows that a finite vo is possible only when the
denominator is zero. That is, when

1 − b ( jv )Av ( jv ) = 0

or

b ( jv )Av ( jv ) = 1 (1.5)

Equation (1.5) expresses the fact that for oscillations to occur the loop gain must
be unity. This relation is known as the Barkhausen criterion.

With Av ( jv ) = Avo and letting

b ( jv ) = b r (v ) + jb i (v )

where b r (v ) and b i (v ) are the real and imaginary parts of b ( jv ), we can express
(1.5) in the form

b r (v )Avo + jb i (v )Avo = 1

Equating the real and imaginary parts on both sides of the equation gives

b r (v )Avo = 1 ⇒ Avo =
1

b r (v )
(1.6)

and

b i (v )Avo = 0 ⇒ b i (v ) = 0 (1.7)

since Avo ≠ 0. The conditions in (1.6) and (1.7) are known as the Barkhausen
criteria in rectangular form for Av ( jv ) = Avo .

The condition (1.6) is known as the gain condition, and (1.7) as the frequency
of oscillation condition. The frequency of oscillation condition predicts the fre-
quency at which the phase shift around the closed loop is 0° or a multiple of 360°.

The relation (1.5) can also be expressed in polar form as

b ( jv )Av ( jv ) = | b ( jv )Av ( jv ) | | b ( jv )Av ( jv ) = 1

Hence, it follows that

| b ( jv )Av ( jv ) | = 1 (1.8)

and

| b ( jv )Av ( jv ) = ±n360° (1.9)
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where n = 0, 1, 2, . . . . Equation (1.9) expresses the fact that the signal must travel
through the closed loop with a phase shift of 0° or a multiple of 360°. For
Av ( jv ) = Avo , then |b ( jv )Avo is the angle of b ( jv ), and the condition (1.9) is
equivalent to saying that b i ( jv ) = 0, in agreement with (1.7). Also, for Av ( jv ) =
Avo and with b i ( jv ) = 0, (1.8) reduces to (1.6). The conditions in (1.8) and (1.9)
are known as the Barkhausen criteria in polar form.

When the amplifier is a current amplifier, the basic feedback network can be
represented as shown in Figure 1.2. In this case, Ai ( jv ) is the current gain of the
amplifier, and the current feedback factor a ( jv ) is

a ( jv ) =
if

io

For this network, the condition for oscillation is given by

a ( jv )Ai ( jv ) = 1 (1.10)

which expresses the fact that loop gain in Figure 1.2 must be unity.
The loop gain can be evaluated in different ways. One method that can be

used in some oscillator configurations is to determine Av ( jv ) and b ( jv ) and to
form the loop gain Av ( jv )b ( jv ). In many cases it is not easy to isolate Av ( jv )
and b ( jv ) since they are interrelated. In such cases a method that can usually be
implemented is to represent the oscillator circuit as a continuous and repetitive
circuit. Hence, the loop gain is calculated as the gain from one part to the same
part in the following circuit. An alternate analysis method is to replace the amplifier
and feedback network in Figure 1.1 by their ac models and write the appropriate
loop equations. The loop equations form a system of linear equations that can be
solved for the closed-loop voltage gain, which can be expressed in the general form

Figure 1.2 The current form of the basic feedback network.
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Avf ( jv ) =
vo
vi

=
N( jv )
D( jv )

(1.11)

where N( jv ) represents the numerator polynomial and D( jv ) is the system determi-
nant of the linear equations. In terms of (1.11) the conditions for oscillations are
obtained by setting the system determinant equal to zero (i.e., D( jv ) = 0). Setting
D( jv ) = 0 results in two equations: one for the real part of D( jv ) (which gives
the gain condition), and one for the imaginary part of D( jv ) (which gives the
frequency of oscillation).

From circuit theory we know that oscillation occurs when a network has a
pair of complex conjugate poles on the imaginary axis. However, in electronic
oscillators the poles are not exactly on the imaginary axis because of the nonlinear
nature of the loop gain. There are different nonlinear effects that control the
pole location in an oscillator. One nonlinear mechanism is due to the saturation
characteristics of the amplifier. A saturation-limited sinusoidal oscillator works as
follows. To start the oscillation, the closed-loop gain in (1.4) must have a pair of
complex-conjugate poles in the right-half plane. Then, due to the noise voltage
generated by thermal vibrations in the network (which can be represented by a
superposition of input noise signals vn ) or by the transient generated when the dc
power supply is turned on, a growing sinusoidal output voltage appears. The
characteristics of the growing sinusoidal signal are determined by the complex-
conjugate poles in the right-half plane. As the amplitude of the induced oscillation
increases, the amplitude-limiting capabilities of the amplifier (i.e., a reduction in
gain) produce a change in the location of the poles. The changes are such that the
complex-conjugate poles move towards the imaginary axis. However, the amplitude
of the oscillation was increasing and this makes the complex poles to continue the
movement toward the left-half plane. Once the poles move to the left-half plane
the amplitude of the oscillation begins to decrease, moving the poles toward the
right-half plane. The process of the poles moving between the left-half plane and
the right-half plane repeats, and some steady-state oscillation occurs with a funda-
mental frequency, as well as harmonics. This is a nonlinear process where the
fundamental frequency of oscillation and the harmonics are determined by the
location of the poles. Although the poles are not on the imaginary axis, the Bark-
hausen criterion in (1.5) predicts fairly well the fundamental frequency of oscilla-
tion. It can be considered as providing the fundamental frequency of the oscillator
based on some sort of average location for the poles.

The movement of the complex conjugate poles between the right-half plane
and the left-half plane is easily seen in an oscillator designed with an amplitude
limiting circuit that controls the gain of the amplifier and, therefore, the motion
of the poles. An example to illustrate this effect is given in Example 1.6.

The previous discussion shows that for oscillations to start the circuit must be
unstable (i.e., the circuit must have a pair of complex-conjugate poles in the right-
half plane). The condition (1.5) does not predict if the circuit is unstable. However,
if the circuit begins to oscillate, the Barkhausen criterion in (1.5) can be used to
predict the approximate fundamental frequency of oscillation and the gain condi-
tion. The stability of the oscillator closed-loop gain can be determined using the
Nyquist stability test.
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1.3 Nyquist Stability Test

There are several methods for testing the stability of a feedback amplifier. In
general, (1.4) can be expressed in the form

Avf (s) =
vo
vi

=
Av (s)

1 − b (s)Av (s)
(1.12)

The stability Avf (s) is determined by the zeroes of 1 − b (s)Av (s) provided there
is no cancellation of right-half plane poles and zeroes when forming the product
b (s)Av (s). In practical oscillators the previous pole-zero cancellation problems are
unlikely to occur. If there are no pole-zero cancellation problems, the poles of
Av (s) are common to those of b (s)Av (s) and of 1 − b (s)Av (s). Therefore, the
feedback amplifier is stable if the zeroes of 1 − b (s)Av (s) lie in the left-half plane.
In what follows we assume that there are no pole-zero cancellation problems.

The Nyquist stability test (or criterion) can be used to determine the right-half
plane zeroes of 1 − b (s)Av (s). A Nyquist plot is a polar plot of the loop gain
b (s)Av (s) for s = jv as the frequency v varies from −∞ < v < ∞. Two typical
Nyquist plots are shown in Figure 1.3. The Nyquist test states that the number of
times that the loop-gain contour encircles the point 1 + j0 in a clockwise direction
is equal to the difference between the number of zeroes and the number of poles
of 1 − b (s)Av (s) with positive real parts (i.e., in the right-half plane). The point
1 + j0 is called the critical point. To be specific, let N be the number of clockwise
encirclements of the critical point by the Nyquist plot, let P be the number of right-
half plane poles of b (s)Av (s) (which are the same as those of 1 − b (s)Av (s)), and
let Z be the number of right-half plane zeroes of 1 − b (s)Av (s). The Nyquist
stability test states that N = Z − P (or Z = N + P). If Z > 0 (or N + P > 0) the
feedback amplifier is unstable and will oscillate under proper conditions. (Note:
In the case that there is a right-half plane pole-zero cancellation, the Nyquist test
is not sufficient to determine stability.)

Figure 1.3 (a) A Nyquist plot of a stable feedback amplifier and (b) a Nyquist plot of an unstable
feedback amplifier.
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If b (s)Av (s) has no poles in the right-half plane, then it follows that 1 −
b (s)Av (s) has no poles in the right-half plane (i.e., P = 0). Thus, in this case Avf (s)
is unstable (i.e., has right-half plane poles) only if 1 − b (s)Av (s) has right-half
plane zeroes (i.e., if N > 0). In other words, for P = 0 the feedback amplifier is
unstable when N > 0 (since N = Z when P = 0). When b (s)Av (s) is stable, the
Nyquist test simply requires that the plot of b (s)Av (s) as a function of v does not
encircle the critical point for the feedback amplifier to be stable. An alternative
way of stating the Nyquist test when b (s)Av (s) is stable is: ‘‘If b (s)Av (s) is stable,
the feedback amplifier is stable if | b ( jv )Av ( jv ) | < 1 when the phase of
b ( jv )Av ( jv ) is 0° or a multiple of 360°.’’ This condition ensures that the critical
point is not enclosed.

In the case that b (s)Av (s) has a pole in the jv axis, the contour in the s plane
must be modified to avoid the pole. For example, if the pole is at s = 0, the path
moves from s = −j∞ to s = j0, then from s = j0− to s = j0+ around a semicircle of
radius e (where e approaches zero), and then from s = j0+ to s = j∞. From s = j∞
the contour follows a semicircle with infinite radius and moves back to s = −j∞.
Hence, the contour encloses all poles and zeroes that b (s)Av (s) has in the right-
half plane.

Two typical Nyquist plots for a feedback amplifier with a stable loop gain are
shown in Figure 1.3. The solid curve corresponds to v ≥ 0, and the dashed curve
to v ≤ 0. Since b ( jv )Av ( jv ) = [b ( jv )Av ( jv )]* it follows that the dashed curve
is simply the mirror image of the solid curve. In Figure 1.3(a) the Nyquist plot
does not enclose the critical point. It is seen that at the frequency vx the phase of
b ( jv )Av ( jv ) is 0° and its magnitude is less than one. Hence, the amplifier associated
with this Nyquist plot is stable. A typical Nyquist plot for an unstable feedback
amplifier (with a stable b (s)Av (s)) is shown in Figure 1.3(b). For this plot N = Z
= 1, and the closed-loop response has one pole in the right-half plane.

Example 1.1

(a) Let b (s) = bo be a real number and

Av (s) =
K

s(s + 1)(s + 2)

Hence,

b (s)Av (s) =
boK

s(s + 1)(s + 2)

and it follows that the number of poles of the loop gain in the right-half plane is
zero (i.e., P = 0). Therefore, the system is stable if the Nyquist plot of b (s)Av (s)
does not encircle the point 1 + j0 (i.e., if N = Z = 0).

The Nyquist plot of b (s)Av (s) for boK = 3 is shown in Figure 1.4(a). This
plot shows that the system is stable since there are no encirclements of the 1 + j0
point.
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Figure 1.4 Nyquist plots for Example 1.1(a) with (a) boK = 3 and (b) boK = 9.

The resulting Nyquist plot for boK = 9 is shown in Figure 1.4(b). In this case,
the plot of b (s)Av (s) encircles the 1 + j0 point twice in the clockwise direction.
Hence, N = Z = 2, and the closed loop system is unstable because of two poles in
the right-half plane.

In this part of the example the stability depended on the value of boK.
(b) Let b (s) = bo be a real number and

Av (s) =
K

s(s + 1)(s − 1)

Hence,

b (s)Av (s) =
boK

s(s + 1)(s − 1)

and it follows that P = 1, since there is a pole at s = 1. The Nyquist plots of the
loop gain for boK > 0 and boK < 0 are shown in Figure 1.5. The solid curve in
the plot corresponds to the mapping for v > 0, and the dashed curve for v < 0.
Figure 1.5(a) shows that N = 0 when boK > 0, and Figure 1.5(b) shows that N = 1
when boK < 0; hence, the information in Table 1.1.

That is, the function 1 − b (s)Av (s) for boK > 0 has a zero in the right-half
plane, and for boK < 0 it has two zeroes in the right-half plane. Obviously, this
feedback system is unstable for any real value of boK.

The information displayed in the polar Nyquist diagram can also be shown
using Bode plots. Thus, the stability of an amplifier can also be determined from
the Bode magnitude and phase plots of the loop gain. In terms of the magnitude
and phase Bode plots of a stable b ( jv )Av ( jv ), it follows that the closed-loop gain
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Figure 1.5 Nyquist plots for Example 1.1(b) when (a) boK > 0 and (b) boK < 0.

Table 1.1 Values of Z for Example 1.1(b)

P N Z = N + P

boK > 0 1 0 1
boK < 0 1 1 2

is stable if | b ( jv )Av ( jv ) | in dBs is smaller than 0 dB when the phase shift is 0°
(or a multiple of 360°). In other words, the plot of | b ( jv )Av ( jv ) | in dBs crosses
the 0-dB axis at a frequency lower than the frequency at which the phase reaches
0° (or ±n360°). Typical Bode plots of the magnitude and phase of a stable feedback
amplifier are shown in Figure 1.6.

Two important quantities in the determination of stability are the gain margin
and the phase margin (shown in Figure 1.6). The gain margin is the number of
decibels that | b ( jv )Av ( jv ) | is below 0 dB at the frequency where the phase is 0°.
The phase margin is the number of degrees that the phase is above 0° at the
frequency where | b ( jv )Av ( jv ) | is 0 dB. A positive gain margin shows that the
amplifier is potentially unstable. Similarly, a positive phase margin is associated
with a stable amplifier. Of course, the gain margin and phase margin can also be
shown in a Nyquist diagram.

Typical Bode plots of b ( jv )Av ( jv ) for feedback amplifiers having one, two,
and three poles with b (0)Av (0) = −K < 0 are shown in Figure 1.7. The single-pole
loop-gain function shown in Figure 1.7(a) has a minimum phase shift of 90°.
Therefore, this amplifier is always stable. Figure 1.7(b) shows a loop gain having
two poles. Again this amplifier is always stable because the phase shift is positive
and approaches 0° only at v = ∞. Figure 1.7(c) shows a three-pole loop gain that
is stable since | b ( jv )Av ( jv ) | is below 0 dB at the frequency where the phase is 0°
(i.e., the gain margin is negative). Figure 1.7(d) shows a three-pole loop gain that
is unstable, since the phase is less than 0° at the frequency where | b ( jv )Av ( jv ) |
is 0 dB (i.e., the phase margin is negative).

It is of interest to see how the Nyquist and Bode plots portray the stability
information and their relation to the closed loop and transient responses of the
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Figure 1.6 A typical Bode plot of the magnitude and phase of a stable feedback amplifier.

feedback amplifier. This is illustrated in Figure 1.8. In the Nyquist plots only the
positive frequencies are shown. In the Bode plot the solid curve is for the magnitude
of the closed loop response, and the dashed curve is for the phase. Figure 1.8(a)
illustrates a stable feedback amplifier with a large positive phase margin. Observe
the Bode plots, |Avf ( jv ) | , and the transient response. In Figure 1.8(a), as well as
in the other figures, the frequency at which | b ( jv )Av ( jv ) | = 1 is f1 , and the
frequency at which |b ( jv )Av ( jv ) = 0° is f2 . The phase margin in Figure 1.8(a)
is positive. Figure 1.8(b) illustrates a stable feedback amplifier with a smaller
positive phase margin. Observe the larger peak in the associated |Avf ( jv ) | response
and in the transient response.

Figure 1.8(c) illustrates an ideal oscillator. The oscillation conditions are satis-
fied, since | b ( jv )Av ( jv ) | = 1 and |b ( jv )Av ( jv ) = 0° at f = f1 = f2 , which results
in an ideal stable sinusoidal oscillation (see the plot of vo (t)). Figure 1.8(d) illus-
trates an unstable oscillation. Observe that | b ( jv )Av ( jv ) | > 1 when
|b ( jv )Av ( jv ) = 0°; hence, positive feedback occurs and vo (t) shows the associated
growing sinusoidal response. Basically, Figure 1.8(c) shows what happens when
the complex poles move to the imaginary axis, and Figure 1.8(d) shows what
happens when the complex conjugate poles remain in the right-half plane. As we
will see, there are ways to determine if the oscillation will be stable or not.

1.4 Root Locus

A root-locus plot is a convenient method to analyze the motion of the closed-loop
gain poles in the complex s plane as a function of the amplifier gain, or as a
function of the feedback factor. In order to use this method, the denominator of
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Figure 1.7 Bode plots for a loop gain having (a) one pole, (b) two poles, (c) three poles (stable case), and (d) three poles (unstable case).
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Figure 1.7 (Continued).
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Figure 1.8 Nyquist, Bode, |Avf ( jv ) |, and transient response plots of (a) a stable feedback amplifier with a
large phase margin, (b) a stable feedback amplifier with a smaller phase margin, (c) a stable
oscillator, and (d) an unstable oscillator.

Avf (s) is expressed in polynomial form. The stability of the feedback amplifier is
analyzed by observing how the poles of Avf (s) move in the s plane. A typical
analysis consists in studying the motion of the roots of Avf (s) as a function of the
amplifier open-loop gain, and determining the value of gain that move the roots
to the imaginary axis at s = ±jvo . The value of gain and the frequency vo are
identical to the values predicted by the Barkhausen criterion (i.e., the gain condition
and the frequency of oscillation condition).

Consider the root-locus analysis of a feedback amplifier with a two-pole Av (s)
given by

Av (s) =
Ao

S1 +
s

v1
DS1 +

s
v2
D
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and a constant feedback bo , where bo < 0, and Ao is the midband value of Av (s).
Hence, boAo < 0 and

b (s)Av (s) =
boAo

S1 +
s

v1
DS1 +

s
v2
D

The closed-loop gain of the feedback amplifier is given by

Avf (s) =
Av (s)

1 − boAv (s)
=

Aov1v2

s2 + s(v1 + v2) + v1v2(1 − boAo )
(1.13)

The root locus of the poles in (1.13) follows from the analysis of

s2 + s(v1 + v2) + v1v2(1 − boAo ) = 0

as Ao varies. The root locus is shown in Figure 1.9. This plot shows that for Ao
approaching zero the roots are located at s1 = −v1 and s2 = −v2 . As Ao increases,
the roots move along the negative real axis as shown in Figure 1.9. At a specific
value of Ao , denoted by the value of Ao = A′o (see Figure 1.9), the roots are identical,
and for Ao > A′o the roots become complex but remain in the left-half plane.
Therefore, this feedback amplifier is stable. The value of A′o is given by

A′o =
1

bo
F1 −

0.25(v1 + v2)2

v1v2
G

Of course, if boAo > 0 the feedback amplifier is unstable.

Figure 1.9 Root locus of a two-pole function Av (s).
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Next, consider a three-pole Av (s) given by

Av (s) =
Ao

S1 +
s

v1
DS1 +

s
v2
DS1 +

s
v3
D

with a constant feedback bo , where bo < 0 (i.e., boAo < 0). In this case Avf (s) is
given by

Avf (s) =
Ao

a3s3 + a2s2 + a1s + (1 − boAo )

where

a3 =
1

v1v2v3

a2 =
1

v1v2
+

1
v1v3

+
1

v2v3

and

a1 =
1

v1
+

1
v2

+
1

v3

The root locus of

a3s3 + a2s2 + a1s + (1 − boAo ) = 0

is shown in Figure 1.10. For Ao approaching 0, the poles are located at s1 = −v1 ,
s2 = −v2 , and s3 = −v3 . As Ao increases, the pole s3 moves along the negative
real axis towards −∞, and the poles s1 and s2 become complex conjugate poles.
At a certain value of Ao the poles are located on the imaginary axis at s1,2 = ±jvo
and oscillation occurs. Figure 1.10 also shows that certain values of Ao move the
poles into the right-half plane.

Another open-loop gain function that can lead to oscillations is

Av (s) =
AoS1 −

s
v3
D

S1 +
s

v1
DS1 +

s
v2
D

This function has two poles and a right-half plane zero at s = v3 . This type of transfer
function occurs in the high-frequency analysis of several amplifier configurations.
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Figure 1.10 Root locus of a three-pole Av (s).

Example 1.2

Consider the open-loop gain of a CE amplifier given by

Av (s) =
AoS1 −

s
v3
D

S1 +
s

v1
DS1 +

s
v2
D

where Ao = 2,200, v1 = 106 rad/s, v2 = 108 rad/s, and v3 = 109 rad/s. Assume
that the feedback factor is constant and given by b ( jv ) = bo = −0.1. The loop gain
is

b ( jv )Av ( jv ) =
−0.1(2,200)S1 −

s

109D
S1 +

s

106DS1 +
s

108D (1.14)

The Nyquist plot of (1.14) is shown in Figure 1.11(a). The behavior of the
function in (1.14) around the critical point is difficult to see in Figure 1.11(a). A
graph showing the behavior around the critical point is shown in Figure 1.11(b).
From (1.14) it follows that P = 0, and from the Nyquist plots in Figure 1.11(a, b)
we obtain N = 0, since the critical point is not enclosed. Therefore, the feedback
amplifier with Ao = 2,200 is stable, since Z = N + P = 0.

Next, assume that Ao is given by Ao = 22,000. The Nyquist plot for this case
is shown in Figure 1.11(c) and the behavior around the critical point in Figure
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Figure 1.11 (a) Nyquist plot for Example 1.2 with Ao = 2,220, (b) the behavior of the loop gain
(with Ao = 2,220) around the critical point, (c) Nyquist plot for Example 1.2 with
Ao = 22,000, and (d) the behavior of the loop gain (with Ao = 22,000) around the
critical point.

1.11(d). Figure 1.11(d) shows that the critical point is enclosed twice, or N = 2.
Hence, there are two roots in the right-half plane and the amplifier is unstable
with Ao = 22,000.

The root locus of Avf (s) for this example follows from the analysis of

s2 + sSv2 + v1 +
v1v2boAo

v3
D + v1v2(1 − boAo ) = 0

or

s2 + s(101 × 106 − 104Ao ) + 1014(1 + 0.1Ao ) = 0 (1.15)

The resulting root-locus plot is shown in Figure 1.12. For Ao approaching 0 the
roots are located at s1 = −106 and s2 = −108. At the value of Ao = 10,100 the
complex poles are on the imaginary axis at s1 = j318 × 106 and s2 = −j318 × 106,
and oscillations occur.
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Figure 1.12 Root locus for Example 1.2.

1.5 Routh-Hurwitz Method

Another method that can be used to determine if a polynomial has right-half plane
roots is the Routh-Hurwitz method. In the Routh-Hurwitz method the denominator
polynomial of Avf (s) is written in the form

D(s) = ansn + an − 1sn − 1 + an − 2sn − 2 + . . . + a1s + ao

The coefficients are then arranged in the following array form (known as the
Routh-Hurwitz array):

sn an an − 2 an − 4 . .

sn − 1 an − 1 an − 3 an − 5 . .

sn − 2 bn − 1 bn − 3 bn − 5 . .

sn − 3 cn − 1 cn − 3 cn − 5 . .
. . . . . .

s1 .

s0 .

which shows that a polynomial of degree n has n + 1 rows in the Routh-Hurwitz
array. The terms bn − 1 , bn − 3 , bn − 5 , etc., are the first, second, third, etc., entries
in the (n − 2) row. The terms cn − 1 , cn − 3 , cn − 5 , etc., are the first, second, third,
etc., entries in the (n − 3) row. The entries are defined by
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bn − 1 =
an − 1an − 2 − anan − 3

an − 1

bn − 3 =
an − 1an − 4 − anan − 5

an − 1

A

cn − 1 =
bn − 1an − 3 − an − 1bn − 3

bn − 1

A

The entries in the first column (i.e., an , an − 1 , bn − 1 , cn − 1 , etc.) are called the
leading entries in the array. If none of the leading entries vanish, the number of
roots of D(s) in the right-half plane is equal to the number of sign changes in the
leading entries.

Example 1.3

Determine if the following denominator polynomials of Avf (s) have right-half plane
roots:

(a) D(s) = s4 + 10s3 + 35s2 + 50s + 24 (1.16)

(b) D(s) = s3 + s2 + 2s + 24 (1.17)

Solution
(a) The Routh-Hurwitz array for (1.16) is shown in Figure 1.13(a). The leading
entries (i.e., 1, 10, 30, 42, and 24) are positive. Hence, D(s) in (1.16) has no right-
half plane roots, or Avf (s) has no right-half plane poles.

The polynomial in (1.16) can be shown to be equal to

D(s) = (s + 1)(s + 2)(s + 3)(s + 4)

which obviously has no right-half plane roots.
(b) The Routh-Hurwitz array for the polynomial in (1.17) is shown in Figure
1.13(b). In this case, the leading entries have two sign changes. Hence, the polyno-
mial in (1.17) has two right-half plane roots, and therefore, Avf (s) is unstable. In
fact, the polynomial in (1.17) can be shown to be equal to

Figure 1.13 (a) Routh-Hurwitz array for the polynomial in (1.16) and (b) Routh-Hurwitz array for
the polynomial in (1.17).
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D(s) = (s + 3)(s − 1 + j2.6458)(s − 1 − j2.6458)

which has two roots in the right-half plane.
The Routh-Hurwitz method can also be used to determine at what value of

the open-loop gain or feedback factor value is the closed-loop gain unstable. Exam-
ple 1.4 illustrates this point.

Example 1.4

In an oscillator, the denominator polynomial of Avf (s) is

D(s) = s2 + (3 − Ao )s + v 2
o (1.18)

where Ao is the amplifier gain and vo is the frequency of oscillation. Determine
for what values of Ao there are right-half plane roots.

Solution
The Routh-Hurwitz array for (1.18) is shown in Figure 1.14.

The leading entries are 1, 3 − Ao , and 2. Hence, the feedback system is stable if
3 − Ao > 0 or Ao < 3. The feedback system is unstable when 3 − Ao < 0 or Ao > 3.
Oscillations can occur when Ao = 3. This oscillator is analyzed in detail in the next
section.

There are some degenerate cases that can occur in the Routh-Hurwitz array.
One case occurs when a leading entry vanishes, and at least one entry in the
corresponding row is nonzero. The other case occurs when a complete row vanishes.
For these degenerate cases the reader is referred to an appropriate textbook in
control systems.

Next, the loop-gain associated with an oscillator is analyzed. The oscillator
selected is the Wien bridge, which provides an example where the feedback factor
and the open-loop voltage gain are evaluated separately. In many oscillators the
feedback network is loaded by the amplifier, and this effect must be taken into
consideration in the analysis of the loop gain.

1.6 The Wien-Bridge Oscillator

The Wien-bridge oscillator is shown in Figure 1.15. The four arms of the bridge
are R1 , R2 , Za , and Zb . The op amp maintains the voltage across two of the arms
equal, since v− = v+ . This oscillator can be used to analyze in closed form the
conditions for oscillation, its stability, and the location of the complex poles.

Figure 1.14 Routh-Hurwitz array for Example 1.4.
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Figure 1.15 The Wien-bridge oscillator.

From Figure 1.15 it is seen that there are two feedback paths. Positive feedback
occurs between vo and v+ through the voltage divider formed by Za and Zb , and
negative feedback occurs between vo and v− through R1 and R2 .

The Wien-bridge oscillator in Figure 1.15 uses an op amp in an inverting
configuration (i.e., the negative feedback path) to provide the open-loop gain. The
open-loop gain is constant and given by

Av ( jv ) = Avo =
vo
v+

= 1 +
R2
R1

(1.19)

The voltage v+ is given by

v+ = vo
Zb

Zb + Za
= vo

S R
1 + jvRC D

R +
1

jvC
+ S R

1 + jvRC D
= vo

1

3 + jSvRC −
1

vRC D
Therefore, the voltage-feedback transfer function b ( jv ) can be written in the form

b ( jv ) =
v+
vo

=
1

3 + jSvRC −
1

vRC D (1.20)

From (1.19) and (1.20) it follows that the loop gain is
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b ( jv )Avo =
1

3 + jSvRC −
1

vRC D S1 +
R2
R1
D (1.21)

For oscillation the loop gain must be unity. The frequency of oscillation and the
gain condition are given by (1.7) and (1.6), respectively.

The condition (1.7) requires that the imaginary part of b ( jv ) be zero. From
(1.20) it is seen that bi ( jv ) = 0 when

vRC −
1

vRC
= 0 ⇒ v = vo =

1
RC

or

fo =
1

2pRC
(1.22)

The frequency fo is the frequency of oscillation.
At v = vo the real part of b ( jv ) is

br (vo ) =
1
3

Therefore, from (1.6) the gain condition is

Avo =
1

br (vo )
= 3

and from (1.19) it follows that R2 = 2R1 . In practice, the gain should be greater
than 3 to start the oscillation. Values of 3.1 to 3.3 are reasonable.

It is interesting to observe that the op amp uses negative feedback through R1
and R2 to provide the required gain Avo , and it uses positive feedback through
the RC networks to obtain the required closed-loop phase shift. The attenuation
in the positive feedback loop must be equal to the gain Avo , making the loop gain
equal to one. Since the phase shift through the op amp is zero at vo , the phase
shift through the RC networks must also be zero so the feedback signal v+ is in
phase with vo [see (1.20) at v = vo ].

The frequency of oscillation can be varied by simultaneously changing the
capacitance values using a ganged capacitor arrangement. In addition, different
frequency ranges can be selected by simultaneously switching different values of
the resistors R.

A final observation is that op amps in this book are assumed to operate from
a dual power supply. Of course, op amps with a single power supply can be used
if proper single-supply techniques are used.

Further insight into the Wien-bridge oscillator is obtained by analyzing the
oscillator in terms of the circuit poles. The poles of the closed-loop gain Avf (s) are
the roots of 1 − b (s)Avo = 0. Using (1.21) with s = jv the roots of Avf (s) are given
by



1.6 The Wien-Bridge Oscillator 23

1 −
Avo

3 +
s

vo
+

vo
s

= 0

or

s2 + (3 − Avo )vos + v 2
o = 0 (1.23)

The two roots of (1.23) are shown in Figure 1.16 in a root-locus plot as a
function of Avo . As Avo varies from 0 to 1, the poles move along the negative real
axis. For Avo = 1, the poles meet at −vo . As Avo varies from 1 to 3, the poles are
complex and move in a semicircular path towards the imaginary axis. For Avo = 3,
the complex poles are located at jvo and −jvo , respectively. As Avo increases above
3, the complex poles move into the right-half plane; and at Avo = 5 the poles meet
on the positive real axis at vo . For Avo > 5, they move along the positive real axis.

The conditions that produce complex poles are now analyzed. Observe that
1 < Avo < 3 corresponds to a loop gain of b ( jvo )Avo < 1, and 3 < Avo < 5
corresponds to a loop gain of b ( jvo )Avo > 1. For 1 < Avo < 3 the poles produce
an output voltage with an exponentially damped sinusoidal response, and for 3 <
Avo < 5 an exponentially growing sinusoidal response results. In order to start the
oscillation, a value of gain slightly greater than 3 is used. Thus, at the start of
oscillation the complex poles are in the right-half plane and an exponentially
growing sinusoidal oscillation is produced. As the amplitude of the oscillation
increases, the op amp saturates and its gain decreases. When the gain is 3, the
poles are on the imaginary axis (i.e., to s = ± jvo ); and when the gain goes below
3, the poles move into the left-half plane. In the Wien-bridge oscillator in Figure
1.15, the amplitude of the sinusoidal oscillation is limited by the saturation of the
op amp. Hence, the oscillation amplitude varies between approximately V + − 1
and V − + 1.

Wien-bridge oscillators work very well for frequencies up to about 1 MHz.
With an amplitude-limiting circuit the harmonic distortion can be less than 5%.

The Wien bridge can also be constructed with different values of the branch
values of R and C. If

Figure 1.16 Poles of the closed-loop gain as a function of Avo .
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Za = Ra +
1

jvCa

and

Zb =
Rb

1 + jvCb

it follows that for oscillation: RaCa = RbCb , and the frequency of oscillation is
given by

fo =
1

2pRaCa
=

1
2pRbCb

The required gain of the amplifier is

Avo =
1

b ( jvo )
= 1 +

2R1
R2

Example 1.5

Design the Wien-bridge oscillator shown in Figure 1.15 to oscillate at 5 kHz.

Solution
A practical value of 0.01 mF for the capacitors can be selected. Then, using (1.22),
the value of R is

R =
1

2p foC
=

1

2p (5 × 103)(0.01 × 10−6)
= 3.18 kV

A practical value of 3 kV can be used in series with a trimming potentiometer to
set the frequency of oscillation at 5 kHz.

To start the oscillation, a value of Avo = 3.2 is used. From (1.19), a gain of
3.2 is obtained with R2 = 22 kV and R1 = 10 kV. The supply voltages of the op
amp can be selected as 12V and −12V. The transient simulation of the oscillator,
using a 741 op amp is shown in Figure 1.17. Observe that the output voltage
reaches saturation producing a clipping in the output waveform and, therefore, a
significant amount of distortion. This occurs because the starting condition requires
Avo > 3, and the gain of the amplifier changes when its output reaches saturation.
The fundamental frequency of oscillation (i.e., fo = freq[1] = 5.0002 kHz) is close
to the predicted value using b ( jvo )Avo = 1.

Example 1.5 shows that some sort of amplitude-limiting mechanism is needed to
reduce the harmonic distortion. There are several ways of accomplishing amplitude
limiting. The amplitude of oscillation is determined by the loop gain, which is
made to be greater than 1 in order to start the oscillation, and by the nonlinearities
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Figure 1.17 Simulation of the Wien-bridge oscillator in Example 1.5.
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of the amplifier and feedback network. If the feedback network is a passive network,
the nonlinearities of the amplifier determine the amplitude of oscillation. This
procedure, as seen in Figure 1.17, generates unwanted harmonics since the ampli-
tude of the oscillation is limited by the saturation voltage of the op amp. In
order to remove these harmonics, a bandpass filter that passes only the oscillation
frequency can be used after the amplifier. Of course, the nonlinearities of the
amplifier can be avoided by limiting somehow the amplitude of the oscillation
before the amplitude reaches the amplifier’s saturation value. There are many
circuits that can be used to limit the amplitude of the oscillator. Some of these
circuits are shown in Figure 1.18.

Figure 1.18(a) shows a limiting circuit using back-to-back Zener diodes (usually
VZ1 = VZ2). The output is limited to −(VZ2 + 0.7) < vo < (VZ1 + 0.7). When the
Zeners are not conducting, the op-amp gain is −R2 /R1 . The transfer function of
this circuit is illustrated in Figure 1.18(a). Another limiting circuit is shown in
Figure 1.18(b) with its transfer function. In this circuit the gain between vo and
vIN changes from Av1 (when the Zeners conduct) to Av2 (when the Zeners are not
conducting).

An amplitude-limiting mechanism is basically an automatic gain control (AGC)
circuit that forces the amplifier gain to decrease when the amplitude of the

Figure 1.18 (a) A limiting circuit and the associated transfer functions and (b) another limiting circuit.
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oscillation increases. Figure 1.19 shows three Wien-bridge oscillators with ampli-
tude-limiting mechanisms. In Figure 1.19(a), when the diodes are off, the gain is
1 + R2 || R1 ; and when a diode is on, the gain is reduced to 1 + (R2 || R3)/R1 . The
start up condition requires a gain slightly greater than 3 or

R2
R1

> 2 (1.24)

and when a diode is on, the gain should be slightly less than 3, or

R2 || R3
R1

< 2 (1.25)

The inequality in (1.24) can be satisfied by making it equal to a value between 2.1
to 2.2 and in (1.25) using a value between 1.8 and 1.9.

When a diode is conducting, the amplitude of the output voltage is limited.
Since v+ = v− = vo /3, a nodal equation gives

vo
3R1

=
vo −

vo
3

R2
+

vo −
vo
3

− VD

R3

Figure 1.19 Three Wien-bridge oscillators with (a, b, c) amplitude-limiting mechanism.
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or

vo =
3VD

2S1 +
R3
R2
D −

R3
R1

(1.26)

where VD ≈ 0.5V for an actual diode.
Equation (1.26) shows that the amplitude of vo depends on R3 . This equation

can be used to obtain the value of R3 for a given amplitude of vo . Since in this
oscillator the gain is controlled by the circuit, it provides an opportunity to verify
that the location of the poles changes between the right-half plane and the left-
half plane, and how the pole movement is related to the Barkhausen criterion in
the determination of the frequency of oscillation (see Example 1.6).

In Figure 1.19(b) the amplitude-limiting mechanism is implemented with Zener
diodes. The analysis of this oscillator is similar to the previous analysis. The output
voltage is given by (1.26) with VD replaced by VZ + VD . A simple way of designing
this oscillator is to let R2 || R1 = 2.15 and (R2 || R3)/R1 = 1.8, which can be satisfied
with R2 = 2Ra , R1 = 0.93Ra , and R3 = 10Ra (Ra is a scaling factor). As an example,
with VZ = 4.2V, and selecting Ra = 5 kV, it follows that R1 = 4.65 kV, R2 = 10 kV,
and R3 = 50 kV. The amplitude of the oscillation is limited to vo = 9.7V.

In Figure 1.19(c) a modification of the amplitude control circuit that produces
smaller values of the control resistors is shown. For this circuit the design equations
are

R2 + Rx
R1

> 2

(R2 ||R3) + Rx

R1
< 2

and

vo =
3VD

S2 −
Rx
R1
DS1 +

R3
R2
D −

R3
R1

(1.27)

Obviously, as Rx → 0, (1.27) reduces to (1.26).
Usually, in these oscillators a buffer stage (i.e., a unity gain amplifier) is used

to couple the oscillation signal.
The following example helps to explain why, although not exact, the Bark-

hausen criterion is useful in predicting the expected frequency of oscillation. As
Lindberg [1] mentioned, the placement of the poles on the imaginary axis is an
impossible act of balance.
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Example 1.6

(a) Design the Wien-bridge oscillator shown in Figure 1.20(a) to oscillate at vo =
10 krad/s with an amplitude of 2V.
(b) Repeat part (a) for an amplitude of 10V.

Solution
(a) From (1.22) with C = 0.01 mF and R = 10 kV, the desired vo = 10 krad/s is
obtained.

To start the oscillation, a value of Avo = 3.2 (or R2 || R1 = 2.2) is used. This
can be obtained with R2 = 11 kV and R1 = 5 kV. From (1.26), if VD = 0.45V, an
amplitude of 2V is obtained with R3 = 73 kV; and if VD = 0.6V, the value is R3
= 60.5 kV.

Figure 1.20 (a) ADS simulation for Example 1.6 for vo = 2V, (b) transient simulation results, and (c) simulation
result for vo = 10V.
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The harmonic-balance simulation of this oscillator is shown in Figure 1.20(a)
with R3 = 73 kV, and the transient simulation data is shown in Figure 1.20(b).
The fundamental frequency of oscillation is freq[1] = 1.598 kHz (or vo = 10.04
krad/s). The current waveform in the diodes shows the on/off states of the diodes.

For this design, when the diodes are off the gain is Avo = 3.2. From (1.23),
the poles of the closed-loop gain are located at

s2 − 2,000s + 108 = 0

or

s1,2 = 1,000 ± j9,949.9 (1.28)

Therefore, the poles are in the right-half plane.
When a diode conducts, the gain is reduced to

Avo = 1 +
73 × 103 || 11 × 103

5 × 103 = 2.912

and the new location of the poles, using (1.23), is

s2 + 880s + 108 = 0

or

s1,2 = −440 ± j9,990.3 (1.29)

From (1.28) and (1.29) it is seen that the poles move between the right-half
plane and the left-half plane. The frequency associated with the poles in the right-
half plane is vo,1 = 9,949.9 rad/s, and the frequency associated with the poles in
the left-half plane is vo,2 = 9,990.3 rad/s. The frequency of oscillation predicted
by the Barkhausen criterion is vo = 10 krad/s, which occurs if the poles are on the
jv axis. However, the poles of this oscillator are moving between vo,1 and vo,2 .
This variation in frequency produces a fundamental frequency of oscillation and
the associated harmonics.
(b) An amplitude of vo = 10V can be obtained with R1 = 5 kV, R2 = 11 kV, and
R3 = 101 kV. When the diodes are not conducting, the poles are in the right-half
plane and are given by (1.28). When a diode conducts the poles move to the left-
half plane and Avo = 2.9821. Their location is calculated using (1.23), namely,

s2 + 179s + 108 = 0

or

s1,2 = −89.5 ± j9,979.6
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Hence, the poles of this oscillator are moving between vo,1 = 9,949.9 rad/s and
vo,2 = 9,979.6 rad/s.

The simulation results are shown in Figure 1.20(c). The fundamental frequency
of oscillation is 1.598 kHz.

Another Wien-bridge oscillator with an amplitude-limiting circuit is shown in
Figure 1.21. In this oscillator the amplitude-limiting circuit consists of the diodes
D1 and D2, and the resistors R3 , R4 , R5 , and R6 . To understand the operation
of the amplitude-limiting circuit, observe that as vo increases, the voltage at node
vy will exceed the voltage v1 , forcing D2 to conduct. When D2 conducts, the value
of vy is vy = v1 + 0.7, and vo is clamped at the value vo (max) , given by

vy = v1 + 0.7 =
vo (max)R6
R5 + R6

+
V −R5

R5 + R6
(1.30)

Since v1 is approximately vo /3, it follows from (1.24) that

vo (max)
3

+ 0.7 =
vo (max)R6
R5 + R6

+
V −R5

R5 + R6
(1.31)

Similarly, as vo decreases, the voltage vx will drop below v1 , forcing D1 to
conduct. When D1 conducts, the voltage vx is vx = v1 − 0.7, and vo is clamped at
the value vo (min) , given by

Figure 1.21 Wien-bridge oscillator with an amplitude-limiting circuit.
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vx =
vo (min)

3
− 0.7 =

vo (min)R3
R3 + R4

+
V −R4

R3 + R4
(1.32)

The simultaneous solution of (1.31) and (1.32) gives the value of the resistors
that limit the output voltage to vo (min) < vo < vo (max) . In order to obtain a symmetri-
cal sinusoidal voltage, the selection R3 = R6 and R4 = R5 is usually made.

Example 1.7

Design an amplitude-limiting circuit for the 5-kHz Wien-bridge oscillator in Exam-
ple 1.5. The amplitude of the sinusoidal output voltage is to be limited to |vo | =
5V.

Solution
With vo (max) = 5V and vo (min) = −5V, it follows from (1.31) and (1.32) that R3 =
R6 = 10.9 kV and R4 = R5 = 2 kV.

To start the oscillation a voltage gain of 3.2 is obtained with R2 = 22 kV and
R1 = 10 kV. The simulation of the oscillator is shown in Figure 1.22. Obviously,
the harmonic content of the oscillator in Figure 1.22 is much less than the one in
Figure 1.17.

Another way of stabilizing the amplitude of oscillation is to use a thermistor
in the circuit. Thermistors with positive- and negative-temperature coefficients
are available. A negative-temperature coefficient thermistor has a resistance that
decreases as the temperature increases. For example, in Figure 1.15 a negative-
temperature coefficient thermistor can be used for R2 . Hence, as the amplitude of
oscillation increases, the current in R2 increases and its resistance decreases,
resulting in a decrease in Avo which makes b ( jvo )Avo = 1.

A positive-temperature coefficient device that can also be used to stabilize the
oscillation is a tungsten filament lamp. In low-wattage lamps, cold resistances of
a few ohms to hundreds of ohms are available, with hot resistances values being
about 5 to 10 times larger than the cold values. The schematic of a Wien-bridge
oscillator using a filament lamp is shown in Figure 1.23. The nonlinearities associ-
ated with the lamp resistance provide a challenge in the control of vo .

In oscillators that use op amps the maximum frequency of operation is limited
by the frequency response of the op amp. The op amp frequency response is limited
by either its gain-bandwidth product or by its slew rate. The gain-bandwidth
product is a small-signal limitation, which limits the frequency of oscillation to

fo <
fT

|Avo |
(1.33)

where fT is the gain-bandwidth product frequency, and Avo is the midband gain
of the amplifier. For an inverting amplifier Avo = −R2 /R1 , and for a noninverting
amplifier Avo = 1 + R2 /R1 .

The slew rate is a large-signal limitation, which limits the frequency of oscilla-
tion to
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Figure 1.22 ADS simulation of the oscillator in Example 1.7.
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Figure 1.23 A Wien-bridge oscillator using an incandescent lamp for stability.

fo <
SR

2p |vo |
(1.34)

where SR is the op amp slew rate, and |vo | is the magnitude of the output voltage.
In the absence of an amplitude-limiting circuit, |vo | is limited by the op amp

saturation. A limiting circuit keeps the operation of the op amp in its linear region
(i.e., away from saturation). For a designed value of |vo | , the smaller of the two
fo values in (1.33) or (1.34) limits the maximum oscillation frequency. It also
follows that larger values of fo are obtained, if the amplitude of the oscillation is
limited using an amplitude limiting circuit.

1.7 The Phase-Shift Oscillator

Phase-shift oscillators usually use RC networks in the feedback path. A phase-shift
oscillator is shown in Figure 1.24(a). The op amp is used in an inverting configura-
tion with a gain of −R2 /R. Thus, the signal experiences a phase shift of −180°
through the amplifier, and the phase shift from each RC section is 60° at the
frequency of oscillation, for a total phase shift in the feedback path of 180°. The
total phase shift around the closed loop is 0° (i.e., −180° + 180°). If the gain
condition is satisfied, the circuit will oscillate at the frequency where the total phase
shift is zero.

The phase-shift network is composed of three RC sections. The following
analysis provides insight into the behavior of the phase-shift network. The transfer
function of the single RC section shown in Figure 1.25 is

v2
v1

=
jvRC

1 + jvRC
=

j
v

vL

1 + j
v

vL

where

vL =
1

RC
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Figure 1.24 (a) A phase-shift oscillator and (b) with RC interchanged.

Figure 1.25 A single RC section.

Hence, the phase shift is

u (v ) = 90° − tan−1 v
vL

(1.35)

Equation (1.35) shows that the largest phase shift that can be obtained from
a single RC section is 90°. Two RC sections will have a phase shift smaller than
180°. Therefore, a minimum of three RC sections is needed to obtain a phase shift
of 180° at the frequency of oscillation.

The phase-shift network in Figure 1.24(a) is described by the feedback factor,
namely,
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b ( jv ) =
vf

vo
= 1 j

v
vL

1 + j
v

vL
2

3

=
−S v

vL
D3

v
vL

F3 − S v
vL

D2G − jF1 − 3S v
vL

D2G
(1.36)

The imaginary part of b ( jv ) will vanish at the frequency

vo =
1

√3RC

which is the frequency of oscillation. At the frequency of oscillation it follows from
(1.35) that each RC section produces a phase shift of 60°.

From (1.36) the real part of b ( jv ) at vo is br = −1/8. Therefore, from (1.6),
the gain condition is

Avo =
1

br
= −8

Hence, it follows that

R2
R

= 8

The phase-shift oscillator in Figure 1.24(a), implemented with R and C inter-
changed in each RC section, is shown in Figure 1.24(b). The resistor R should be
large so that it does not load the third RC section. Of course, a buffer amplifier
(i.e., a unity gain amplifier) can be used between the third section and the resistor
R to avoid the loading. In the configuration shown in Figure 1.24(b) the loop gain
is

b ( jv )Avo =
Avo

S1 + j
v

vL
D3

Hence, it follows that the frequency of oscillation is given by

vo =
√3

RC

and the gain condition is satisfied with R2 /R ′ = 8.
Another phase-shift oscillator is shown in Figure 1.26. In this oscillator the

RC sections are connected without isolation and, therefore, there is loading. In the
last stage the resistors R and R1 appear in parallel. The loading of R1 can be
neglected if R1 ||R ≈ R, or in some cases by removing R in the third stage and
letting R1 = R.
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Figure 1.26 A phase-shift oscillator using a single op amp.

The analysis of the phase-shift network in Figure 1.26 with R1 ||R ≈ R gives

b ( jv ) =
vf

vo
=

1

S 1
jvRC D3 + 5S 1

jvRC D2 + 6S 1
jvRC D + 1

(1.37)

The imaginary part of b ( jv ) comes from the first and third term in the denominator,
namely the odd-power terms. The imaginary part of b ( jv ) will vanish when

S 1
jvRC D3 + 6S 1

jvRC D = 0

or at

v = vo =
1

√6RC
(1.38)

At the frequency of oscillation the phase-shift network produces a phase shift of
180°.

From (1.37) the real part of b ( jv ) at vo is

br (vo ) =
1

5

( jvoRC )2 + 1
(1.39)

Substituting (1.38) into (1.39) gives

br (vo ) =
1

5(−6) + 1
= −

1
29

and from (1.6), the gain condition is

Avo =
1

br (vo )
= −29 (1.40)
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In Figure 1.26 the resistors R1 and R2 provide an inverting gain of

Avo =
vo
vf

= −
R2
R1

Hence, the start of oscillator condition is satisfied if R1 and R2 are selected to
provide |Avo | > 29.

To summarize, the phase-shift oscillator in Figure 1.26 will oscillate at the
frequency vo given by (1.38) if the gain is |Avo | > 29. The loading of the op amp
is minimized by making R1 > 10R.

The phase-shift oscillator in Figure 1.26 could have been implemented by
interchanging R and C in the phase-shift sections. It follows that for such an
oscillator the frequency of oscillation is given by

vo = √6
RC

and the gain condition is |Avo | > 29.

Example 1.8

Design the RC oscillator shown in Figure 1.26 to oscillate at 1 kHz.

Solution
Selecting the capacitor values to be 0.1 mF, then from (1.38)

R =
1

vo√6C
=

1

(2p × 103)√6(0.1 × 10−6)
= 650V

The resistors R1 and R2 must provide the gain |Avo | > 29 in order to prevent
loading R1 || R ≈ R. Letting R1 = 15 kV, then R2 = 29R1 = 435 kV. A 495-kV

resistor was used to implement R2 . This will allow for some extra gain to satisfy
the start of oscillation condition (i.e., |Avo | > 29).

This oscillator is easy to construct. However, some adjustments in the RC
network (due to component variations) are necessary in order to obtain the desired
frequency of oscillation. The use of precision resistors and capacitors is recom-
mended. The simulation of this oscillator is shown in Figure 1.27. The fundamental
frequency of oscillation is 1.006 kHz. Observe that the output voltage reaches
saturation (i.e., |vo | ≈ 11V), since the circuit uses the nonlinearities of the operational
amplifier at saturation to determine the amplitude of oscillation. The clipping in
the output waveform produces harmonic distortion.

The harmonic distortion can be significantly reduced with an amplitude-limiting
circuit. One such oscillator circuit is shown in Figure 1.28. The amplitude-limiting
circuit is designed using (1.30) and (1.32), with v1 set equal to zero (i.e., vy = 0.7V
and vx = 0.7V).
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Figure 1.27 ADS simulation of the phase-shift oscillator in Example 1.8.

Figure 1.28 A phase-shift oscillator with an amplitude-limiting circuit.

Example 1.9

Design the phase-shift oscillator in Figure 1.28 to oscillate at 1 kHz. The amplitude
of the output voltage is to be limited to ±5V.

Solution
The design of the amplitude-limiting circuit is similar to the one in Example 1.7.
From (1.30), with v1 = 0 and vo (max) = 5V, we obtain

0.7 =
5R6

R5 + R6
−

12R5
R5 + R6

which can be satisfied with R5 = 2 kV and R6 = 5.9 kV. From (1.32), for symmetry,
we obtain R3 = R6 = 5.9 kV and R4 = R5 = 2 kV.

The simulation is shown in Figure 1.29. The fundamental frequency of oscilla-
tion is at 1 kHz, and the total harmonic content of this oscillator is certainly less
than that in Figure 1.27.
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Figure 1.29 Phase-shift oscillator with an amplitude-limiting circuit.
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An interesting phase-shift oscillator is shown in Figure 1.30. It is composed of
three integrators with transfer function of

Av ( jv ) =
−

1
R1C

jv +
1

R2C

In this oscillator the gain and phase shift is distributed throughout the loop.
The loop gain is

bAv = 1 −
1

R1C

jv +
1

R2C
2

3

=
− SR2

R1
D3

[1 − 3(vR2C)2] + jvR2C [3 − (vR2C)2]
(1.41)

From (1.41) the imaginary part vanishes at the frequency

vo = √3
R2C

and the gain condition follows from setting the loop gain at v = vo equal to unity,
namely,

bAv =
1
8 SR2

R1
D3 = 1

or R2 = 2R1 .
In this oscillator the phase shift from each integrator is 120° at vo . Since at

vo the gain of each stage is 1 |120° , the three output voltages are equal in magnitude
but at 120° from each other.

A quadrature oscillator produces two signals having a phase shift of 90°. Some
phase-shift oscillators can produce signals in quadrature. For example, an additional

Figure 1.30 A phase-shift oscillator using op amp integrators.
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RC section could have been added to the phase-shift oscillators in Figure 1.24(b),
so that each section produces a phase shift of −45°, or −90° every two sections.
The resulting quadrature oscillator that produces a sine and a cosine signal is
shown in Figure 1.31. The amplifier gain is

Avo =
vo
vf

= −
R2
R′

and the RC phase-shift network transfer function is

b ( jv ) =
vf

vo
=

1

S1 + j
v

vL
D4

(1.42)

Hence, the loop gain is given by

b ( jv )Avo =
−

R2
R′

S1 + j
v

vL
D4

(1.43)

It is observed that at

vo = vL =
1

RC

each RC section produces a phase shift of −45°, for a total of −180°. Hence, the
loop-gain phase shift is −360°. At vo , (1.42) gives

b ( jv ) =
1

(1 + j)4 =
1
4

e −jp

Figure 1.31 A quadrature oscillator.
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Therefore, from (1.43) the required gain is

Avo = −4 ⇒
R2
R′ = 4

A gain greater than 4 is required to start the oscillation (say, Avo = 4.2).
Another quadrature oscillator is shown in Figure 1.32. The second op amp is

connected as an inverting integrator; that is,

Av2 =
vo2
vo1

= −
1

jvR2C2
(1.44)

This inverter produces a phase shift of −270° (or 90°).
The first op amp is connected as a noninverting integrator; that is,

Av1( jv ) =
vo1
vf

= 1 +
1

jvR1C1
=

1 + jvR1C1
jvR1C1

(1.45)

and the feedback network transfer function is

b ( jv ) =
vf

vo2
=

1
1 + jvR3C3

(1.46)

Therefore, from (1.45) and (1.46), with R1C1 = R3C3 , we obtain

vo1
vo2

=
1

jvR1C1
(1.47)

which shows that the phase shift from vo2 to vo1 is −90°. From (1.44) and (1.47)
the loop phase shift is 0° and oscillations occur with vo2 being a sine signal and
vo1 a cosine signal.

Using (1.44), (1.45), and (1.46), the loop-gain condition is

Figure 1.32 A quadrature oscillator.
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bAv1Av2 = −
1 + jvR1C1

jvR1C1
S 1

jvR2C2
D 1

1 + jvR3C3
= 1

If R1C1 = R2C2 = R3C3 , the loop-gain condition reduces to

bAv1Av2 =
1

(vR1C1)2 = 1

and the frequency of oscillation is

vo =
1

R1C1

In a practical quadrature oscillator circuit, the component variations affect the
required RC equality, and therefore, some tuning mechanism is needed, such as a
variable potentiometer to implement the resistors. In addition, an amplitude-
limiting circuit might be needed to reduce the distortion.

A phase-shift oscillator using a JFET amplifier is shown in Figure 1.33. The
input resistance of the amplifier (i.e., RG ) is very large and does not load the output
of the phase-shift network. However, the output resistance of the amplifier is
rd || RD ≈ RD and a certain amount of loading occurs. Good results are obtained
by neglecting the loading and designing the oscillator based on (1.38) and (1.40),
where Avo ≈ −gmRD .

A phase-shift oscillator using a BJT amplifier is shown in Figure 1.34(a). The
BJT phase-shift oscillator works well at a frequency below 1 MHz. This is the
current-controlled equivalent of the JFET phase-shift oscillator. Since the BJT is a
current-controlled device, the oscillation frequency and required gain can be
obtained using (1.10). The ac model for this circuit is shown in Figure 1.34(b),
where it was assumed that R1 || R2 @ hie and 1/hoe = ∞. While an approximate

Figure 1.33 A phase-shift oscillator using a JFET amplifier.
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Figure 1.34 (a) A phase-shift oscillator using a BJT amplifier and (b) the phase-shift network.

design can be made by neglecting the effects of RC and hie and the use of a CAD
program to optimize the oscillator, it is of interest to show the complexities in the
analysis due to their presence in the ac model.

In Figure 1.34(b) the resistor R′ is selected so that R = R′ + hie . The feedback
current is the current into the base of the transistor (if = ib ), and the input current
(hfe ib ) is the collector current. From Figure 1.34(b) it can be shown that the loop
gain is

bAv =
if

ib
=

−hfe

3 −
1

v2R2C2 +
R
Rc

−
5

v2RRcC2 − j
4

vRC
− j

6
vRcC

+ j
1

v3R2RcC3

(1.48)

Setting the imaginary part of (1.48) equal to zero gives the frequency of oscilla-
tion, namely,

vo =
1

RC√6 +
4Rc
R

(1.49)

At vo , setting the loop gain in (1.48) equal to unity gives

−hfe

3 −
1

v 2
oR2C2 +

R
Rc

−
5

v 2
oRRcC2

= 1 (1.50)

Substituting (1.49) into (1.50) results in the following gain condition:

hfe = 23 + 29
R
Rc

+ 4
Rc
R

(1.51)

This equation can be solved for R /Rc as a function of hfe to determine the minimum
value of R /Rc for oscillation. Alternatively, this value can be determined by differ-
entiating (1.51) with respect to R /Rc and setting the result equal to zero. That is,
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29 − 4SRc
R D2 = 0 ⇒

R
Rc

= √ 4
29

= 0.372

With R /Rc = 0.372, (1.49) gives hfe = 44.5. This is the minimum value of hfe
for oscillations. For hfe = 44.5 the circuit will oscillate at the frequency given by
(1.49). In practical circuits, the transistors’ hfe are much larger than 44.5, and the
tolerances in the resistors and the capacitors usually makes them unequal (especially
in the capacitors). Hence, a variable resistor can be used for Rc , and its value
changed until the loop gain is slightly larger than unity and the circuit oscillates
at the desired frequency with low distortion. The frequency of oscillation will still
be closely predicted by (1.49). Another practical way of building this oscillator is
to use a variable resistor for R′.

The RC phase-shift network is one specific case of the general phase-shift
network shown in Figure 1.35. It can be shown that for this network

b ( jv ) =
vf

vo
=

1

SZ1
Z2
D3 + 5SZ1

Z2
D2 + 6SZ1

Z2
D + 1

(1.52)

Equation (1.52) shows that oscillations can be obtained with other combina-
tions of Z1 and Z2 , provided that bi (v ) = 0. For example, Z1 can represent a
resistor and Z2 an inductor. Of course, the frequency of oscillation depends on
the impedances used. Observe that Z1 and Z2 cannot both be reactive, because in
such case b ( jv ) will not have an imaginary part.

1.8 Active-Filter Oscillators

Many oscillators that use an active-filter feedback path have been proposed. Basi-
cally, in these oscillators the poles of an active filter are adjusted to lie on the
jv -axis at the desired frequency of oscillation. To start the oscillation the poles
must be slightly on the right-half plane. A summary of these types of oscillators
can be found in [2].

In this section three active-filter oscillators are analyzed to illustrate their design
procedure. A simple second-order low-pass filter with positive feedback is shown
in Figure 1.36. For this oscillator

Figure 1.35 A general phase-shift network.
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Figure 1.36 A simple active-filter oscillator.

Av1 =
vo
vf

= −
R2
R1

Av2 =
vb
vo

= −
1

jvRC

and

Av3 =
vf

vb
= −

1
jvRC

Therefore, the loop gain is

bAv1Av2Av3 = − SR2
R1
DS 1

vRC D2

and the condition for oscillation (i.e., loop gain equal to one) is satisfied at

vo =
1

RC √R2
R1

Next we consider the use of bandpass filters in the implementation of oscillators.
Figure 1.37 illustrates an oscillator that uses a bandpass filter in the feedback loop.
The voltage transfer function for this filter is

Figure 1.37 An oscillator using a bandpass filter.
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Av2 =
vf

vo
=

− S 1
R1C Ds

s2 +
2

R2C
s +

1

R1R2C2

=
−2Qvos

s2 + Svo
Q Ds + v 2

o

where

Q =
1
2 √R2

R1

and

vo =
1

C√R1R2
(1.53)

The loop gain is

bAv1Av2 = SR4
R3
D 2Qvov

vSvo
Q D + j Xv2 − v 2

o C

which shows that the frequency of oscillation is given by (1.53), and the gain
condition is

R4
R3

2Q2 = 1 ⇒
R4
R3

= 2
R1
R2

An oscillator configuration that uses a Twin-T filter in the feedback path is
shown in Figure 1.38. The Twin-T filter consists of two Tee-shaped networks

Figure 1.38 An oscillator using a Twin-T filter.
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connected in parallel. These Twin-T filters are also known as band-reject filters or
notch filters. In the Twin-T filter shown in Figure 1.38, the elements connected to
ground have values of nC and R /n, respectively.

The transfer function of the Twin-T filter in Figure 1.38 is

b (s) =
vf

vo
=

s2 + S2
n

− 1Dv 2
o

s2 + voSn +
2
n

+ 1Ds + v 2
o

(1.54)

where

vo =
1

RC
(1.55)

and n is a number such that n ≥ 2.
Observe that if n = 2, (1.54) reduces to

b (s) =
s2 + v 2

o

s2 + 4vos + v 2
o

(1.56)

which is the transfer function of a Twin-T filter commonly used as notch filter.
Of course, the transfer function in (1.56) has a zero at vo , which is responsible
for the ‘‘deep’’ notch of this filter.

The gain of the op amp is Avo = −R2 /R1 . Setting the loop gain of the oscillator
equal to 1 gives

−Avo

s2 + S2
n

− 1Dvos + v 2
o

s2 + voSn +
2
n

+ 1Ds + v 2
o

= 1

or

(1 − Avo )s2 + Fn +
2
n

+ 1 − AvoS2
n

− 1DGvos + (1 − Avo )v 2
o = 0

Therefore, the required gain is

Avo = −
n +

2
n

+ 1

1 −
2
n

(1.57)

and the frequency of oscillation is given by (1.55). Equation (1.57) shows that an
oscillator designed with n = 2 in the Twin-T filter requires an infinite gain. Hence,
for oscillator purposes n ≥ 2.5 is more practical.
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Example 1.10

Design the Twin-T filter in Figure 1.38 to oscillate at vo = 1 krad/s (or fo = 159
Hz) with n = 4.

Solution
Letting R = 10V, it follows from (1.55) that C = 0.1 mF. From (1.57), the value
of Avo with n = 4 is Avo = −11. To start the oscillation we let R2 /R1 > 11, or
R1 = 50 kV and R2 = 660 kV. The op amp supply voltages are ±15V.

The simulation of the oscillator is shown in Figure 1.39. The resulting oscillation
is at 161.9 Hz. The notch associated with the Twin-T filter (high Q) makes the
resulting oscillation fairly clean of harmonics.

Figure 1.39 ADS simulation for the Twin-T oscillator in Example 1.10.
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C H A P T E R 2

Oscillator Characteristics

2.1 Introduction

This chapter discusses several oscillators’ characteristics that apply to all types of
oscillators. Oscillators can have frequency variations, which can be classified as
long term and short term. Long-term frequency stability problems can be due to
component variation or aging, while short-term frequency variation can be caused
by a variety of factors, such as mechanical vibrations, parasitic reactances, and
random noise.

The spectral characteristics of an oscillator usually show that, in addition to
the frequency of oscillation, a certain amount of harmonics is also present due to
the nonlinear characteristics of the oscillator. The harmonic contents can range
from severe to minimal

There are several sources that contribute to the oscillator noise, namely thermal
noise, shot noise, and flicker noise. The theory of oscillator noise is presented, and
the single sideband noise of an oscillator is discussed. Techniques for measuring
the phase noise of an oscillator are described.

2.2 Frequency Stability

Frequency stability or phase stability refers to the ability of the oscillator to maintain
a constant frequency of oscillation. Several terms are used when referring to the
frequency stability, such as long-term and short-term stability. Long-term frequency
stability is the ability of the oscillator to maintain a frequency of oscillation that
does not depend on changes in temperature, aging of components, and so on.
Those frequency variations that occur over a long period of time result from changes
in the components that directly affect the frequency of oscillation vo . For example,
in an oscillator where

vo =
1

√LC

the variation in vo due to changes in L and C (which can be produced by temperature
variations or aging) is

Dvo =
∂vo
∂L

DL +
∂vo
∂C

DC

53
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or

Dvo = −
1
2

voSDL
L

+
DC
C D

This equation shows how variations in L (i.e., DL) and in C (i.e., DC) produce
variations in the frequency of oscillation Dvo . For example, a 1% increase in C
produces a −0.5% variation (i.e., a 0.5% decrease) in vo . The long-term stability
of an oscillator is predictable and is commonly expressed as a frequency drift. That
is, as a change in frequency per unit time.

Short-term stability describes the oscillator’s frequency variation over a short
period of time. Short-term frequency variations are usually produced by noise,
mechanical vibrations, and temperature-dependent parasitic reactances. For exam-
ple, the reactances of the active device are functions of temperature and bias
variations, and they can introduce or affect the location of the poles and zeroes
of the loop gain. These parasitic poles and zeroes introduce an additional phase
shift (i.e., Df ), and the frequency of oscillation must shift an amount Dv so that
the loop gain counteracts with a phase shift of −Df . Obviously, the larger the phase
variation of the loop gain, the greater the frequency variation (usually seconds).

Consider Figure 2.1 where the phase response of two oscillators’ loop gains
are shown, denoted by f1 and f2 , respectively. At vo the phase shift is −360° (or
0°) for both loop gains. If parasitic reactances affect the loop gain by suddenly
introducing a phase shift Df , then the loop gain adjusts (i.e., the frequency changes)
to supply a phase shift of Df , so that the overall phase shift stabilizes at −360°
(or 0°). This is accomplished by a decrease in frequency Dv1 in b1( jv )Av1( jv )
and by Dv2 in b2( jv )Av2( jv ), as shown in Figure 2.1. For example, if the amplifier
in an oscillator introduces an instantaneous phase shift of 1°, the operating fre-
quency will change until the phase shift in the feedback circuit changes by −1°.

From Figure 2.1 it is seen that the phase response f2 has better frequency
stability than f1 , since Dv1 > Dv2 . That is, the frequency variation associated
with the loop gain b1( jv )Av1( jv ) is greater than the frequency variation associated
with b2( jv )Av2( jv ). The frequency stability can be measured in terms of the phase
variation df /dv. A frequency stability factor SF is defined as the change in phase
divided by the normalized change in frequency from vo (i.e., Dv /vo ). Hence,

Figure 2.1 Phase response of two loop gain functions.
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SF =
Df

SDv
vo

D = vo
df
dv |

v = vo

(2.1)

The factor SF provides a qualitative way for comparing the stability of oscillators.
The larger the value of SF , the smaller its frequency variation, since

Dv =
voDf

SF

The expression (2.1) can be evaluated for the phase responses commonly found
in oscillator circuits. To this end we consider next the frequency responses of a
parallel resonant circuit and a series resonant circuit.

A parallel resonant circuit is shown in Figure 2.2, where gm represents the
transconductance of the active device. The output voltage is given by

vo = −(gmv)ZR

where ZR is the input impedance of the resonator, namely,

ZR =
1

1
sL

+ sC +
1
R

=

s
C

s2 +
1

RC
s +

1
LC

(2.2)

The voltage gain is

Av =
vo
v

= −gmZR (2.3)

Equations (2.2) and (2.3) show that the characteristics of the parallel resonant
circuit are determined by the frequency response of its input impedance.

Defining

vo =
1

√LC
(2.4)

Figure 2.2 A parallel resonant circuit.
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and

2a =
1

RC
(2.5)

(2.2) can be written in the form

ZR =

s
C

s2 + 2as + v 2
o

(2.6)

Letting s = jv, (2.6) can be expressed in the form

ZR =
R

1 + j
vo
2a S v

vo
−

vo
v D (2.7)

From (2.7), at the frequency vo the input impedance is R, which shows that
at vo the RLC circuit appears as a pure resistor because parallel resonance occurs
(i.e., the impedance of the parallel combination of L and C is infinite). Obviously,
the frequency vo given by (2.4) is the resonant frequency of the circuit.

The impedance of the resonator in (2.7) can be expressed in the form

ZR = |ZR ( jv ) | | ZR ( jv )

where the magnitude of the impedance is

|ZR ( jv ) | =
R

√1 + Fvo
2a S v

vo
−

vo
v DG2

(2.8)

and the phase is

f ( jv ) = −tan−1Fvo
2a S v

vo
−

vo
v DG (2.9)

Typical plots of (2.8) versus v for two values of vo /2a are shown in Figure 2.3(a).
It is observed that as the ratio of vo to 2a becomes larger, the sharpness of the
resonant response increases. At the frequency vo the magnitude ZR is R.

Figure 2.3(b) illustrates the half-power frequencies v1 and v2 for a typical
tuned-amplifier response. The half-power frequencies can be determined by solving
(2.8) for the values of v that result in a magnitude of ZR equal to R /√2 (or 3 dB
down from its maximum value). Thus, from (2.8) setting

Fvo
2a S v

vo
−

vo
v DG2

= 1
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Figure 2.3 (a) Frequency response of |ZR ( jv ) | , (b) the half-power frequencies v1 and v2, and
(c) details of the characteristics for a high QL .

it follows that the half-power frequencies are given by

v1 = −a + vo √1 + S a
vo
D2 (2.10)

and

v2 = a + vo √1 + S a
vo
D2 (2.11)

Also, the following relationship is obtained:

vo = √v1v2

The frequencies v1 and v2 are not symmetrically located about vo . In fact, vo is
at the geometric mean of v1 and v2 .

Using (2.10) and (2.11), the bandwidth of the amplifier is

BW = v2 − v1 = 2a =
1

RC

which shows that the parameter 2a is simply the bandwidth of the tuned circuit
[see Figure 2.3(b)].
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The ratio of the resonant frequency to the bandwidth for the circuit in Figure
2.2 is known as its quality factor Q, namely,

Q =
vo

BW
=

vo
2a

If the resonant frequency and bandwidth are given in hertz, then Q is expressed
in the form

Q =
fo

BW

In a high-Q circuit (i.e., Q > 10) we can approximate (2.10) and (2.11) as

v1 ≈ vo − a

and

v2 ≈ vo + a

The frequency response for a high-Q resonant circuit is shown in Figure 2.3(c). In
this case, vo approaches the arithmetic mean of v1 and v2 .

When the resistor R in Figure 2.2 represents the loss associated with the LC
portion of the resonant circuit (i.e., the equivalent parallel loss resistance of the
inductor), the quality factor is referred to as the unloaded Q (i.e., QU ). The
nomenclature loaded Q (i.e., QL ) is used when the resistor R represents the parallel
combination of the loss resistance and an external load resistor.

Using (2.2) and (2.3), the Q (either QU or QL) of the parallel RLC circuit in
Figure 2.2 can be expressed in a variety of forms, namely,

Q =
vo

BW
= voCR =

R
voL

(2.12)

This relation shows that Q represents the ratio of the resistance to the magnitude
of the reactance of C or L at vo .

The tuned circuit in Figure 2.4 helps to understand the different Qs. The
resistor Rp represents the loss of the inductor (in parallel), and RL is an external
load resistor. The unloaded Q is

QU = voCRp =
Rp

voL

and the loaded Q is

QL = voCR =
R

voL

where R = Rp || RL .
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Figure 2.4 Tuned circuit.

An external Q can be defined in terms of RL ; namely,

QE = voCRL =
RL

voL

and it follows that

1
QL

=
1

QU
+

1
QE

This expression shows how QU and QE affect QL . Of course, QL < QU .
In terms of Q, the impedance expression in (2.6) can be written as

ZR = R

vo
Q

s

s2 +
vo
Q

s + v 2
o

(2.13)

Figure 2.5 shows a plot of the magnitude of (2.13) versus frequency for several
values of Q. The plot is normalized to a value of 1 at vo (i.e., R = 1).

It is evident that a resonant circuit is a narrowband filter. As the Q of the
circuit increases, the bandwidth becomes smaller, and the selectivity of the circuit
improves. In other words, only a selective range of frequencies is passed by the
resonator.

The phase variation given by (2.9) can be expressed in the form

f ( jv ) = −tan−1FQS v
vo

−
vo
v DG (2.14)

At resonance (i.e., at v = vo ) the phase is 0°. At v1 , it follows that f ( jv1) = 45°,
and at v2 the phase is f ( jv2) = −45°. The phase plot of (2.14) is shown in Figure
2.6.
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Figure 2.5 A plot of |ZR ( jv ) | in decibels for several values of Q.

Figure 2.6 The phase plot of the tuned amplifier in Figure 2.2.

The frequency stability of an oscillator that uses the tuned circuit in Figure 2.2
depends on the derivative of f ( jv ) with respect to v ; that is,

df
dv

=
−

1
Q

1

Q2 + FXv 2
o − v2C
vov G2 Sv2 + v 2

o

vov2 D

Therefore,

df
dv |

v = vo

=
−2Q
vo

(2.15)
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and, from (2.1), the frequency stability factor is

SF = −2Q (2.16)

Equation (2.16) shows that the frequency stability depends directly on the resona-
tor’s Q. That is, the higher the value of Q, the smaller the changes in frequency
due to phase changes. The negative sign indicates that Df < 0 for Dv > 0.

A summary for a series resonant circuit is now given. For the series resonant
circuit shown in Figure 2.7, its input admittance YR has a form similar to (2.2),
namely,

YR =

s
L

s2 +
R
L

s +
1

LC

=
1

RF1 + jQS v
vo

−
vo
v DG (2.17)

or

ZR =
1

YR
= RF1 + jQS v

vo
−

vo
v DG

where

R = Rs + RL

Q =
1

voCR
=

voL
R

vo =
1

√LC

and

BW =
vo
Q

=
R
L

Figure 2.7 Series resonant circuit.
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The voltage transfer function is vo = iRL = vRLYR . If R in (2.17) represents the
inductor losses (i.e., R = Rs ), the Q is called the unloaded Q (i.e., QU ). If R
represents the series combination of the inductor losses and the external load
resistor, the Q is called the loaded Q (i.e., QL ). Of course, QL < QU . An external
Q can also be defined in terms of RL .

2.3 Expressions for the Quality Factor

Actual inductors have a loss associated with them that can be represented by a
resistance in series with the inductor, as shown in Figure 2.8(a). These so-called
coil losses are taken into account by obtaining an equivalent parallel representation,
as shown in Figure 2.8(b).

The circuit in Figure 2.8(a) consists of the coil resistance, denoted by Rs , in
series with the inductance impedance (i.e., jvLs ). The circuit in Figure 2.8(b)
consists of the equivalent parallel coil resistance (denoted by Rp ) in parallel with
the equivalent parallel inductance impedance (denoted by jvLp ). These circuits
behave similarly at a given frequency if

Rs + jvLs =
Rp ( jvLp )

Rp + jvLp
=

Rp (vLp )2

R 2
p + (vLp )2 + j

vLpR 2
p

R 2
p + (vLp )2

Equating the real and imaginary parts gives

Rs =
Rp (vLp )2

R 2
p + (vLp )2 =

Rp

1 + Q 2
U

(2.18)

and

Ls =
LpR 2

p

R 2
p + (vLp )2 =

Lp

1 +
1

Q 2
U

(2.19)

Figure 2.8 (a) Series representation of a lossy inductor and (b) the equivalent parallel representation.
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where the unloaded Q is

QU =
Rp

vLp
=

vLs
Rs

(2.20)

If QU > 10, (2.18) and (2.19) are approximated by

Rp ≈ RsQ
2
U (2.21)

and

Lp ≈ Ls (2.22)

which are the desired relations for oscillator design where high values of Q are
used. Equations (2.21) and (2.22) show that the coil losses can be represented by
a resistor Rp in parallel with a lossless inductor Lp = Ls .

A parallel resonant circuit with coil losses is drawn in Figure 2.9(a). Using
(2.21) and (2.22), the equivalent circuit for QU > 10 is shown in Figure 2.9(b). The
circuit shows the losses in parallel. For frequencies around the resonant frequency of
the resonator, it follows that

v =
1

√LC

and

BW =
1

RpC

The transformations in (2.21) and (2.22) make the tuned circuits in Figure 2.9
equivalent in the passband.

Some expressions for the Q of a resonator are now derived. A parallel resonant
circuit is drawn in Figure 2.10(a) with an external load resistor RL . From Figure
2.10(a) it follows that

Figure 2.9 Passband equivalent circuits.
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Figure 2.10 (a) Parallel resonant circuit with an external load resistor RL and (b) a series resonant
circuit with an external load resistor RL .

YR ( jv ) =
1

Rp
+ jSvC −

1
vL D

which can be expressed in the form

YR ( jv ) = Gp + jQUGpS v
vo

−
vo
v D (2.23)

where

Gp =
1

Rp

and

QU = voCRp =
Rp

voL

Since

dB
dv

=
QUGp

vo
F1 + Svo

v D2G
where B is the susceptance of YR ; then, at v = vo , we obtain

QU =
vo

2Gp

dB
dv |

v = vo

(2.24)

With an external load resistor RL , the resonator is loaded and its Q is expressed
in the form

QL =
vo

2GT

dB
dv |

v = vo

(2.25)
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where

GT = Gp + GL

and

GL =
1

RL

In (2.25) the quantity

dB
GT

≈
DB
GT

evaluated around vo is simply the phase of the admittance. Calling this quantity
tan Du, it follows that tan Du ≈ Du for small variation of DB around vo , and (2.25)
is written as

QL ≈
vo
2

Du
Dv |

v = vo

=
vo
2

du
dv |

v = vo

(2.26)

This form is convenient for use with CAD programs.
Similarly, for the series resonator in Figure 2.10(b) the input impedance is

ZR ( jv ) = Rs + jSvL −
1

vC D
= Rs + jQURsS v

vo
−

vo
v D

where

QU =
voL
Rs

Then, at v = vo , we obtain

QU =
vo

2Rs

dX
dv |

v = vo

(2.27)

where X is the reactance of ZR .
For the series loaded resonator with RL , the loaded Q can be expressed as

QL =
vo

2RT

dX
dv |

v = vo

(2.28)
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where

RT = Rs + RL

Equation (2.28) shows how a small variation in DX affects the frequency since

Dv = vo
DX

2RT QL

This relation shows that the higher the QL , the smaller the change in frequency
around resonance. Equation (2.28) can also be expressed in the form (2.26) where
u in this case is the phase of the reactance.

The relation (2.24) shows that in a parallel resonator high values of QU are
associated with low losses (Gp ) and a high value of dB /dv . Similar considerations
apply to the series resonator where QU is described by (2.27). Also, loading a
resonator with RL decreases the quality factor from QU to QL .

Example 2.1

The tuned circuit of a certain oscillator is shown in Figure 2.11(a) where gm = 2 mS,
ro = 50 kV, C = 100 pF, L = 500 mH, Rs = 50V, and the load resistor is RL =
50 kV. The resistor Rs represents the coil losses, and ro is the output resistance of
the active device. Find the equivalent passband resonant circuit, evaluate vo , the
gain at resonance, and plot the frequency response.

Solution
The series to parallel transformations can be applied to the LC portion of the
circuit in Figure 2.11(a), resulting in the model shown in Figure 2.11(b), where
L = Ls = Lp = 500 mH and C = 100 pF.

The resonant frequency is

vo =
1

√LC
=

1

√500 × 10−6(100 × 10−12)
= 4.472 Mrad/s

or fo = 711.76 kHz.
Using (2.20), the unloaded Q of the inductor is

QU =
voLs

Rs
=

4.472 × 106(500 × 10−6)
50

= 44.72

Using the transformations in (2.27) we find that

Rp = Q2
URs = (44.72)250 = 100 kV

The equivalent parallel resonant circuit is shown in Figure 2.11(b). The total load
resistance of the parallel RLC circuit is
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Figure 2.11 (a) Tuned circuit for Example 2.1, (b) the equivalent parallel resonant circuit, and
(c) the frequency response.
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RT = ro || Rp || RL = 50 × 103 || 100 × 103 || 50 × 103 = 20 kV

The bandwidth of the parallel-resonant circuit is

BW =
1

RT C
=

1

20 × 103(100 × 10−12)
= 500 krad/s

or BW = 79.57 kHz, and its loaded Q is

QL =
vo

BW
=

4.472 × 106

500 × 103 = 8.9

The frequency response is shown in Figure 2.11(c) where the gain at resonance
is

|Av ( jvo ) | = gmRT = 2 × 10−3(20 × 103) = 40 (or 32 dB)

It is interesting to observe in this example how the coil series resistance (Rs =
50V) appears in the parallel equivalent circuit as a resistor of value Rp = 100 kV.
This resistor loads the circuit further since the total load resistance becomes
ro || Rp || RL , resulting in QL = 8.9, while QU = 44.7.

2.4 Noise in Oscillators

An ideal oscillator will produce an output voltage given by

vo (t ) = A cos(vot )

where vo = 2p fo is the frequency of oscillation. A nonideal oscillator output voltage
is

vo (t ) = A(t ) cos[vot + f (t )] (2.29)

where A(t ) represents the amplitude fluctuations as a function of time (commonly
known as AM noise), and f (t ) represents the random phase variations (commonly
known as phase noise). Since the instantaneous frequency is

v (t ) =
d
dt

[vot + f (t )] = vo +
df (t )

dt

or

f (t ) = fo +
1

2p
df (t )

dt
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it follows that the random phase fluctuation [i.e., f (t )] produces a random fre-
quency fluctuation [i.e., df (t )/dt ]. Hence, these terms are related, and both are
used to describe the noise in oscillators.

In oscillators the phase noise is the specification of choice, since amplitude
fluctuations are easily controlled with a limiter. The amplitude-limiting mechanism
of the oscillator, which can be a self-limiting mechanism or an automatic gain
control (AGC) mechanism, also limits the amplitude fluctuations. Hence, the oscilla-
tor noise is mainly due to the random phase fluctuations f (t ). The phase noise
(or FM noise) is produced by thermal noise, shot noise, and flicker noise. Therefore,
it is a short-term frequency stability problem. Thermal noise is a function of the
temperature, bandwidth, and noise resistance. Shot noise is a function of the dc
bias current, and flicker noise is a function of the characteristics of the active
device. Figure 2.12 shows a signal with a small random phase fluctuation, denoted
by Df (t ). This is a typical time domain display of the signal.

The short-term random phase fluctuations are best viewed in the frequency
domain. A spectrum analyzer provides the amplitude versus frequency display of
the signal, from which the power spectrum follows. A typical spectral distribution
for an oscillator is shown in Figure 2.13(a). The signal power at fo is denoted by
PS , and the power at the single sideband (SSB) frequency fm in a bandwidth of
1 Hz is denoted by PSSB (PSSB is the single-sideband phase-noise power).

A common characterization of phase noise is to measure the ratio of a single-
sideband power in a bandwidth of 1 Hz at a frequency fm away from fo to the
signal power at fo . This quantity is usually denoted by +( fm ), namely

+( fm ) =
single-sideband phase-noise power

signal power
=

PSSB
PS

(2.30)

The quantity +( fm ) is known as the single-sideband phase-noise power-to-carrier
ratio (or simply referred to as the SSB phase noise). +( fm ) provides a measure of
the noise energy, and it is easily measured from the spectrum analyzer display of
the signal, as shown in Figure 2.13(a). The quantity +( fm ) is commonly found

Figure 2.12 Time domain display of a signal with a random phase fluctuation Df (t) = voDt.
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Figure 2.13 (a) Power spectrum display of a signal with random-phase fluctuations and (b) a
typical + ( fm ) in dBc/Hz.

expressed in decibels relative to the signal power (or carrier power) per hertz (i.e.,
in dBc/Hz), as shown in Figure 2.13(b). That is,

+( fm ) = 10 log
PSSB
PS

dBc
Hz

If the oscillator signal fo is modulated by a single sine wave with frequency
fm , we can express the phase modulated (PM) signal [i.e., (2.29)] in the form

v(t ) = A cos(vot + mp sin vmt ) (2.31)

where

f (t ) = mp sin vmt

The factor mp (in radians) is known as the phase modulation index. The phase
modulation index gives the maximum phase deviation that the phase can attain
from its nominal value of vot . The factor mp is also denoted by Df in the literature,
since the notation Df suggests a small phase deviation.

The phase variation in (2.31) produces an instantaneous frequency variation
(denoted by vPM (t )), which is given by

vPM (t ) =
d (vot + mp sin vmt )

dt
= vo + mpvm cos vmt

where mpvm measures the maximum frequency deviation of the PM signal. This
term is usually denoted by Dv (i.e., Dv = mpvm ). The instantaneous frequency
can also be expressed as

fPM (t ) = fo + D f cos 2p fmt
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where

D f = mp fm

From (2.31) we can write

v(t ) = A cos vot cos(mp sin vmt ) − A sin vot sin(mp sin vmt ) (2.32)

For a narrowband phase modulating signal, the value of mp is small (mp ! 1
radian), and (2.32) can be approximated by

v(t ) = A cos vot − A sin vot (mp sin vmt ) (2.33)

= A cos vot −
Amp

2
[cos(vo + vm ) t − cos(vo − vm ) t ]

Equation (2.33) shows that for small mp values, the phase modulation results
in frequency components at vo ± vm , as shown in Figure 2.14. This type of
signal is referred to as narrowband FM. For more than one modulating signal, the
oscillator spectrum can be considered to be a superposition of a large number of
modulating signals.

From (2.33) it is seen that the ratio of the peak sideband voltage (i.e., Amp /2)
to the peak carrier voltage (i.e., A) is mp /2. Hence, the power ratio is (mp /2)2 and
from (2.30) it follows that the SSB phase noise + ( fm ) is

+ ( fm ) = Smp

2 D2 =
m2

p, rms

2
(2.34)

where

mp,rms =
mp

√2

For completeness, the spectrum of a PM signal for an arbitrary value of mp is
now presented. From (2.31), we have

v(t ) = ReFAe j (vo t + mp sin vmt )G (2.35)

Figure 2.14 Magnitude spectrum of a narrowband FM signal.
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The term e jmp sin vm t can be expanded in terms of a set of functions, called Bessel
functions. The appropriate expansion is

e jmp sin vm t = ∑
n = ∞

n = −∞
Jn (mp )e jnvm t (2.36)

where J0(mp ) is the Bessel function of order zero and argument mp , J1(mp ) is the
Bessel function of order one and argument mp , and so on.

Substituting (2.36) into (2.35) gives

v(t ) = Re3A ∑
n = ∞

n = −∞
Jn (mp )e j (vo + nvm )t4 (2.37)

= A ∑
n = ∞

n = −∞
Jn (mp ) cos(vo + nvm ) t

Equation (2.37) shows that the PM signal contains an infinite number of frequen-
cies, namely: vo , vo ± vm , vo ± 2vm , vo ± 3vm , etc. In other words, the number
of sidebands is infinite. Using the identity J−n (mp ) = (−1)nJn (mp ), we can plot the
amplitude spectrum in Figure 2.15 with A = 1. The amplitude component at vo
is J0(mp ), at vo ± v is J1(mp ), and so on.

The spectrum of the PM signal depends on the values of the Bessel functions.
Table 2.1 lists some specific values of the functions.

Figure 2.15 Amplitude spectrum of an angle-modulated signal.

Table 2.1 Specific Values of Some Bessel Functions

mp = 0.1 mp = 0.5 mp = 1 mp = 2 mp = 5 mp = 10

J0(mp ) 0.998 0.938 0.765 0.224 −0.178 −0.246
J1(mp ) 0.049 0.242 0.440 0.577 −0.328 0.043
J2(mp ) 0.0012 0.031 0.115 0.353 0.047 0.255
J3(mp ) — 0.003 0.020 0.129 0.365 0.058
J4(mp ) — — 0.002 0.034 0.391 −0.220
J5(mp ) — — — 0.007 0.261 −0.234
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From Table 2.1 it is observed that for mp < 0.5, only the J0(mp ) and J1(mp )
functions have significant values. Thus, for mp < 0.5, (2.37) reduces to

v(t ) ≈ A [J0(mp ) cos vot + J1(mp ) cos(vo + vm ) t − J1(mp ) cos(vo − vm ) t ]
(2.38)

The spectrum of (2.38) is similar to the one shown in Figure 2.14, except that the
amplitude at vo is J0(mp ), and at the sidebands is J1(mp ). The bandwidth of this
signal is 2vm . Since for small mp , J0(mp ) ≈ 1 and J1(mp ) ≈ mp /2, we can express
(2.38) as

v(t ) ≈ AFcos vot +
mp

2
cos(vo + vm ) t −

mp

2
cos(vo − vm ) tG (2.39)

which is the narrowband FM signal in (2.33) whose spectrum is shown in Figure
2.14.

The derivation of the phase noise in (2.34) was based on a single modulating
signal. For the general case, a basic quantity that describes the distribution of
phase-noise power as a function of frequency is the spectral density of the phase
fluctuation Sf ( fm ). That is,

Sf ( fm ) =
f2

rms( fm )
BW used to measure f rms( fm )

rad2

Hz
(2.40)

Observe that for a single-tone phase-modulation signal mp, rms = Df rms, and the
quantity Sf ( fm ) in (2.40) is 3 dB higher than + ( fm ) in (2.34). This occurs because
in (2.40) the power in the two sidebands is added.

A typical plot of Sf ( fm ) is shown in Figure 2.16. The phase-noise power in a
bandwidth f2 − f1 , denoted by Pf ( f1 , f2), can be calculated using

Pf ( f1 , f2) = E
f2

f1

Sf ( fm ) dfm rad2 (2.41)

Equation (2.41) shows that the total phase noise is given by

Figure 2.16 Plot of Sf ( fm ).
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Pf (0, ∞) = E
∞

0

Sf ( fm ) dfm rad2 (2.42)

In logarithmic form Sf ( fm ) is expressed in dBr/Hz (decibels above one radian
per hertz bandwidth), namely,

Sf ( fm ) = 10 log Df2
rms = 20 log Df rms

dBr
Hz

The spectral density of the phase fluctuation for the case illustrated in Figure
2.14 (i.e., small values of mp ) is simply the total phase-noise power in both side-
bands. That is,

Sf ( fm ) = 2+ ( fm ) = m2
p, rms = Df rms

rad2

Hz
(2.43)

or in logarithmic form

Sf ( fm ) = 10 log m2
p, rms

dBr
Hz

To summarize, + ( fm ) and Sf ( fm ) are defined in (2.30) and (2.40), respectively.
If the modulation sidebands are such that mp is a small value, then + ( fm ) and
Sf ( fm ) are related by (2.43). Observe that the relation (2.43) is valid only when
the noise sidebands at fo ± fm are correlated (i.e., produced by the same modulation)
and the small-angle approximation applies.

The spectral density of the frequency fluctuation D f is defined as

Sf ( fm ) =
D f 2

rms( fm )
BW used to measure D frms( fm )

Hz2

Hz
(or Hz)

In log form the units are in decibels above one hertz per hertz bandwidth (dBHz/Hz).
That is,

Sf ( fm ) = 10 log D f 2
rms = 20 log D frms

dBHz
Hz

The spectral density of the frequency fluctuations is related to the spectral
density of the phase fluctuations. Since

Dv (t ) = 2pD f (t ) =
dDf (t )

dt
(2.44)

it follows that (2.44) in the frequency domain reads
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D f ( fm ) = fm Df ( fm )

Hence,

Sf ( fm ) = D f 2
rms( fm ) = f 2

m Df2
rms( fm ) = f 2

mSf ( fm )

For the case of a narrowband FM signal (i.e., for Df = mp with mp < 0.5) it
follows that

Sf ( fm ) = f 2
m m2

p, rms = 2f 2
m+( fm )

There are other ways in which the frequency stability of oscillators is specified.
One of them is the residual FM. The residual FM [denoted by (D f )residual ] is the
total rms frequency deviation in a specified bandwidth. That is,

(D f )residual = √2 √E
f2

f1

+( fm ) f 2
m df

where BW = f2 − f1 .
A better understanding of the relation between the random phase fluctuations

and the associated Sf ( fm ) requires a knowledge of the theory of random variables.
The random fluctuations of the phase can be characterized by a probability distribu-
tion function p (f ). That is, the phase f (t ) is described by the distribution function
p (f ), which gives the probability that f (t ) attains a certain value of f . The function
p (f ) is Gaussian; therefore, it can be expressed in the form

p (f ) =
1

√2psf
e

−
f2

2s
2
f

where sf is the standard deviation of p (f ). That is,

sf = √f2(t ) radrms

In other words, assuming that the noise is ergodic, the standard deviation can be
calculated using a statistical average or time average. The standard deviation sf

is also referred as the rms value of the phase fluctuation.
A typical phase fluctuation about the oscillator signal phase fo = vot is shown

in Figure 2.17, as well as the function p (f ) and its standard deviation sf . A
Gaussian function has the property that about 99.7% of the phase fluctuation
values are in the interval ±3sf . Hence, a good approximation for the peak-to-
peak value of the phase fluctuations (fpp ) is

fpp = 6sf
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Figure 2.17 A random phase f (t) and its probability distribution function p(f ).

In the time domain the random phase fluctuations are characterized by the
standard deviation sf . In the frequency domain Sf ( fm ) is defined as the Fourier
transform of the expected value of f (t )f (t + t ). Hence, for t = 0 the inverse Fourier
transform gives

f2(t ) = s 2
f = E

∞

0

Sf ( fm ) dfm

From (2.42), the right-hand side is recognized as the total phase noise power.
Hence, we obtain

Pf (0, ∞) = s 2
f rad2

For completeness the time-domain characterization method is also mentioned.
In some cases, such as that of a highly stable crystal oscillator, the characterization
of phase noise is best done in the time domain. For example, the frequency fluctua-
tions can be measured using a frequency counter. These measurements produce a
set of random data for the frequency instability (say, D fn (t ), n = 1, 2, . . .). The
statistical analysis of the frequency-fluctuation samples D fn (t ) provides the charac-
terization of the frequency instability in the time domain.

2.5 Oscillator Phase Noise

In the previous section the phase-noise characteristics of an oscillator were dis-
cussed. The following example illustrates why phase noise is so important. Consider
the down-converter system shown in Figure 2.18(a), where the radio frequency
(RF) signals are mixed with the local oscillator (LO) signal. The amplitude of the
RF signal at f1 is larger than the amplitude of the signal at f2 . The intermediate-
frequency (IF) amplifier filters and amplifies the signals at f0 − f1 and f0 − f2 . If
the phase noise of the oscillator is low, or in other words the oscillation signal is
fairly pure, the IF signal shows that the signal corresponding to f0 − f1 and
f0 − f2 are distinct, and the system can process both signals. On the other hand,
consider the situation illustrated in Figure 2.18(b) where the LO phase noise is
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Figure 2.18 A down-converter system with (a) a low phase noise LO and (b) a high phase noise
LO.

high and, therefore, has a wide spectrum. In this case, the IF signal at f0 − f1 has
a large noise component at f0 − f2 . Therefore, the IF signal at f0 − f2 is said to be
drowned in the phase noise of f0 − f1 . While the IF amplifier might be able to
amplify and recover the IF signal at f0 − f1 , the IF signal at f0 − f2 cannot be
recovered by the system. This example illustrates that when an oscillator is used
in a mixer system, the phase noise of the oscillator determines the ability of the
mixer system to down convert and separate the desired signal. Hence, the phase
noise of the oscillator can degrade the system selectivity, as well as its sensitivity.

Other systems affected by phase noise include a Doppler radar system and a
digital communication system. In a Doppler radar the phase noise of the oscillator
sets the minimum detectable target signal. In a communication system the phase
noise affects the system bit-error rate.

The effect of the oscillator’s components on its phase noise, based on a linear
time-invariant model, was described by Leeson [1]. Leeson’s model, although simple
to follow, has severe limitations. An improvement over Leeson’s model is the Lee
and Hajimiri model [2, 3]. The Lee and Hajimiri model is based on the linear time-
varying properties of the current flow in the active device of the oscillator.

First, the Leeson’s model is considered. The feedback model used by Leeson
for the oscillator is shown in Figure 2.19. It consists of an amplifier with noise
figure F, and a resonant circuit in the feedback loop. The amplifier noise power
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Figure 2.19 Feedback model of an oscillator.

spectral density referred to the input of the amplifier is denoted by Sfi
(v ). It is

produced by random-phase fluctuations. The associated noise voltage at the input
is denoted by vfi

, and the noise voltage at the output is vfo
. The function HR ( jv )

represents the transfer function of the resonator.
A series resonator was used for convenience. The voltage transfer function of

the series resonator in Figure 2.19 is

HR ( jv ) =
1

1 + jQUS v
vo

−
vo
v D (2.45)

where the resonant frequency is

vo =
1

√LC

and its unloaded Q is

QU =
voL

R
=

1
voRC

In (2.45), QU is used for the resonator because when the resonator is loaded
by the amplifier, and the circuit oscillates, the total resistance cancels and QL → ∞.

At v = vo , |HR ( jv ) | = 1. Therefore, for the circuit to oscillate, the gain of the
amplifier at vo must also be set equal to unity.

For v ≈ vo + vm , where vm is the phase-noise modulation frequency and
vo @ vm , it follows that

v
vo

−
vo
v

=
v2 − v 2

o
vov

≈
2vm
vo

Therefore, (2.45) reduces to the form
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HR ( jvm ) =
1

1 + jQU
2vm
vo

=
1

1 + j
vm
vL

(2.46)

where

vL =
vo

2QU
(2.47)

The frequency vL represents the half-power bandwidth of the resonator.
From (2.45) and (2.46) it can be stated that the transfer function of a modulated

signal passing through a bandpass filter is the same as the transfer function of the
modulating signal passing through an equivalent low-pass filter.

In Figure 2.19 the closed-loop voltage transfer function that relates the input
and output phase-noise voltage is

H ( jvm ) =
vf o

vf i

=
Av

1 − AvHR ( jvm )
=

1
1 − HR ( jvm )

(2.48)

where Av = 1. Substituting (2.46) into (2.48), we obtain

|H ( jv ) |2 = 1 + SvL
vm

D2 = 1 + S v 2
o

2QUvm
D (2.49)

The output spectral density Sf o
(vm ) (measured at the output of the amplifier)

is given by

Sf o
(vm ) = Sf i

(vm ) |HT ( jvm ) |2

and using (2.49) we obtain

Sf o
( fm ) = F1 + S fL

fm
D2GSf i

( fm ) = F1 +
1

f 2
m
S fo

2QU
D2GSf i

( fm ) (2.50)

This relation shows how the input phase noise (i.e., the amplifier phase noise) is
affected by the resonator. Obviously, the phase noise that falls within the half-
power bandwidth of the resonator, given by (2.47), is significantly affected by the
resonator.

The expression for Sf i
(vm ) in (2.50) requires a bit of analysis. To this end,

let us examine how phase noise is added to a signal passing through an amplifier
with noise figure F, as shown in Figure 2.20(a). The oscillator’s available signal
power at the input of the amplifier is denoted by Ps and the thermal noise power
referred to the input of the amplifier by No(in) . The signal voltage vs, rms can be
expressed in terms of the oscillator’s available signal power and the amplifier input
resistance R as
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Figure 2.20 (a) Model for the phase perturbation analysis of the amplifier and (b) vector representa-
tion of the signal plus noise and the resulting phase perturbation at vo + vm .

vs, rms = √PsR (2.51)

The available input thermal-noise power is given by Ni = kTB, where k = 1.374
× 10−23 J/K is Boltzmann’s constant, T is the resistor noise temperature in degrees
kelvin, and B is the noise bandwidth. The amplifier noise figure is the ratio of the
input signal-to-noise ratio (i.e., Si /Ni ) to the output signal-to-noise ratio (i.e.,
So /No ); namely,

F =
S Si

Ni
D

S So
No

D
or

F =
No

GANi
=

No
GAkTB

where GA = So /Si is the available gain of the amplifier. Therefore, the amplifier
output noise power is given by

No = FGAkTB

The noise power No referenced to the input of the amplifier is

No(in) = FkTB

This thermal-noise power can be expressed in terms of the phase-noise voltage
vn, rms as

No(in) =
v2

n, rms
R

or
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vn, rms = √FkTBR (2.52)

Equation (2.52) shows that for each 1-Hz band (i.e., B = 1 Hz) the noise can
be represented by an equivalent signal vn, rms = √FkTR . This noise signal adds to
the oscillator signal producing a phase perturbation in each 1-Hz band, which is
best described by the spectral density of the phase noise.

Consider Figure 2.20(b) where a vector representation of the additive signal
and noise at the frequency vo + vm is given. The phasor associated with the signal
vs rotates at the frequency vo , and the phasor associated with the sideband noise
signal vn rotates at vm . The phasor diagram illustrates the phase perturbation Df i
produced by the thermal noise vn . The phase perturbation is a maximum (i.e.,
f i(max) ) when the phasor vn is perpendicular to vs . Denoting the maximum phase
fluctuation produced by vn , at the frequency vo + vm by Df i(max),1 we obtain

tan Df i(max),1 =
vn,rms
vs,rms

=
|vn |
|vs | ≈ Df i(max),1 (2.53)

where it was assumed that vn, rms ! vs, rms .
From (2.51), (2.52), and (2.53), with B = 1 Hz, it follows that

Df i(max),1 = √FkT
Ps

and the rms value is

Df i(rms),1 =
1

√2 √FkT
Ps

(2.54)

The noise signal at vo − vm also produces a phase fluctuation term Df i(max),2 ,
given by (2.54). Using rms addition, the total phase fluctuation is

Df i(rms) = √Df2
i(rms),1 + Df2

i(rms),2 = √FkT
Ps

Therefore, the input phase-noise spectral density in a 1-Hz bandwidth is

Sf i
( fm ) = (Df i(rms) )

2 =
FkT
Ps

(2.55)

and the SSB phase noise + ( fm ) is

+ ( fm ) =
FkT
2Ps

(2.56)

Equations (2.55) and (2.56) determine the noise floor of Sf i
( fm ) and + ( fm ).

For example, a 1-mW signal (i.e., if Ps = 0 dBm) passing through an amplifier with
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F = 4 dB at a room temperature of T = 290°K has an SSB phase-noise floor value
of

+ ( fm ) | floor
= 10 log

FkT
2Ps

= 10 log(kT ) + 10 log F − 10 log Ps − 10 log 2

= −174 dBm + 4 dB − 0 dBm − 3 dB

= −173 dBc/Hz

The noise floor of Sf i
( fm ) is 3 dB higher than that of + ( fm ).

In an actual transistor amplifier the noise floor occurs after some offset fre-
quency fm . In fact, the actual phase-noise spectrum of a transistor amplifier has
the typical shape shown in Figure 2.21. This spectrum shows that in addition to
the flat thermal-noise spectral density, the phase-noise spectrum shows a flicker
characteristic (i.e., 1/fm noise). The frequency fc is known as the flicker-noise corner
frequency.

While the actual physics of flicker noise is complicated, the flicker noise of a
transistor can be measured. Its noise spectra has the 1/fm slope characteristics. A
typical dependence of fc on dc bias current for a BJT is shown in Figure 2.22. In
BJT silicon technology typical fc values are between 1 kHz and 10 kHz. For JFETs
typical values of fc are from 50 to 100 Hz, and GaAs FETs have fc values above
20 MHz.

Figure 2.21 Noise-power spectrum of a transistor.

Figure 2.22 Typical dependence of fc on IC for a BJT.
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The flicker noise of a BJT can be reduced by using negative feedback, such as
the feedback produced by an emitter resistor. The reason for this is that flicker
noise depends on the dc bias current, and the oscillation amplitude will produce
a shift in the dc bias current due to the nonlinearity associated with the base-to-
emitter junction. This noise contribution is basically an AM-to-PM effect that can
be reduced using negative feedback to stabilize the bias point. A reduction in phase
noise of up to 40 dB has been reported [4].

In addition to thermal and flicker noise, the other type of noise that can affect
the phase noise of an oscillator is shot noise. The total noise in a circuit is due to
the sum of all the noise sources. Shot noise has a flat spectrum (like thermal noise).
Hence, the resulting noise spectral density has the shape shown in Figure 2.21.

The input phase-noise spectral density (see Figure 2.21) can be expressed in
the form

Sf i
( fm ) =

FkT
Ps

S1 +
fc
fm
D radian2

Hz
(2.57)

From (2.50) and (2.57), the output phase-noise spectral density is given by

Sf o
( fm ) =

FkT
Ps

S1 +
fc
fm
DF1 + S fL

fm
D2G (2.58)

Hence, the SSB phase noise +( fm ) can be expressed in the form

+( fm ) =
FkT
2Ps

S1 +
fc
fm
DF1 + S fL

fm
D2G (2.59)

Equation (2.58) [or (2.59)] is known as Leeson’s equation. Leeson’s equation
describes the phase-noise spectrum at the output of the amplifier. It shows how
the input phase-noise spectrum [i.e., Sf i

( fm )] is affected by the feedback circuit
for frequencies up to fL (where fL = fo /2QU ). For fm @ fL the phase noise is not
attenuated by the resonator.

Equation (2.59) can also be expressed in the form

+ ( fm ) =
FkT
2Ps

F 1

f 3
m
S f 2

o fc

4Q2
U
D +

1

f 2
m
S fo

2QU
D2 +

1
fm

( fc ) + 1G (2.60)

This relation shows that the phase noise of an oscillator, according to Leeson’s
model, is produced by four causes (i.e., the four terms in the brackets multiplied
by the noise floor term FkT /2Ps ). The first term represents the up-converted 1/ fm
noise of the transistor (also called the flicker FM noise); the second term represents
the up-converted thermal noise (also called thermal FM noise); the third term is
due to flicker noise; and the fourth term is the thermal-noise floor [see (2.56)].

Certain approximations can be made in (2.59). In fact, the slope of the Bode
plot of (2.59) depends on whether fc is greater or smaller than fL = fo /2QU . If QU
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is such that fL @ fc (usually low QU or small fc value), the Bode plot of (2.59) is
as shown in Figure 2.23(a). This plot shows a 1/ f 3

m and a 1/ f 2
m dependence. That

is, the resulting SSB phase noise decreases at 30 dB/decade (or 9 dB per octave)
until fm is equal to fc . As fm increases beyond fc , the noise power density decreases
at 20 dB/decade (or 6 dB per octave) until the half-power bandwidth of the resona-
tor, at which point the noise floor is reached. For example, in a 1-GHz oscillator
with QU = 1,000 and fc = 5 kHz, it follows that the plot is as shown in Figure
2.23(a), since fL = fo /2QU = 0.5 MHz (or fL @ fc ).

If QU is high, such that fc @ fL (usually high QU or large fc value), the plot
is as shown in Figure 2.23(b). In this case the plot has a 1/ f 3

m and a 1/ f dependence.
That is, the resulting phase-noise spectral density decreases at 30 dB/decade (or
9 dB per octave) until fm is equal to fL . Then, the SSB phase noise decreases at
10 dB/decade (or 3 dB per octave) until fm is equal to fc , at which point the noise

Figure 2.23 Plots of the SSB phase noise + ( fm ) for (a) fL @ fc (i.e., low QL ) and (b) fL ! fc (i.e.,
high QL ).
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floor is reached. For example, in a 1-GHz oscillator with QU = 10,000 and fc =
20 MHz, it follows that fL = 50 kHz, and the plot is as shown in Figure 2.23(b).

Equation (2.60) (or Figure 2.23) shows the various contributions to the phase
noise. According to this relation the phase noise can be lowered by:

1. Selecting a transistor with low flicker noise;
2. Using a resonator configuration with a high QU ;
3. Selecting a transistor with a low-noise figure value at the operating input

impedance of the amplifier;
4. Designing the oscillator for a large Ps /FkT ratio and avoiding saturation

of the transistor.

The limitations of the previous results have been observed. Lee and Hajimiri
[2, 3] noted the fact that F cannot be predicted and is basically an empirically
fitting parameter determined by phase-noise measurement. They also noted that
the v1/f 3 (i.e., the 1/ f 3 corner frequency) is equal to the 1/ f noise corner frequency
of the active device, which does not agree with phase-noise measurements. Hence,
v1/f 3 must also be an empirically fitted parameter. Another problem observed is
that the frequency at which the noise floor is reached is not always equal to fL .
Since F and v1/f 3 must be determined by measuring the oscillator spectrum, it
follows that Leeson’s equation cannot be used to quantitative predict the phase
noise of an oscillator.

Next, the Lee and Hajimiri method is discussed. They looked at the oscillator
noise as a linear time-varying system. They analyzed how a noise impulse affected
the oscillator signal and found excellent agreement with the phase-noise spectrum
of the oscillator.

According to Lee and Hajimiri’s theory, minimal phase noise is obtained if the
noise impulses coincide in time with the peaks of the oscillation signal, which
shows that the system is periodic and time varying. Linearity does apply to the
noise-to-phase transfer function, since doubling the injected noise will double the
phase noise.

The analysis by Lee and Hajimiri is involved. They introduced an impulse
sensitivity function (ISF), denoted by G(vot ). The ISF function has its maximum
value near the zero crossing of the oscillation. The ISF is given by

G(vot ) =
co
2

+ ∑
∞

n = 1
cn cos(nvot )

In terms of G(vot ), the SSB phase noise is given by

+ ( fm ) = 10 log1 i 2
n

D f
G2

rms

2q2
maxDv22

in the 1/ f 2 region, and by
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+ ( fm ) = 10 log1 i 2
n

D f
c2

o

8q2
maxDv2

v1/ f
Dv 2

in the 1/ f 3 region, where i 2
n is the mean-square spectral density of the noise current,

D f is the noise bandwidth, v1/ f is the 1/ f noise corner frequency of the active
device, qmax is the maximum charge on the resonator capacitors, and Grms is the
rms value of the ISF.

An important conclusion from the previous results is that the designer has
control over how the noise is injected into the oscillator. The oscillator voltage
produces a series of current pulses (say, in the collector current). The noise that
depends on the device current will exist only during these current pulses. If these
current pulses are wide, the associated noise pulses will contribute significantly to
the phase noise. On the other hand, if the drive level is increased, so that the
current pulses are narrower, the resulting phase noise will be less.

Lee and Hajimiri point out that the ISFs are an indication of the sensitive and
insensitive moments to phase noise in an oscillation cycle. A low phase-noise
oscillator results when the transistor remains off most of the time, conducting with
a small pulse width of current at the signal peaks of each cycle. In addition, in
common with Lesson’s model, the signal power and the resonator QU should be
maximized.

In Section 3.7 the relation between collector current pulses and the associated
output voltage of the oscillator is discussed.

Designers of an oscillator with a certain phase noise requirement select a
configuration (i.e., transistor, LC resonator, crystal resonator, dielectric resonator,
and so on) that places their design in the required phase-noise region. The designer
should not select an LC resonator oscillator when the phase-noise requirement can
only be met with, say, a crystal oscillator. Once the design is done, the phase
noise of the oscillator is measured and, if necessary, further improvements can be
implemented following the previous recommendations for phase-noise reduction.

Manufacturers of oscillators specify the resulting SSB phase noise. Some typical
specifications are: −110 dBc/Hz at a 1-kHz offset for a BJT oscillator operating at
100 MHz; −85 dBc/Hz at a 10-kHz offset for a BJT oscillator in the 1- to 3-GHz
range; −90 dBc/Hz at a 10-kHz offset for a GaFET oscillator in the 3- to 7-GHz
range; −110 to −120 dBc/Hz at a 10-Hz offset for a crystal oscillator in the 10- to
300-MHz range; −140 dBc/Hz at a 10-kHz offset for a dielectric resonator (DR)
oscillator in the 3- to 7-GHz range; and −160 dBc/Hz at a 10-kHz offset for a
surface acoustic wave (SAW) oscillator in the 500-MHz range.

Equation (2.59) can be used to approximately compare the phase noise between
two oscillators. For example, a phase noise of −110 dBc/Hz at a 1-kHz offset at
100 MHz scales to −90 dBc/Hz at a 1-kHz offset at 1 GHz.

Many electronic systems also have SSB phase-noise specifications. For example,
a wireless LAN system operating at 2.4 GHz might require an oscillator with at
least −115 dBc/Hz at a 4-MHz offset. In the Personal Communication Service (PCS)
a typical specification for a transmitter power of 30 dBm is −151 dBc/Hz in the
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2-GHz range at a frequency offset of 20 MHz. A signal generator lists −134 dBc/Hz
at 1 GHz at a frequency offset of 20 kHz.

In many applications the oscillator phase noise far from fo can affect an incom-
ing signal as it gets through the IF. Specifications of the phase noise for these
oscillators are usually given in the 1/ f 2

m region.
When frequency multiplication is used, the phase noise is also increased. Let

fo = mfi where m is the multiplier that relates fi to fo . It follows that the frequency
change D fo , the phase change Dfo , the phase-noise spectral density of fo , and the
SSB phase noise of fo are given by

D fo = mD fi

Dfo = mDf i

Sf o
( fm ) = m2Sf i

( fm )

+f o
( fm ) = m2+f i

( fm )

These relations show that frequency multiplication increases the phase noise by
m2 (or 20 log m). This is why crystal oscillators used in the microwave region
have higher phase noise due to the frequency multiplication effect.

Example 2.2

The SSB phase noise of a 500-MHz oscillator at a frequency offset of 10 kHz is
−100 dBc/Hz. The oscillator output at 500 MHz is 0 dBm. What is the oscillator
output at a frequency of 500.01 MHz if: (a) a filter with a 1-Hz bandwidth is
used; (b) a filter with a 2-kHz bandwidth is used?

Solution
(a) Since the frequency 500.01 MHz is at a 10-kHz offset from 500 MHz, the
output at 500.01 MHz is −100 dBm in a 1-Hz bandwidth.
(b) For a small bandwidth (i.e., 2 kHz) we can assume that the SSB phase noise
is constant at the value of −100 dBc/Hz. From (2.30) the output power in the
2-kHz bandwidth is approximately given by

Pout = [+f ( fm )Pc ]BW

or

Pout [dBm] = +f ( fm ) FdBc
HzG + Pc [dBm] + 10 log (BW)

= −100 + 0 + 10 log(2 × 103)

= −67 dBm
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Example 2.3

The SSB phase noise of a 10-MHz crystal oscillator is shown in Figure 2.24. Find
Sf ( fm ), the phase-noise power from 1 Hz to 1 kHz and from 1 kHz to 100 kHz.

Solution
A crystal oscillator is a low-noise oscillator. Its phase noise satisfies the condition
mp < 0.5 radians. Therefore, (2.43) can be used, and it follows that

Sf ( fm ) |dBr/Hz = +( fm ) |dBc/Hz + 3 dB

The plot of Sf ( fm ) is identical in shape to that of +( fm ), except that the values
are 3 dB higher. That is, Sf ( fm ) at fm = 1 Hz is −60 dBr/Hz.

In this example the shape of the +( fm ) response is of the type shown in Figure
2.23(b), where the frequency band where +( fm ) has a 1/ fm dependence is very
small. Hence, the phase-noise power from 1 Hz to 1 kHz is taken as having a
1/ f 3

m slope, and we write

Pf (1, 103) = E
103

1

Sf ( fm ) dfm = E
103

1

10−6

f 3
m

dfm = 0.5 mrad2

and from 1 kHz to 100 kHz the phase-noise power is

Pf (103, 105) = E
105

103

Sf ( fm ) dfm = E
105

103

10−15 dfm = 0.0001 mrad2

Observe that the total phase-noise power from 1 Hz to 100 kHz is 0.5 + 0.0001
≈ 0.5 mrad2. Hence, for the given +( fm ) in this example, the phase-noise power
depends on the spectrum from 1 Hz to 1 kHz.

Figure 2.24 SSB phase noise + (fm ) for the crystal in Example 2.2.
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The phase noise of an oscillator is calculated in ADS using a small-signal mixing
of noise method. The SSB phase noise is accessible in the data. For example, the
ADS variable

hb_noise_Vout.pnmx

displays the phase noise for the variable Vout , where pnmx means phase noise
using the mixing method. The mixing analysis should be done with the option for
all-small signal frequencies selected (i.e., set all=yes). For example, see the phase-
noise plot in Figure 5.59.

2.6 Oscillator Noise Measurements

There are several methods for measuring the phase noise of an oscillator. A good
reference is the Hewlett Packard Product Note 11729B-1 [5]. In this section we
will discuss three methods for measuring the phase noise: the direct method, the
phase-detector method, and the delay-line/frequency-discriminator method.

2.6.1 The Direct Method

This method is the simplest and most straightforward since it consists of a direct
measurement. The oscillator under test is connected directly to a spectrum analyzer
as shown in Figure 2.25. This method is limited by the spectrum analyzer character-
istics, such as its LO phase noise, dynamic range, and resolution. Oscillators that
have lower SSB phase noise than that of the spectrum analyzer can usually be
measured using this method. With today’s spectrum analyzers this method is suit-
able for many oscillators. In general, the phase noise of low-noise oscillators, such
as a crystal oscillator, cannot be measured using this method.

2.6.2 The Phase-Detector Method

This is one of the most-used techniques for SSB phase noise measurements. The
basic block diagram used in this method is shown in Figure 2.26.

Figure 2.26 shows two signals vref (t ) and vosc (t ) applied to the mixer. The
mixer (a double-balance mixer) is used as a phase detector. The low-pass filter
selects the difference signal of vm (t ), which is denoted by v (t ). If the two signals
have identical frequencies and are in phase quadrature (i.e., 90° phase difference),
the output voltage v (t ) is zero. If noise produces a small phase fluctuation DF(t ),

Figure 2.25 The direct method for measuring the SSB phase noise.
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Figure 2.26 The phase-detector method for phase-noise measurements.

such that the phase difference between vref (t ) and vosc (t ) is f (t ) = 90° + Df (t ),
then a small fluctuating voltage appears at the output of the mixer. This voltage
is proportional to the phase fluctuations Df (t ). The phase-lock-loop locks the
signals so they remain in quadrature.

The mixing process produces an output that contains power from both the
lower and upper sidebands. For example, if the oscillator signal is described by
(2.33), the output v (t ) contains the difference signal, which is a function of fm .
The difference signal is dc, but the lower sideband has been folded into the upper
sideband around 0 Hz. These amplitudes add linearly at the output of the mixer
producing four times (or 6 dB) the power of one sideband. Since the measured
+( fm ) involves the noise power in one sideband, the measured noise power in the
spectrum analyzer (i.e., in both sidebands) is 6 dB higher than that of the single
sideband. Hence,

+( fm ) | dBc/Hz = 10 log PSSB − 10 log Ps (2.61)

= 10 log Pm ( fm ) − 6 dB − 10 log Ps

where Pm ( fm ) represents the measured power at the frequency fm .
Additional correction factors are usually needed in (2.61). For example, the

spectrum analyzer measures noise in a bandwidth, denoted by Bsa . Since +( fm ) is
defined in a 1-Hz bandwidth, (2.61) must be modified to read

+( fm ) | dBc/Hz = 10 log Pm ( fm ) − 6 dB − 10 log Ps − 10 log Bsa (2.62)

The noise bandwidth in many spectrum analyzers is approximately equal to 1.2
times the resolution bandwidth of the analyzer. Digital spectrum analyzers describe
procedures to be used in noise measurements.

The analysis of the phase detector circuit in Figure 2.26 is as follows. Let

vref = Vr cos vr t
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and

vosc = Vo cos[vot + f (t )]

Then, the output of the mixer [i.e., vm (t )] is

vm (t ) = KA cos[(vo − vr ) t + f (t )] + KA cos[(vo + vr ) t + f (t )] + . . .

where K is the gain constant of the mixer.
The low-pass filter passes the vo − vr component (usually referred to as the

beat signal). Hence, the input signal to the amplifier v (t ) can be expressed in the
form

v (t ) = KVrVo cos[(vo − vr ) t + f (t )]

The peak amplitude of v (t ) (i.e., KVrVo ) is denoted by Vb,peak , and we can write

v (t ) = Vb,peak cos[(vo − vr ) t + f (t )] (2.63)

When the mixer is operated as a phase detector, the reference frequency must
be equal to the frequency of the oscillator under test (i.e., vr = vo ) and the phase
shift between the two must be 90° (i.e., in quadrature). That is, let

f (t ) = 90° + Df (t )

where Df (t ) represents the instantaneous phase fluctuation. Under these conditions,
(2.63) can be expressed in the form

v (t ) = Vb,peak cos[90° + Df (t )] (2.64)

= Vb,peak sin Df (t )

The phase fluctuation Df (t ) is very small, usually much less than 1 radian.
With Df (t ) ! 1 rad it follows that sin Df (t ) ≈ Df (t ), and (2.64) is conveniently
written as

Dv (t ) = Vb,peakDf (t ) (2.65)

where Dv (t ) is the instantaneous voltage fluctuation (around 0V) due to the phase
fluctuation. Equation (2.65) shows the linear relationship between the voltage
fluctuations at the low-pass filter output and the phase noise fluctuations of the
signal vosc . Observe that the units of Vb,peak are volts per radians. In the frequency
domain (2.64) is

Dv ( fm ) = Vb,peakDf ( f ) (2.66)

A typical detector characteristic is shown in Figure 2.27. Vb,peak is known as
the phase detector constant, it is simply the slope of the phase detector response
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Figure 2.27 Typical phase detector characteristics of a double balance mixer.

at the zero crossing. The value of Vb,peak can be determined by operating the mixer
with the inputs at two different frequencies, such that v (t ) is given by (2.63). This
signal can be measured with a spectrum analyzer to obtain Vb,peak . The spectrum
analyzer measures the rms value of the signal (i.e., Vb, rms), where

Vb, rms =
Vb,peak

√2

Once Vb,peak is known and with the mixer operating in quadrature, the output
voltage of the mixer as a function of frequency is directly proportional to the input
phase deviation [see (2.66)]. Hence,

Dv ( fm ) = √2Vb, rms Df ( fm )

or

Df rms( fm ) =
Dvrms( fm )

√2Vb, rms

The spectral density of the phase fluctuation is

Sf ( f ) = [Df rms( fm )]2 =
1
2 FDvrms( fm )

Vb, rms
G2

and the SSB phase noise is given by

+( f ) =
Sf ( f )

2
=

1
4 FDvrms( f )

Vb, rms
G2

In logarithmic form
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+( f ) |dBc/Hz = 10 logFDv2
rms( fm )

4V 2
b, rms

G
= 20 log Dvrms( fm ) − 20 log Vb, rms − 6 dBc/Hz

The measured phase noise is equal to the combined phase noise of the two
sources (i.e., the reference source and the oscillator under test). Hence, there is a
measurement error introduced by the finite phase noise of the reference source.
This error is minimal if the phase noise of the reference source is much lower than
that of the oscillator under test. In general, the phase noise of the reference signal
should be at least 10 dBc/Hz better than that of the oscillator under test. In some
very-low-noise oscillators two equal oscillators with the same noise characteristics
are used in the setup shown in Figure 2.26. In this case, the measured phase noise
has the contribution from both sources, and a −3-dB factor should be used to
account for the equal phase-noise contribution from each signal.

2.6.3 The Delay-Line/Frequency-Discriminator Method

A third method for measuring phase noise is the delay-line/frequency-discriminator
method. In this method a second source is not needed. One way for implementing
this measuring procedure is shown in Figure 2.28. The delay line converts the
frequency fluctuations into phase fluctuations. Frequency changes in the delay line
are associated with a phase shift Df , as indicated in the figure. When the phase-
shifted signal is mixed with the undelayed signal, the output of the doubly balanced
mixer produces a voltage fluctuation DV which is proportional to Df . Hence, the
mixer acts as a frequency discriminator since DV is proportional to D f . If the two
input signals to the mixer are in quadrature the output voltage fluctuations are
proportional to D f . The voltage fluctuations can be measured in a spectrum analyzer
and converted to phase noise.

A brief description of the system in Figure 2.28 follows. Let the signal from
the oscillator under test be

vs (t ) = Vo cos(vot + mp sin vmt )

where mp = D f / fm .

Figure 2.28 A delay-line/frequency-discriminator measuring system.
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The signal after the delay line is

vD (t ) = KVo cos[vo (t − td ) + mp sin vm (t − td )]

where td is the delay time. The undelayed signal is

vND (t ) = KVo cos(vot + mp sin vmt )

After the mixer the low-pass filter passes the difference frequency, which is

v (t ) = Kf cos[vo (t − td ) + mp sin vm (t − td ) − vot − mp sin vmt ]

= Kf cosFvotd + 2mp sin vm
td
2

cos vm St −
td
2 DG

where Kf represents the amplitude of the signal after the filter.
Quadrature requires that votd = p /2 (or an odd multiple of 90°). Therefore,

v (t ) can be written as

v (t ) = Kf sinF2mp sin vm
td
2

cos vm St −
td
2 DG

which for small mp values, reduces to

v (t ) = Kf 2mp sin vm
td
2

cos vm St −
td
2 D (2.67)

The amplitude of v (t ) is DV. Hence, the transfer response is

DV = Kf 2mp sin vm
td
2

= Kf 2mpp fmtd
sin p fmtd

p fmtd

For fm < 1/2ptd , (2.67) reduces to

DV = Kf 2mpp fmtd = Kf 2ptdD f

which is the desired relation.

2.7 Statistical Design Considerations

Statistical design considerations account for the random variations of the compo-
nent values and how they affect the oscillator performance. Such considerations
can be very useful in the design of oscillators. The effect of these random variations
can be measured with an appropriate computer simulation. Finally, in order to
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meet the specifications, the oscillator design can be modified to account for the
statistical variations.

A yield analysis simulation involves the changing of the components values
and the calculation of the yield. The yield is basically the ratio of the number of
designs that pass the specifications to the total number of designs in the trials, or
simply the probability that a design sample meets the specifications. As the number
of trials is increased, the accuracy of the yield probability increases.

Yield optimization, also known as design centering, is used to optimize the
nominal values of the components so that the yield probability is improved.

The yield analysis simulation is based on the Monte-Carlo method. Basically,
in a Monte-Carlo simulation the component values in a trial are randomly varied
(within a specified range) and a simulation is performed. The results of the simula-
tion are checked to see if the design passed or failed. The yield probability is
calculated from the number of simulations that passed and failed in the set of trials.

The component variations can be specified in a variety of ways. Typically, a
Gaussian, a uniform, or a discrete variation can be specified.

The data produced by the yield analysis can be used to generate histograms.
Basically, a histogram is a bar graph that is used to display the number of times
that a certain measurement or value occurred. This type of histogram is known as
measurement histogram or yield histogram.

Another histogram that can be generated is the sensitivity histogram. In a
sensitivity histogram the effect of a selected statistical value on a certain statistical
response is observed.

In a yield optimization the nominal values of the components are adjusted in
order that the yield is minimized.

Postproduction tuning can be used with yield analysis and yield optimization.
This feature permits certain parameters to be tuned at the end of a yield analysis
and optimization. For example, a variable capacitor could be tuned at the end of
an optimization in order to meet the specifications.

The following example (using ADS) illustrates the use of statistical methods
in the design of an oscillator. Statistical considerations are applied to some designs
in the book to illustrate their usefulness.

Example 2.4

(a) Consider the Wien-bridge oscillator in Figure 1.20(a) where vo = 10 krad/s
and |yo | = 2V. Assume that the specification requires that the frequency of oscillation
does not to vary by more than 1%. Perform a statistical analysis to calculate the
yield if the components values vary by ±5%.
(b) Calculate the yield if it is also required that 1.8V ≤ |yo | ≤ 2.2V. Use components
with 1% tolerance.
(c) Perform a yield optimization.
(d) Perform a postproduction tuning yield analysis.

Solution
(a) The yield analysis simulation is shown in Figure 2.29(a). The yield specification
(YIELD SPEC) shows that the frequency range (i.e., MIN = 1,575; MAX = 1,606)
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Figure 2.29 (a) The yield analysis simulation and (b) the simulation data.
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should be within 1% of fo = 1,591 Hz. The yield analysis (YIELD) shows that the
number of trials used is 300.

The simulation data is shown in Figure 2.29(b). The number of trials that
failed was 224 and the number that passed was 76. Hence, the yield is 25.3%.
The number of frequencies that occurred in the range 1,575 to 1,606 Hz is displayed
in the histogram named FREQ_IN_RANGE.

Many statistical analyses can be performed. The histogram labeled
FREQ_VS_C2 shows the number of frequencies in the range 1,575 to 1,606 Hz
as a function of the capacitance C2. This histogram shows that values of C2 around
10.4 nF improves the yield. This type of histograms or yield sensitivity is used to
see the effect of a particular component on the yield.

The previous resulting yield of 25.3% is low for mass production of the oscilla-
tor. If the component’s tolerances are changed from 5% to 1%, the yield improves
to 73%.
(b) The simulation that also specifies a yield analysis for the amplitude of vo is
shown in Figure 2.30(a). The amplitude of vo meets the amplitude yield specification
if it is between 1.8V and 2.2V. The simulation data is shown in Figure 2.30(b).
The number of amplitudes that occurred in the range 1.8V to 2.2V is shown in
the histogram named AMPLITUDE_IN_RANGE. The number of trials that passed
both specifications was 57, and those that failed were 243, for a yield of 19%.
The resulting yield is poor and a yield optimization or a postproduction tuning
simulation is appropriate.
(c) The yield optimization simulation is shown in Figure 2.31(a). Basically, the
yield-analysis component is changed to a yield-optimization component. The yield
optimization uses all the yield specifications in the simulation. The number of
design iterations (i.e., shown as 20) is the number of yield improvements that the
simulation will perform. The number of trials in each design iteration is set by the
simulator. The simulation was performed assuming that the components can vary
by ±10% from their nominal values, except R3 which was allowed to vary by
±20%.

The resulting yield of 30%, with the component values shown in Figure 2.31(b),
is low. A histogram sensitivity analysis suggests that a post-production tuning with
the resistor R3 , which controls vo , should improve the yield.
(d) The postproduction tuning simulation is shown in Figure 2.32(a). The resistor
R3 was selected for postproduction tuning by allowing a variation of ±20% from
its nominal value. The data shown in Figure 2.32(b) shows that the pre-tune yield
is 22.6%, and the postproduction yield is 79.6%. The use of postproduction
tuning, in this case, produces a significant improvement of the yield. Further yield
improvements can be obtained if postproduction tuning is also used with R4 (which
can adjust the frequency).

Associated with a statistical simulation is the number of trials required to
obtain a certain yield. The number of times N is given by

N = SCs

e D2Y (1 − Y )
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Figure 2.30 (a) Yield analysis simulation for frequency and amplitude and (b) the simulation data.
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Figure 2.31 (a) The yield optimization simulation and (b) the simulation data.

where Y is the actual yield, e is the error, and Cs is the confidence level expressed
as a number of standard deviations. The error is defined as the absolute difference
between the actual yield Y and the yield estimate Y. That is,

e = |Y − Y |

Therefore, the low and high values of the yield estimate are

Y = Y ± e

The confidence level is associated with the area under the Gaussian distribution
curve for a given standard deviation. Typical values are shown in Table 2.2.

For example, for a confidence level of 68.3% (i.e. Cs = 1) with an error of
±3% (i.e., e = 0.03) and a yield of 70%, the required number of trials is
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Figure 2.32 (a) Postproduction tuning simulation and (b) the simulation data.

Table 2.2 Confidence
Level Values

Cs Confidence Level

1 68.3%
2 95.4%
3 99.7%

N = S 1
0.03D

2
0.7(1 − 0.7) = 233
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C H A P T E R 3

Tuned-Circuit Oscillators

3.1 Introduction

Tuned-circuit oscillators are very popular at frequencies above 100 kHz. The tuned
circuit determines the frequency of oscillation and acts as the feedback network.
The use of high-Q resonant circuits produces a sinusoidal oscillator with low
distortion. The amplifier section is usually designed using discrete active devices,
such as BJTs and FETs.

Because of certain differences in the ac models associated with BJTs and FETs,
the analysis of tuned-circuit oscillators is divided into BJT tuned-circuit oscillators
and FET tuned-circuit oscillators. Tuned oscillators using op amps are also
discussed.

Modern simulators programs for oscillator designs produce excellent results.
Hence, the implementation of a tuned oscillator after an appropriate simulation
usually requires a minimum amount of adjustment in the laboratory.

3.2 FET Tuned Oscillators

The following discussion provides an overview of FET tuned-circuit oscillators.
Consider the FET tuned-circuit oscillator shown in Figure 3.1(a). Assume that there
is no mutual inductance coupling between the impedances. The ac model of the
oscillator is shown in Figure 3.1(b) where the RFC is open circuited and the coupling
and bypass capacitors are short circuited.

From Figure 3.1(b), observing that the feedback voltage vf is vgs , the open-
loop voltage gain is

Av ( jv ) =
vo ( jv )
vf ( jv )

=
−gmrdZL
ZL + rd

where ZL is the load impedance, namely,

ZL = Z2 || (Z1 + Z3)

The resistor RG is very large and does not load the impedance Z1 .
The feedback factor b ( jv ) is given by

103
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Figure 3.1 (a) An FET tuned-circuit oscillator and (b) the ac model.

b ( jv ) =
vf ( jv )
vo ( jv )

=
Z1

Z1 + Z3

Hence, the loop gain is given by

b ( jv )Av ( jv ) =
−gmrdZLZ1

(ZL + rd )(Z1 + Z3)
=

−gmrdZ1Z2
rd (Z1 + Z2 + Z3) + Z2(Z1 + Z3)

(3.1)

If Z1 , Z2 , and Z3 are purely reactive impedances given by Z1( jv ) = jX1(v ),
Z2( jv ) = jX2(v ), and Z3( jv ) = jX3(v ), the loop gain in (3.1) can be expressed
in the form

b ( jv )Av ( jv ) =
gmrdX1(v )X2(v )

jrd [X1(v ) + X2(v ) + X3(v )] − X2(v ) [X1(v ) + X3(v )]
(3.2)

The phase shift of the loop gain is zero when the imaginary part of (3.2) is
zero. That is, at v = vo
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X1(vo ) + X2(vo ) + X3(vo ) = 0 (3.3)

Equation (3.3) determines the frequency of oscillation. At the frequency vo [where
(3.3) is satisfied] the loop gain in (3.2) reduces to

b ( jvo )Av ( jvo ) =
−gmrdX1(vo )

X1(vo ) + X3(vo )

and using (3.3) we obtain

b ( jvo )Av ( jvo ) =
gmrdX1(vo )

X2(vo )
(3.4)

For oscillations the loop gain in (3.4) must be unity at the frequency of oscilla-
tion, and greater than unity to start the oscillation. Therefore, X1(v ) and X2(v )
must have the same signs. That is, if Z1 is capacitive (i.e., X1(v ) = −1/vC1), then
Z2 must also be capacitive (i.e., X2(v ) = −1/vC2). From (3.3), it also follows that
X3(vo ), where X3(vo ) = −X1(vo ) − X2(vo ), must be inductive (i.e., X3(v ) =
jvL).

The oscillator in Figure 3.1(a) with Z1 and Z2 capacitive, and Z3 inductive is
known as an FET Pierce oscillator. For such configuration, the frequency of oscilla-
tion, from (3.3), is given by

−
1

voC1
−

1
voC2

+ voL = 0 (3.5)

or

vo =
1

√LCT
(3.6)

where

CT =
C1C2

C1 + C2

At vo the phase shift through the amplifier is −180°; therefore, the phase shift
through the feedback network must also be −180°. The phase shift due to b ( jv )
can be seen as follows. Since

b ( jv ) =

1
jvC1

1
jvC1

+ jvL

and observing that the denominator must have a net inductive effect at vo , we
can express the impedance in the denominator in terms of an equivalent L′. From
(3.5), the equivalent L′ is
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jvoL′ = jSvoL −
1

voC1
D =

j
voC2

Therefore,

b ( jvo ) =
S 1

jvoC1
D

jvoL′ = −
C2
C1

which shows that the phase of b ( jvo ) is −180°.
The gain condition follows from (3.4), namely,

gmrd ≥
X2(vo )
X1(vo )

=
C1
C2

(3.7)

While the analysis of tuned oscillators can be performed in terms of the loop
gain, an alternate approach is in terms of the system determinant as follows. A
general configuration for a common-source FET tuned oscillator is shown in Figure
3.2(a). The coupling capacitors are designed to act as short circuits at the frequency
of oscillation. The drain resistor RD is replaced in many designs by a radio frequency

Figure 3.2 (a) General configuration of FET tuned oscillators, (b) an ac model, (c) the FET replaced
by its ac model, and (d) a Thevenin’s equivalent model.
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coil (RFC), or an RFC in series with RD is used. An RFC is very convenient since
its inductance is selected so that its impedance is very large at the frequency of
oscillation, and therefore blocks the oscillation signal from going into the dc supply.
Hence, in the ac model the RFC is open circuited and the ac signal path is from
the FET to the feedback network, and back to the input of the FET. The elements
that determine the closed-loop path of the signal are shown in Figure 3.2(b). The
elements Z1 , Z2 , and Z3 are the reactive elements that form the tuned circuit, and
provide the proper positive feedback at the frequency of oscillation. A mutual
impedance is included between Z1 and Z2 because in some oscillators these imped-
ances represent the inductances of a coupled coil. The mutual impedance is related
to L1 and L2 by

M =
k

√L1L2

where k is the coefficient of coupling (0 < k < 1). If Z1 and Z2 are capacitive
impedances, then M = 0. The FET provides the proper amplification and a phase
shift of −180°. Therefore, the tuned circuit must contribute a phase shift of −180°
at the frequency of oscillation.

In Figure 3.2(c) the FET is replaced by its transconductance model where
RL = rd || RD , and in Figure 3.2(d) a Thevenin’s equivalent model is used. The loop
equations for the ac model in Figure 3.2(d) are

(RL + Z2)i2 − (Z2 + ZM )i3 = −gmRLvgs (3.8)

− (Z2 + ZM )i2 + (Z1 + Z2 + Z3 + 2ZM )i3 = 0 (3.9)

and

vgs = (Z1 + ZM )i3 − ZMi2 (3.10)

Substituting (3.10) into (3.8) gives

(RL + Z2 − gmRLZM )i2 − [Z2 + ZM − gmRL (Z1 + ZM )]i3 = 0 (3.11)

Equations (3.9) and (3.11) represent the system of equations for the circuit in
Figure 3.1(d). The conditions for oscillations can be obtained by setting the system
determinant of (3.9) and (3.11) equal to zero. That is,

D ( jv ) = | − (Z2 + ZM ) (Z1 + Z2 + Z3 + 2ZM )

(RL + Z2 − gmRLZM ) − [Z2 + ZM − gmRL (Z1 + ZM )] | = 0

(3.12)

Observe that D ( jv ) is a complex quantity; that is,

D ( jv ) = Re[D ( jv )] + j Im[D ( jv )]
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In order to proceed we must specify the elements Z1 , Z2 , and Z3 . Several
choices of elements are possible. A simple and very practical choice is to select the
three elements to be reactive. That is, let Z1 = jX1 , Z2 = jX2 , Z3 = jX3 , and the
mutual impedance is ZM = jXM . Observe that the reactances X1 , X2 , and X3 are
positive when they represent an inductor, and negative for a capacitor. With these
values of impedances, the imaginary part of (3.12) is

Im[D ( jv )] = RL (X1 + X2 + X3 + 2XM )

The frequency of oscillation is obtained by setting Im[D ( jv )] = 0, which gives

X1(vo ) + X2(vo ) + X3(vo ) + 2XM (vo ) = 0 (3.13)

since RL ≠ 0. This equation determines the frequency of oscillation.
The gain condition is obtained by setting the real part of (3.12) equal to zero.

Actually, we let Re[D ( jv )] > 0 in order to start the oscillation. Thus, the gain
condition is written as

Re[D ( jv )] = gmRL (X1 + XM )(X2 + XM ) − (X2 + XM )2 ≥ 0

or

gmRL ≥
X2 + XM
X1 + XM

(3.14)

Since gmRL is a positive quantity, and with the mutual inductance XM smaller
than X1 or X2 , it follows that the right-hand side of (3.14) is a positive quantity
only if X1 and X2 represent the same type of elements (i.e., either inductors or
capacitors). Also, with X1 and X2 having the same sign, (3.13) is satisfied if X3
has an opposite sign to that of X1 and X2 . Hence, if Z1 and Z2 are capacitive,
then ZM = 0 and Z3 must be inductive. If Z1 and Z2 are inductive with mutual
inductance ZM , then Z3 must be capacitive.

In a design, the small-signal value of gm is commonly used to satisfy the
inequality in (3.14). Of course, as the amplitude of oscillation increases towards
its stable value, the value of gm decreases and (3.14) is approximately satisfied
with the equality sign. Actually, as discussed in Chapter 1, the poles of the oscillator
move between the right-half plane and the left-half plane around the frequency
vo .

A common way of designing the circuit in Figure 3.2(a) is with an RFC in
place of RD , or with an RFC in series with RD , Since the ac behavior of the RFC
is essentially an open circuit, the previous relations apply with RL = rd . If the series
resistance of the RFC is considered (i.e., a finite QU ), it can be transformed to an
equivalent parallel resistance Rp . In this case: RL = rd || Rp ; which, in general, can
be approximated by rd .
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When Z1 and Z2 are capacitive and Z3 is an inductor, the oscillator is usually
referred to as a Colpitts-type oscillator. If Z1 and Z2 are inductive and Z3 is a
capacitor the oscillator is called a Hartley oscillator. The oscillator in Figure 3.2
uses an FET in a CS configuration. This Colpitts-type oscillator is known as a
Pierce oscillator. If the FET is used in a CD configuration, the oscillator is called
a Colpitts oscillator. If the oscillator uses the FET in a CG configuration (another
Colpitts-type oscillator) it is known as a Grounded-Gate oscillator.

3.2.1 FET Pierce Oscillator

An FET Pierce oscillator is shown in Figure 3.3(a). In this oscillator, Z1 and Z2
are capacitive impedances (i.e., X1 = −1/vC1 and X2 = −1/vC2), and Z3 is an
inductive impedance (i.e., X3 = vL ). There is no mutual inductance (i.e., XM = 0).
An RFC (or an RFC in series with a drain resistor) is used from the drain to VDD .
Therefore, RL in (3.14) is simply equal to rd . The ac model of the oscillator is
shown in Figure 3.3(b). Observe that the feedback voltage vf is vgs , and that it is
the same oscillator configuration as the one shown in Figure 3.1, which was
analyzed using the loop gain.

From (3.13), the frequency of oscillation is obtained from

X1(vo ) + X2(vo ) + X3(vo ) = −
1

voC1
−

1
voC2

+ voL = 0

which gives

vo =
1

√LCT
(3.15)

Figure 3.3 (a) An FET Pierce oscillator and (b) the ac model.
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where

CT =
C1C2

C1 + C2

The gain condition follows from (3.14). That is,

gmrd ≥
X2(vo )
X1(vo )

=
C1
C2

(3.16)

Observe that (3.15) and (3.16) are identical to (3.6) and (3.7), respectively.
To start the oscillation, the inequality in (3.16) is satisfied by making gmrd

equal to C1 /C2 times a factor of 1.5 to 3.
In order to better understand how the Pierce oscillator works, consider the ac

model shown in Figure 3.3(b). The series combination of L and C1 must appear
inductive to produce with C2 a parallel-resonant tuned circuit. Hence, the current
i lags vo by 90°, and vf lags i by 90°. Consequently, vf lags vo by 180°. Since the
transistor provides a phase shift of −180°, the total phase shift around the loop is
−360°, as required for oscillation.

At vo , the load impedance

ZL = Z2 || (Z1 + Z3) =
jX2(X1 + X3)
X1 + X2 + X3

is infinite. Hence, the open-loop gain at vo is

Av ( jvo ) =
vo
vf

= −gmrd (3.17)

Also, the feedback factor at vo is given by

b ( jvo ) =
vf

vo
=

X1
X1 + X3

= −
X1
X2

= −
C2
C1

(3.18)

Equations (3.17) and (3.18) show the −360° phase shift that exists around the loop
at vo .

The gain condition is obtained from

b ( jvo )Av ( jvo ) ≥ 1 (3.19)

Substituting (3.17) and (3.18) into (3.19) gives

gmrd ≥
C1
C2

which is recognized as the gain condition in (3.16).
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The frequency of oscillation and the gain condition are affected by the series
resistance of the inductor and the loading of the oscillator (which occurs when the
oscillator signal is coupled to another stage). These effects can be analyzed by
including appropriate resistances in (3.12). Of course, the required analysis is more
involved. The series loss resistance of the inductor Rs can be included in the analysis
by letting Z3 = Rs + jvL. Then, it follows that

ZL = jX2 || (Rs + jX3 + jX1) (3.20)

=
jX2[ j (X1 + X3) + Rs ]
j (X1 + X2 + X3) + Rs

and the voltage feedback factor is

b ( jv ) =
vf

vo
=

Z1
Z1 + Z3

=
jX1

Rs + j (X1 + X3)
(3.21)

Hence, the loop gain is given by

b ( jv )Av ( jv ) = b ( jv )S−
gmrdZL
ZL + rd

D =
gmrdX1X2

jrd (X1 + X2 + X3) − X2(X1 + X3) + rdRs

(3.22)

where the approximation jX2(rd + Rs ) ≈ jrdX2 was used.
From (3.22), the frequency of oscillation follows from

X1(vo ) + X2(vo ) + X3(vo ) = 0

or

vo =
1

√LCT

where

CT =
C1C2

C1 + C2

which is identical to (3.15).
At vo , the load impedance is

ZL ( jvo ) =
jX2(vo )

Rs
[−jX2(vo ) + Rs ]

Since |X2(vo ) | @ Rs , ZL can be approximated by

ZL ≈
X2

2(vo )
Rs

(3.23)
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The open-loop gain and feedback factors are

Av ( jvo ) ≈
−gmrd [X2(vo )]2

[X2(vo )]2 + rdRs
(3.24)

and

b ( jvo ) =
jX1

−jX2 + Rs
≈ −

X1
X2

= −
C2
C1

(3.25)

At vo , from (3.24) and (3.25), the loop gain is given by

b ( jvo )Av ( jvo ) =
gmrdX1X2

X2
2(vo ) + rdRs

> 1

and it follows that the gain condition is

gmrd >
X2

2(vo ) + rdRs

X1(vo )X2(vo )
(3.26)

Observe that if Rs → 0, then (3.26) is identical to (3.16).
Equation (3.26) shows how the loop gain is affected by the coil losses. In many

cases rdRs @ X2
2(vo ), and the loop gain in (3.26) is satisfied when

gm

v 2
o RsC1C2

> 1 (3.27)

This relation basically places a limit on C1 , C2 , and the required gm . The inequality
shows that small values of C1 and C2 are desirable. However, the values of C1
and C2 cannot be made too small because then the oscillator is dependent on the
input and output capacitances of the transistor.

Example 3.1

Design the Pierce oscillator in Figure 3.3(a) to oscillate at 1 MHz. Use the 2N3819
n-channel JFET. This transistor has the following typical parameter values:
IDSS = 12 mA and VP = −3.5V.

Solution
Selecting the Q point at ID = 6 mA and VDS = 10V, and using VDD = 20V it
follows from

ID = IDSSS1 −
VGS
VP

D2
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that VGS ≈ −1V and

gm =
2IDSS

V 2
p

(VGS − VP ) =
2(12 × 10−3)

(3.5)2 (−1 + 3.5) ≈ 5 mS

The output resistance can be calculated in terms of the channel modulation
voltage VM (similar to the Early voltage) as

ro =
VM
ID

which for ID = 6 mA a typical ro is 50 kV.
The values of RS and RD are

RS =
−VGS

ID
=

1

6 × 10−3 = 164V

and

RD =
VDD − VDS − IDRS

ID
=

20 − 10 − 1

6 × 10−3 = 1.47 kV

The capacitor C2 is in parallel with the transistor’s output terminals. The
transistor has a few picofarads of output capacitance (Cout ) between its source
and drain. This output capacitance can be neglected if C2 @ Cout . Several values
of C2 , and the approximate value of |XC2 | , that satisfy C2 @ Cout , are listed in

Table 3.1.
Two design procedures are considered. First, assuming that the loss resistance

of the inductor is negligible (i.e., Rs = 0), and second with Rs ≠ 0.
If Rs= 0, (3.16) gives

gmrd = 0.05(50 × 103) = 250 >
C1
C2

Letting C2 = 1.6 nF, it follows that

C1 < 250(1.6 × 10−9) = 0.4 mF

The inequality can be satisfied with C1 = 100 nF.

Table 3.1 Reactance Values at 1 MHz

C2 |XC2
|

160 nF 1
16 nF 10
1.6 nF 100
160 pF 1,000
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From (3.15), with CT ≈ C2 = 1.6 nF, the value of the inductor is 15.8 mH.
If Rs ≠ 0, Table 3.2 illustrates the calculation of L for C2 = 1.6 nF with

C1 = 100 nF, and also for C2 = 16 nF with C1 = 20 nF. Typical values of the
unloaded Q (i.e., QU = vL /Rs ) for the inductor are listed with the associated Rs .
Finally, the inequality in (3.26) is checked.

The above calculations show that the assumption Rs = 0 will not work in this
case. Of course, when using the design procedure based on Rs = 0 there are values
for which (3.26) is not satisfied and, therefore, oscillations will not occur.

The calculations also show that if the inductor’s QU is 30 (i.e., Rs = 0.6V)
the oscillator will not work. However, if QU is increased to 50 the oscillation
conditions are satisfied. Also, the inequality (3.26) is better satisfied with a higher
value of gm . This can be attained by designing the oscillator with VGS = −0.5V so
that gm = 6 mS.

The simulation of the oscillator with C1 = 20 nF, C2 = 16 nF, and L = 2.86 mH
(QU = 50) is shown in Figure 3.4(a). The Q point is at ID = 5.68 mA and VDS =
10.6V. The resulting oscillation at 999.9 kHz is shown in Figure 3.4(b). Although
not shown, the simulation was also performed by designing the circuit with VGS
= −0.5V and ID = 6 mA.

From a practical point of view, the above calculation (based on typical transistor
parameters) shows that (3.26) is ‘‘barely’’ satisfied (250 > 228). This information
is especially useful if many units are to be constructed since the spread of the
transistor’s parameters might affect the yield. Hence, the designer can use the
statistical analysis tools, or might redesign the oscillator using a transistor with a
higher gm .

3.2.2 FET Colpitts Oscillator

An FET Colpitts configuration is shown in Figure 3.5(a) and its ac model in Figure
3.5(b). The capacitor Cc is a coupling capacitor. A loop-gain approach is used to
analyze the oscillator. However, a system determinant approach could have been
used similar to the analysis of the BJT Colpitts oscillator in Section 3.3.

From Figure 3.5(b) the load impedance [see (3.20)] is

ZL =
jX2[ j (X1 + X3) + Rs ]
j (X1 + X2 + X3) + Rs

At resonance

vo =
1

√LCT

Table 3.2 Loop-Gain Condition [i.e., (3.26)] for Example 3.1

C1 C2 CT L QU Rs gmrd >
X2

2 + rdRs

X1X2

100 nF 1.6 nF 1.6 nF 15.8 mH 50 1.98V 250 > 685 (not satisfied)
20 nF 16 nF 8.9 nF 2.85 mH 30 0.6V 250 > 378 (not satisfied)
20 nF 16 nF 8.9 nF 2.85 mH 50 0.36V 250 > 228 (satisfied)
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Figure 3.4 (a) Pierce oscillator for Example 3.1 and (b) the output voltage.

where

CT =
C1C2

C1 + C2

and it follows that [see (3.23)]
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Figure 3.5 (a) An FET Colpitts oscillator and (b) its ac model.

ZL ( jvo ) ≈
[X2(vo )]2

Rs
(3.28)

The voltage feedback factor is

b ( jvo ) =
vf

vo
=

jX3 + RLoss
Rs + j (X1 + X3)

or

b ( jvo ) =
Rs − j (X1 + X2)

Rs − jX2

If | X2 | @ Rs , then

b ( jvo ) =
X1 + X2

X2
=

C1 + C2
C1

The gain of the source follower at vo (with Rs || ZL ≈ ZL and vgs = vf − vo ) is

Av ( jv ) =
vo
vf

=
gmZL ( jv )

1 + gmZL ( jv )

Hence, the loop gain at vo is

b ( jvo )Av ( jvo ) =
C1 + C2

C1

gmZL ( jvo )
1 + gmZL ( jvo )

> 1 (3.29)

Substituting (3.28) into (3.29) gives
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gm

v 2
o RsC1C2

> 1

which is recognized as the gain condition.

3.2.3 FET Hartley Oscillator

In a Hartley oscillator, Z1 and Z2 represent a tapped inductor with mutual induc-
tance ZM , and Z3 is a capacitor. A Hartley oscillator can be designed with or
without mutual coupling between L1 and L2 . If there is no mutual inductance,
then M = 0. The general configuration of the Hartley oscillator is shown in Figure
3.6(a), and its ac model in Figure 3.6(b) where RL ≈ rd || RD .

From (3.13), the frequency of oscillation is obtained from

X1(vo ) + X2(vo ) + X3(vo ) + 2XM (vo ) = voL1 + voL2 −
1

voC
+ 2voM = 0

which gives

vo =
1

√LTC
(3.30)

where

LT = L1 + L2 + 2M

Figure 3.6 (a) An FET Hartley Oscillator and (b) its ac model.
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The gain condition from (3.14) is

gmRL ≥
L2 + M
L1 + M

(3.31)

A Hartley configuration that is commonly used (with M = 0 between L1 and
L2) is shown in Figure 3.7. Its ac model is similar to that in Figure 3.6(b). The
negative gate-to-source voltage is obtained from VGG , and VDD sets the drain-to-
source voltage. The capacitors Cb are bypass capacitors.

The transformer L2 − L3 is used to provide the ac load to the FET. That is,

R′L = n2R

where the turns ratio n is

n = √L2
L3

From (3.30) the frequency of oscillation is given by

vo =
1

√(L1 + L2)C
(3.32)

and from (3.31) the gain condition, with the load RL = rd || R′L ≈ R′L , is

gmR′L ≥
L2
L1

(3.33)

or

Figure 3.7 A Hartley oscillator.



3.2 FET Tuned Oscillators 119

gmn2R ≥
L2
L1

Example 3.2

Design the Hartley oscillator in Figure 3.7 to oscillate at 5 MHz with R = 50V.

Solution
Let the supply voltage be VDD = 12V. Letting L1 = L2 = 5 mH, it follows from
(3.32) that

C =
1

(2p × 5 × 106)2(10 × 10−6)
= 101 pF

For the FET, a 2N5486 JFET was selected. This JFET lists minimum and
maximum values of VP and IDSS at 25°C. It also lists the typical minimum values
at 25°C as VP = −2.5V and IDSS = 7 mA. A worst-case design requires that the
minimum value of gm be used. Hence, if the Q point is set at VGS = −1V, the value
of gm (min) is

gm (min) = 2
IDSS

V 2
P

[VGS − VP ] = 2
7 × 10−3

6.25
[−1 − (−2.5)] = 3.36 mS

Let us use gm (min) = 3 mS. Then, from (3.33), with L1 = L2 , the value of R′L is

R′L >
1

gm
=

1

3 × 10−3 = 333V

Selecting R′L > 333V, say R′L = 500V, the turns ratio is given by

n = √R′L
R

= √500
50

= 3.16

The value of the inductor L3 follows from

L3 =
L2

n2 =
5 × 10−6

3.162 = 500 nH

The oscillator was simulated in ADS using the bias circuit shown in Figure
3.8(a). The Spice parameters for the 2N5485 are IDSS = 12 mA and VP = −3.5V.
Hence, for VGS = −1V the drain current is ID = 6.12 mA. The Q point values
calculated by the program are VDS = 12V and ID = 6.82 mA. The resulting waveform
is shown in Figure 3.8(b) where the fundamental frequency of oscillation is
4.834 MHz.
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Figure 3.8 (a) The Hartley oscillator for Example 3.2 and (b) the simulation results.

Another FET Hartley type of oscillator is shown in Figure 3.9(a). This oscillator
uses an FET in a CG configuration. The ac model is shown in Figure 3.9(b). The
feedback factor is

b =
vf

vo
=

L2
L1 + L2

Using a source transformation and the substitution theorem (i.e., replacing one
of the gmvgs current source by the resistor 1/gm ) produces the model in Figure
3.9(c), where Rs appears in parallel with 1/gm . The transformer formed by L1 and
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Figure 3.9 (a) A Hartley type of oscillator, (b) the ac model, (c) model for the calculation of the
open-loop voltage gain, and (d) equivalent circuit across C.

L2 convert the resistance RS || (1/gm ) to a parallel resistance across the capacitor
of value

Rp = n2SRS || 1
gm

D
where

n =
L1 + L2

L2

The equivalent circuit across C, shown in Figure 3.9(d), is convenient for the
calculation of the open-loop gain.

From Figure 3.9(d), the resonant frequency is

vo =
1

√(L1 + L2)C

and the loop gain is

b (vo )Av (vo ) =
L2

L1 + L2
gmn2SRS || 1

gm
D ≈ gmSRS || 1

gm
D L1 + L2

L2
(3.34)
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To start the oscillation, the loop gain is set to a value between 2 and 3. Observe
that for the case that RS || (1/gm ) ≈ 1/gm , (3.34) reduces to

b (vo )Av (vo ) =
L1 + L2

L2

3.2.4 FET Clapp Oscillator

The Clapp FET oscillator (also known as the Clapp-Gouriet oscillator) is shown
in Figure 3.10. The configuration is somewhat similar to the Colpitts configuration.
The impedance Z3 = j (vL3 − 1/vC3) must be inductive. The frequency of oscillation
is given by

vo =
1

√L3CT

where

1
CT

=
1

C1
+

1
C2

+
1

C3

The gain condition is

gm

v 2
o RsC1C2

> 1

Figure 3.10 The Clapp oscillator.
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where Rs represents the coil losses. Hence, C1 and C2 can be selected to satisfy
the gain condition and C3 to adjust the frequency of oscillation.

The addition of a tuning capacitor in series with L3 can also be done to the
Pierce oscillator. In this case the oscillator that results (i.e., a Clapp type) is shown
in Figure 3.11.

The capacitor C3 in series with L3 provides another degree of freedom in the
design, since C1 and C2 can be selected to satisfy the gain condition, and C3 can
be selected to set the frequency of oscillation. This improves the frequency stability,
making the frequency stability of the Clapp oscillator better than that of the Colpitts.
The frequency stability of the Clapp oscillator due to a change in capacitance is

Dvo = −
1
2

vo
DCT
CT

The changes to the total capacitance usually come from the active device. If C1
and C2 are designed with large values, then CT ≈ C3 , making Dvo independent of
the active device.

3.2.5 The Grounded-Gate Oscillator

A Grounded-Gate (GG) oscillator is shown in Figure 3.12(a) and its ac model in
Figure 3.12(b), where Rp represents the equivalent parallel resistance of the induc-
tor. The GG is in the form of a Colpitts oscillator but with the gate grounded.
The analysis of this oscillator is similar to that of the grounded-base oscillator,
which is done in Section 3.3.

Using a source transformation and the substitution theorem (i.e., replacing one
of the gmvgs current sources by the resistor 1/gm ) produces the model in Figure

Figure 3.11 A Clapp-type oscillator.
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Figure 3.12 (a) The GG oscillator, (b) an ac model, (c) an alternative ac model, and (d) equivalent circuit
across the inductor.

3.12(c), where RS appears in parallel with 1/gm . The capacitive transformer formed
by C1 and C2 transforms (RS || 1/gm ) to a parallel resistance across the inductor
with value

R′P = n2SRS || 1
gm

D
where

n =
C1 + C2

C1

The equivalent ac circuit across the inductor is shown in Figure 3.12(d). It is
seen that the resonant frequency occurs at

vo =
1

√LCT
(3.35)

where
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CT =
C1C2

C1 + C2
(3.36)

At vo , the gain is

Av (vo ) =
vo
vf

= gm XRP || RL || R′P C

and the feedback factor is

b =
vf

vo
=

C1
C1 + C2

In the case that RP || RL || R′P can be approximated by R′P , then

Av (vo ) ≈ gmn2SRS || 1
gm

D (3.37)

Furthermore, if RS || (1/gm ) ≈ 1/gm , (3.37) reduces to

Avo = n2 = SC1 + C2
C1

D2
and the loop gain is

b (vo )Av (vo ) =
C1 + C2

C1
(3.38)

To start the oscillation, the loop gain can be set to a value between 2 and 3.

Example 3.3

Design the GG oscillator in Figure 3.12(a) to oscillate at 20 MHz using the 2N5486
JFET. Assume that RL = 10 kV, and an RFC is in series with RS .

Solution
Let the Q point be at ID = 4.5 mA, and VDS = 5V. For this transistor, typical
values are VP = −3.5V and IDSS = 12 mA. Therefore, at ID = 4.5 mA the value of
VGS is approximately −1.36V and gm = 4.2 mS. The Q point design requires that

RS =
−VGS
IDS

=
1.36

4.5 × 10−3 = 302V

and

RD =
VDD − VDS − VS

IDS
=

12 − 5 − 1.36

4.5 × 10−3 = 1.25 kV
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For the inductor, select L = 1 mH having QU = 80 (or Rp = 10 kV). From
(3.35)

CT =
1

v 2
o L

= 63.4 pF

Letting the loop gain be 3, it follows from (3.36) and (3.38) that

C2 = 3CT = 3(63.4 × 10−12) = 190 pF

and

C1 =
C2
2

=
190 × 10−12

2
= 95 pF

Since

n =
C1 + C2

C1
= 3

and with RS || (1/gm ) ≈ 1/gm , it follows that

R′P =
n2

gm
= 238(9) = 2.14 kV

Hence, the equivalent resistance of the tuned circuit is

RP || RL || R′P = 10 × 103 || 10 × 103 || 2.14 × 103 = 1.5 kV

which shows that the approximation (3.37) is not exactly valid. However, making
n = 3 should be sufficient to start the oscillation.

The simulation of this oscillator is shown in Figure 3.13. The Q point is at
VGS = −1.41V and ID = 4.7 mA, and the fundamental frequency of oscillation is
19.95 MHz.

3.2.6 Tuned-Drain Oscillator

Another FET oscillator is the tuned-drain oscillator shown in Figure 3.14(a). The
transistor produces a phase shift of −180° and the transformer the other −180°.
In this oscillator, in terms of the notation employed in Figure 3.2(a), Z1 is the
impedance of the gate coil, Z2 is the impedance of the tuned circuit at the drain
terminal, Z3 represents the small impedance coupling through Cgd , (which at
the frequency of oscillation can be neglected), and ZM is the mutual coupling
of the coils. However, instead of using the general equations for the calculation
of the frequency of oscillation and the gain conditions, it is worthwhile to analyze
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Figure 3.13 Simulation of the oscillator in Example 3.3.

this circuit using the ac model shown in Figure 3.14(b). The resistor Rp represents
the equivalent parallel resistance of the coil losses. Also, since i2 = 0 there is no
voltage induced in the primary of the transformer due to i2 . The open-loop gain
is given by

Av ( jv ) =
vo
vgs

= −gmSrd || Rp || 1
jvC || jvL2D (3.39)

and the voltage-feedback factor is
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Figure 3.14 (a) A tuned-drain oscillator and (b) the ac model.

b ( jv ) =
vgs

vo
=

−M
di2
dt

L2
di2
dt

= −
M
L2

(3.40)

Consequently, using (3.39) and (3.40), the loop gain can be expressed in the form

b ( jv )Av ( jv ) =
M
L2

gmSrd || Rp || 1
jvC || jvL2D (3.41)

Obviously, the transistor sees a parallel RLC circuit whose resonant frequency [i.e.,
the frequency at which the imaginary part of (3.41) vanishes] is

vo =
1

√L2C

At vo , the gain condition [from (3.41)] is

b ( jvo )Av ( jvo ) =
M
L2

gm Xrd || Rp C ≥ 1

or

gm Xrd || Rp C ≥
L2
M

3.2.7 Cross-Coupled Tuned Oscillator

A configuration that is used in IC oscillators is shown in Figure 3.15(a), and
redrawn in Figure 3.15(b). This oscillator is known as a cross-coupled tuned
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Figure 3.15 (a) A cross-coupled tuned oscillator and (b) alternate drawing.

oscillator. In Figure 3.15, Rp represents the equivalent parallel resistance of the
tuned circuit.

Each stage provides a phase shift of −180° at its resonant frequency. The gain
of the first stage is

Av1( jv ) =
vo1
vi1

=
−gm

1
Rp

+ jSvC −
1

vL D
where vi1 = vo2 and vi2 = vo1. The gain of the second stage is identical to that of
the first stage. Hence, the loop gain is given by

vo1
vi1

vo2
vi2

= 3 −gm
1

Rp
+ jSvC −

1
vL D4

2

From (3.42) the frequency of oscillation is given by

vo
1

√LC

and the gain condition is

gmRp = 1
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For IC implementation a current bias is used as shown in Figure 3.16(a).
Another IC implementation [similar to that in Figure 3.16(a)] is shown in
Figure 3.16(b).

In this section various FET tuned amplifiers have been designed, and the
resulting waveforms obtained using the harmonic balance simulator. The transient
simulator could have also been used. However, in some cases the transient simulator
can take a significant amount of time. For example, the transient simulation of
the oscillator in Figure 3.13 can take up to 5 minutes in order for the oscillator
to reach steady state.

In the analysis of the initial response of an oscillator a transient simulator is
required. Of particular interest is the oscillator behavior of when the power supply
is turned on. Figure 3.17 shows the transient response of the oscillator in Figure
3.13 when a step voltage source is used to represent the power supply turn-on
condition. Observe that the steady state response is identical to the one obtained
in Figure 3.13.

An envelope simulator is also provided in ADS. It can be used to obtain the
envelope information associated with the transient response of an oscillator. For
the purposes of this book the envelope simulator was not needed. The reader is
referred to the ADS documentation from Agilent for specific details about the use
of the envelope simulator in oscillator systems.

3.3 BJT Tuned Oscillators

The general configuration of a BJT tuned oscillator is shown in Figure 3.18(a). In
some designs RFCs are used in series with RC , R1 , and R2 . The elements that

Figure 3.16 (a) A cross-coupled tuned oscillator with current bias and (b) another cross-coupled
oscillator with current bias.
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Figure 3.17 Transient simulation for the turn-on condition of the oscillator in Figure 3.13.

determine the path of the ac signal are shown in Figure 3.18(b). The BJT provides
a voltage gain with a phase shift of −180°. The tuned circuit introduces another
−180° phase shift at the frequency of oscillation.

In Figure 3.18(c) the BJT is replaced by its hybrid model. The resistor RL
represents RC in parallel with 1/hoe . If an RFC is used in series with RC , then
RL = 1/hoe . If the resistance of the RFC is considered, then RL = (1/hoe ) || Rp where
Rp is the equivalent parallel loss resistance of the coil. Using a Thevenin’s equivalent
circuit across RL , the model in Figure 3.18(d) is obtained. The loop equations are

i1(hie + Z1) + i2ZM − i3(Z1 + ZM ) = 0

i1(hfeRL + ZM ) + i2(RL + Z2) − i3(Z2 + ZM ) = 0

and

−i1(Z1 + ZM ) − i2(Z2 + ZM ) + i3(Z1 + Z2 + Z3 + 2ZM ) = 0
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Figure 3.18 (a) General configuration of BJTs tuned oscillators, (b) ac model, (c) the BJT replaced
by its ac model, and (d) using a Thevenin’s model across RL .

Hence, the system determinant is

D ( jv ) = | hie + Z1 ZM −(Z1 + ZM )

hfeRL + ZM RL + Z2 −(Z2 + ZM )

−(Z1 + ZM ) −(Z2 + ZM ) Z1 + Z2 + Z3 + 2ZM
| (3.42)

The hybrid parameters hfe and hie in the previous equations are also denoted
by b and rp , respectively. In what follows, both notations are used.

3.3.1 BJT Pierce Oscillator

The schematic of a BJT Pierce oscillator (i.e., a Colpitts-type oscillator) is shown
in Figure 3.19(a), and its ac model is shown in Figure 3.19(b). Setting the imaginary
part of (3.42) equal to zero, it follows that the frequency of oscillation is given by

vo = √ 1
LCT

+
1

C1C2RLhie
≈ √ 1

LCT
(3.43)

where

CT =
C1C2

C1 + C2
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Figure 3.19 (a) A BJT Pierce oscillator and (b) its ac model.

The gain condition follows from the real part of (3.42), namely,

Fgm −
C2

C1hie
GRL ≥

C1
C2

where gm = hfe /hie and the load resistance is RL = Rc || (1/hoe ). If hfe @ C2 /C1
(which is simple to satisfy), the gain condition reduces to

gmRL ≥
C1
C2

(3.44)

Observing that the voltage feedback factor in the Pierce oscillator is
b ( jvo ) = −C2 /C1 , and that the open-loop gain of the amplifier is Av ( jvo ) =
−hfeRL /hie = −gmRL , (3.44) is simply recognized as the loop-gain condition
b ( jvo )Av ( jvo ) ≥ 1.

If the coil losses are included in the analysis (i.e., with Z3 = Rs + jX3) the
impedance ZL ( jv ) is given by

ZL = jX2 || FRs + jX3 + X jX1 || rp CG

where the approximation R1 || R2 || rp ≈ rp was used. Furthermore, letting
|X1 | ! rp , we can write

ZL =
jX2[ j (X1 + X3) + Rs ]
j (X1 + X2 + X3) + Rs

The voltage feedback factor is

b ( jv ) =
vf

vo
=

jX1
Rs + j (X1 + X3)
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Hence, the loop gain is

b ( jv )Av ( jv ) = b ( jv )F−gm XRL || ZL CG (3.45)

=
gmRLX1X2

jRL (X1 + X2 + X3) − X2(X1 + X3) + RLRs

which is similar to (3.22).
From (3.45) it follows that the frequency of oscillation is

vo = √ 1
LCT

where

CT =
C1C2

C1 + C2

and the gain condition is

gmRL >
X 2

2 (vo ) + RLRs

X1(vo )X2(vo )
(3.46)

which is similar to (3.26). Observe that if Rs → 0 then (3.46) reduces to (3.44).

Also, in the cases that RLRs @ X 2
2 , (3.46) gives

gm

v 2
o RsC1C2

> 1 (3.47)

Example 3.4

Design the BJT Pierce oscillator in Figure 3.19(a) to oscillate at 800 kHz.

Solution
A 2N2222 BJT can be used at a bias point of VCE = 10V and IC = 1 mA, where
the minimum beta is 50 and fT = 300 MHz. Letting VCC = 20V and using a typical
beta of 100, the resistors are designed as follows:

RE =
10%VCC

IC
=

0.1(20)

10−3 = 2 kV

RC =
VCC − VCE − VRE

IC
=

20 − 10 − 2

10−3 = 8 kV

RTH =
bRE
10

=
100(2 × 103)

10
= 20 kV
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VTH = IBRTH + 0.7 + IERE =
20

100
+ 0.7 + 10−3(2 × 103) = 2.9V

R1 = RTH
VCC
VTH

= 20 × 103 20
2.9

= 138 kV

and

R2 =
RTH

1 −
VTH
VCC

=
20 × 103

1 −
2.9
20

= 23.4 kV

At IC = 1 mA: gm = 10−3/25 × 10−3 = 40 mS and hie > bmin /gm = 50/0.04 = 1.25 kV.
From (3.44), with RL = RC , the gain condition is

(0.04)(8 × 103) = 320 ≥
C1
C2

(3.48)

The input resistance is

RIN = R1 || R2 || hie = 1.18 kV

The reactance of C1 should be much smaller than 1.18 kV, say, 50 times smaller.
Using a factor of 50 gives

|XC1 | =
1

2p800 × 103C1
=

1.18 × 103

50

or C1 = 8.43 nF. Then, from (3.48),

C2 >
8.42 × 10−9

320
= 26.3 pF

Let C2 = 50 pF.
Finally, from (3.43), with CT = 49.7 pF we obtain L = 797 mH. The magnitude

of the reactance of the bypass capacitor is selected to be negligible with respect to
RE , say Cb = 0.1 mF. A coupling capacitor can be placed from the collector to
C2 . Hence, its reactance (magnitude) must be much smaller than that of C2 , say
C2 = 100 nF. It can also be connected in series with the inductor, in which case
its reactance should be much smaller than that of the inductor.

The simulation and resulting waveform are shown in Figure 3.20. The funda-
mental frequency of oscillation is calculated to be fo = 783 kHz.

Example 3.5

The BJT Pierce oscillator shown in Figure 3.19(a) was designed using a 2N2907
BJT with VCC = 15V, R1 = 12 kV, R2 = 6 kV, RE = 500V, Ce = Cc2 = 0.1 mF,
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Figure 3.20 Simulation of the Pierce oscillator in Example 3.4.

C1 = 50 nF, C2 = 500 pF, L = 300 mH, and the collector resistor Rc was replaced
by an RFC whose inductance is 20 mH. Determine the frequency of oscillation
and check if the RFC, the bypass capacitor, and the coupling capacitor were
properly designed.

Solution
The 2N2907 transistor lists hFE (min) = 30, IC (max) = 800 mA, and fT =
300 MHz. An analysis of the circuit with the values given shows that the Q point
is located at IC = 8.16 mA and VCE = 11V. Hence, gm = 326 mS.
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The total capacitance across L is

CT =
C1C2

C1 + C2
=

50 × 10−9(500 × 10−12)

50 × 10−9 + 500 × 10−12 = 495 pF

The frequency of oscillation is

fo =
1

2p√LCT
=

1

2p√300 × 10−6(495 × 10−12)
= 413 kHz

The voltage feedback is

b ( jvo ) = −
C2
C1

= −
0.5 × 10−9

50 × 10−9 = −0.01

Hence, the gain for oscillation is

Av ( jvo ) ≥
1

b ( jvo )
= −

1
0.01

= −100

Since hfe (min) = 30, and with RL = 1/hoe > 50 kV, the gain condition in (3.44) is
readily satisfied.

The resistance R1 || R2 || hie ≈ hie appears in parallel with the reactance of C1 ,
which is XC1 = − 7.7V at 413 kHz. Using a typical value of 100 for hfe , the typical
value of hie is 306V. Hence, the loading is small.

At fo the reactances of the bypass and coupling capacitors are

XCb
= XCc

=
−1

2p foCb
=

−1

2p (413 × 103)(0.1 × 10−6)
= −3.85V

and the reactance of the RFC is

XRFC = 2p foL = 2p (413 × 103)(20 × 10−3) = 51.9 kV

Also, Cc acts as a short circuit to the ac signal, thus properly coupling the ac signal
to the resonant circuit. Since RE @ | XCb | , the emitter capacitor acts like a short
circuit at fo . A finite loss of 5V was assumed for the RFC. The reactance of the
coil is large and appears in parallel with rd . Hence, the gain condition in (3.47) is
satisfied with RL ≈ rd .

The simulation of the oscillator is shown in Figure 3.21(b). The fundamental
frequency of oscillation is calculated to be fo = 424.5 kHz.

3.3.2 BJT Colpitts Oscillator

The schematic of a BJT Colpitts oscillator is shown in Figure 3.22(a), and its ac
model in Figure 3.22(b). If the RFC is not used in series with RE , then for proper
operation
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Figure 3.21 Simulation of the oscillator in Example 3.5.

RE @
1

vC2

Also, C1 @ Cbe must be satisfied, and CC is a coupling capacitor. Either RFCs are
used or the input resistance R1 || R2 || bRE must be high in order not to load the
resonant circuit.

The analysis of the BJT Colpitts oscillator can be performed like the one for
the FET Colpitts oscillator in Section 3.2. The analysis can also be performed in
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Figure 3.22 (a) A BJT Colpitts oscillator and (b) its ac model.

terms of the system determinant using (3.42). However, Figure 3.22(b) shows that
in the Colpitts configuration the current in RL = 1/hoe can be neglected and only
two loop equations need to be written. That is, with Z1 = 1/ jvC1 ,
Z2 = 1/ jvC2 , and Z3 = jvL, we obtain

0 = i1(Z1 + Z2 + Z3) + ib (hfe Z2 − Z1) (3.49)

and

0 = i1Z1 − ib (Z1 + hie ) (3.50)

Oscillation occurs when the determinant of (3.49) and (3.50) is set equal to
zero. That is, when

|Z1 + Z2 + Z3 hfeZ2 − Z1

Z1 −(Z1 + hie ) | = 0

or

(Z1 + Z2 + Z3)hie + hfe Z1Z2 + Z1(Z2 + Z3) = 0 (3.51)

Setting the imaginary part of (3.51) equal to zero gives

Z1 + Z2 + Z3 = 0

or

−
1

voC1
−

1
voC2

+ voL = 0
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Hence, the frequency of oscillation is

vo =
1

√LCT

where

CT =
C1C2

C1 + C2

Setting the real part of (3.51) equal to zero gives

Z1Z2(hfe + 1) + Z1Z3 = 0

which can be expressed as

hfe + 1 > −
Z3
Z2

= 1 +
Z1
Z2

or

hfe >
C2
C1

(3.52)

which is the start of oscillation condition.
If coil losses are included in the analysis (i.e., Z3 = Rs + jvL ) the real part of

(3.51) gives

S−
1

voC1
−

1
voC2

+ voLDhie −
Rs

voC1
= 0 (3.53)

Equation (3.53) gives the frequency of oscillation as

vo =
1

√LCT
(3.54)

where

CT =
C ′1C2

C ′1 + C2

and

C ′1 =
C1

1 +
Rs
hie

≈ C1
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The gain condition follows from the imaginary part of (3.51), which is,

Rshie −
hfe

v 2
o C1C2

+
L
C1

= 0 (3.55)

Since the second term is much larger than the third term (i.e., hfeXC2 @ XL ), (3.55)
can be expressed as

gm

v 2
o RsC1C2

> 1 (3.56)

It is also observed from (3.55) that if Rs → 0, it reduces to

hfe >
C2
C1

as in (3.52).

Example 3.6

Design the Colpitts oscillator in Figure 3.22(a) to oscillate at 1 MHz.

Solution
Let C1 = C2 = 10 nF, so that C1 @ Cbe and CT = 5 nF. It follows that
|XC2 | = |XC1 | = 15.9V. Then, from (3.54)

L =
1

(2p × 106)2 5 × 10−9 = 5.07 mH

If the coil QU is 60, then Rs = 0.64V.
The condition (3.56) requires that

gm > (2p × 106)2(0.64)(10 × 10−9)2 = 2.52 mS

which is simple to attain.
A 2N2222 BJT can be selected and the bias point set at 8V, 10 mA, with

VCC = 15V. Then,

RE =
7

10 × 10−3 = 700V

IB =
10 × 10−3

100
= 100 mA

Let IR1 ≈ IR2 = 10IB = 1 mA. Then,
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R1 =
15 − 7.7

10−3 = 7.3 kV

R2 =
7 + 0.7

10−3 = 7.7 kV

The value of gm is

gm =
10 × 10−3

25 × 10−3 = 400 mS

which certainly satisfies the gain condition.
The coupling capacitor Cc is selected so that its reactance is negligible to that

of the inductor at 1 MHz. Hence, let Cc = 0.1 mF.
The simulation of the oscillator is shown in Figure 3.23(a). The Q point values

are: VCE = 8.13V and IC = 9.78 mA. The oscillation signal is viewed across the
emitter resistor. The fundamental frequency of oscillation is 1.023 MHz.

A modification to the configuration in Figure 3.23(a) is shown in Figure 3.23(c).
The collector-tuned circuit at 1 MHz is used to couple the output signal and provide
further filtering at the fundamental frequency. The simulation results are shown
in Figure 3.23(d) where vBE and iC are shown. The plots of vBE and iC are useful
with phase noise considerations.

The pulse width of the collector current affects the phase noise of the oscillator
(see Chapter 2). Further considerations associated with controlling the collector
pulse width and the phase noise of the oscillator are discussed in Section 3.7. The
SSB phase noise of the oscillator is shown in Figure 3.23(e). The harmonic balance
controller used for the calculation of the phase noise is shown. ADS recommend
that for phase noise calculation in the harmonic balance controller use: Order = 7
and Oversample = 4.

3.3.3 BJT Hartley Oscillator

The schematic of a BJT Hartley oscillator is shown in Figure 3.24(a), and its ac
model is shown in Figure 3.24(b). For this oscillator the frequency of oscillation
is

vo =
1

√LTC −
L1L2 − M2

Shie
RL

D
≈

1

√LTC

where

LT = L1 + L2 + 2M
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Figure 3.23 (a) Colpitts oscillator simulation for Example 3.6, (b) the oscillation waveform, (c) a collector
coupling circuit for the Colpitts oscillator, (d) the waveforms of vBE and iC , and (e) the SSB
phase noise.

With an RFC from the collector to VCC , we have RL = 1/hoe and the gain condition
is

gmRL ≥
L2 + M
L1 + M
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Figure 3.23 (Continued).

Another BJT Hartley type of oscillator is shown in Figure 3.25(a). In this
oscillator the BJT is in a CB configuration. The biasing could also be done as
shown in Figure 3.25(b). The ac model is shown in Figure 3.25(c).

From Figure 3.25(c) the feedback factor is

b =
vf

vo
=

L2
L1 + L2

The transformer formed by L1 and L2 converts the resistance RE || re ≈ re to a
parallel resistance across the capacitor of value
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Figure 3.24 (a) A BJT Hartley oscillator and (b) its ac model.

Figure 3.25 (a) A Hartley type of oscillator, (b) a dc bias variation, (c) the ac model, and
(d) equivalent circuit across the capacitor.
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R′P = n2re

where

n =
L1 + L2

L2

The equivalent model of the tuned circuit is shown in Figure 3.25(d).
From Figure 3.25(d), the resonant frequency is

vo =
1

√(L1 + L2)C
(3.57)

At vo , the loop gain is

b (vo )Av (vo ) =
L2

L1 + L2
gmn2re ≈

L1 + L2
L2

(3.58)

where gmre = 1. To start the oscillation, the loop gain is set to be between 2 and
3.

Example 3.7

Design the BJT Hartley oscillator in Figure 3.25(b) to oscillate at 1 MHz using
the 2N3904, a general purpose BJT. The Q point is to be at VCE = 6V and IC =
3 mA. The 2N3904 lists fT > 300 MHz and a typical beta of 100.

Solution
Let VCC = 12V, then

RE =
12 − 6

3 × 10−3 = 2 kV

Let

RTH = b
RE
10

= 100
2,000

10
= 20 kV

and it follows that

VTH ≈ 6 + 0.7 = 6.7V

R1 = RTH
VCC
VTH

= (20 × 103)
12
6.7

= 20 kV
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and

R2 =
RTH

1 −
VTH
VCC

=
(20 × 103)

1 −
6.7
20

= 45.3 kV

Let C = 5 nF, then from (3.57)

L1 + L2 =
1

v 2
o C

=
1

(2p106)2 5 × 10−9 = 5.1 mH

Letting the value of the loop gain be 3, it follows from (3.58) that

L2 =
L1 + L2

3
=

5.1 × 10−6

3
= 1.7 mH

and

L1 = 2L2 = 3.4 mH

The simulation of the oscillator is shown in Figure 3.26. The fundamental
frequency of oscillation is 999.5 kHz.

3.3.4 The Grounded-Base Oscillator

Two grounded-base (GB) oscillators are shown in Figure 3.27(a, b). In Figure
3.27(b), RL also serves as the collector resistor. The GB oscillator is in the form
of a Colpitts oscillator but with the base grounded. An ac model is shown in Figure
3.27(c). Replacing the BJT by its ac model we obtain the ac model in Figure 3.27(d),
where

hib =
hie
hfe

The parameter hib is also denoted by re in the literature. Observe that re = 1/gm .
It is of interest to analyze this oscillator by calculating the loop gain. To this

end, the model in Figure 3.27(d) is drawn in the form shown in Figure 3.28(a)
where it is assumed that C2 @ Cbe and C1 @ Cce . Observe that the impedance
across C2 is RE || hib . Since hib is small it follows that RE || hib ≈ hib . Therefore, if

1
vC2

! hib (3.59)

the resistor hib does not load the reactance of the capacitor C2 . However, the
resistor hib transforms to a parallel resistor across L, which must be considered in
the calculations of the voltage gain. In Figure 3.28(a) the losses of the inductor
are represented by Rp .
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Figure 3.26 Simulation of Example 3.7.

Assuming that (3.59) is satisfied, the voltage feedback factor is

b (v ) =
vf

vo
=

XC2

XC2 + XC1

=
C1

C1 + C2
(3.60)

Defining

n =
C1 + C2

C1
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Figure 3.27 (a) A GB oscillator, (b) a GB oscillator with a different dc bias network, (c) an ac model,
and (d) using the ac model of the transistor.

Figure 3.28 (a) Model to calculate the loop gain and (b) an equivalent ac model.

it follows that for a high-Q tuned circuit the capacitive transformer formed by C1
and C2 transform the resistor RE || hib to a parallel resistance across the coil given
by

R′P = Xhib || RE Cn2 ≈ hibSC1 + C2
C1

D2

The total parallel resistance is

RT = Rp || RL || R′P

The equivalent ac model across L is shown in Figure 3.28(b). Therefore, the
open-loop gain is
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Av ( jv ) =
vo
vf

= gmZL ( jv ) (3.61)

where

ZL ( jv ) = RT || jvL || 1
jvCT

(3.62)

and

CT =
C1C2

C1 + C2

The phase shift through the feedback network is 0°. Therefore, the phase from
Av ( jv ) in (3.61) must also be 0°. This occurs at the resonant frequency of the
tuned circuit, which is the frequency of oscillation. From (3.62), the imaginary
part is zero at

vo =
1

√LCT

Then, observing that RT ≈ R′P , it follows that

Av ( jvo ) ≈ gmR′P = gmhibSC1 + C2
C1

D2 ≈ SC1 + C2
C1

D2 (3.63)

since gmhib = a ≈ 1.
From (3.60) and (3.63), the loop-gain requirement to start the oscillation is

b ( jvo )Av ( jvo ) =
C1 + C2

C1
(3.64)

A design procedure is to use a factor of 10 to satisfy the inequality (3.59), or

C2 ≥
10

vhib
(3.65)

and in (3.64) to make the loop gain a value between 2 and 3.

Example 3.8

Design the GB oscillator in Figure 3.29(a) to oscillate at 10 MHz. The transistor
(a 2N3904) has b = 100 and it is to be biased at IC = 1 mA.
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Figure 3.29 (a) GB oscillator for Example 3.8 and (b) the simulation results.

Solution
With IC = 1 mA, it follows that

hib =
VT
IC

=
25 × 10−3

1 × 10−3 = 25V

and

gm =
IC
VT

=
1

hib
=

1
25

= 40 mS
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From (3.65)

C2 ≥
10

vhib
=

10

2p × 107 (25)
= 6.36 nF

and from (3.64) letting the loop gain be 3, we obtain

C1 =
C2
2

=
6.36 × 10−9

2
= 3.18 nF

Then,

CT = C1 || C2 = 2.12 nF

The value of L is

L =
1

v 2
o CT

=
1

(2p × 107)2(2.12 × 10−9)
= 0.12 mH

and

R′P ≈ hibSC1 + C2
C1

D2 = 25(3)2 = 225V

Since R′P = 225V, any RL such that RL @ 225V can be used.
The simulation results are shown in Figure 3.29(b) where the fundamental

frequency of oscillation is 9.977 MHz. The actual Q point values are: VCE = 7.5V
and IC = 1.07 mA.

3.3.5 BJT Clapp Oscillator

Two Clapp oscillators are shown in Figure 3.30. For the oscillator in Figure 3.30(a),
the frequency of oscillation occurs when

XL (vo ) = −XC1 (vo ) − XC2 (vo ) − XC3 (vo )

or

vo =
1

√LCT
(3.66)

where

1
CT

=
1

C1
+

1
C2

+
1

C3
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Figure 3.30 (a) A BJT Clapp oscillator and (b) another Clapp-type oscillator.

The gain condition is

gm

v 2
o C1C2Rs

> 1 (3.67)

Example 3.9

Design the Clapp oscillator in Figure 3.30a to oscillate at 10 MHz.

Solution
The BFS17P BJT was selected for this design. This RF transistor lists a maximum
fT value of 2.5 GHz. At a typical Q point of VCE = 5V and IC = 2 mA, the value
of fT is 1.5 GHz.

The Q point is obtained with VCC = 10V, RE = 2.5 kV, R1 = 4.3 kV and
R2 = 5.7 kV. The value of gm at IC = 2 mA is 80 mS.

Let L = 25 mH with QU = 80. Then, XL = 1,571V at 10 MHz and

Rs =
vL
QU

=
2p × 107(25 × 10−6)

80
= 19.6V

From (3.67), with C1 = C2 , we obtain

C 2
1 <

gm

v 2
o Rs

=
0.08

(2p × 107)219.6
= 1.04 × 10−18

or C1 < 1 nF, which is satisfied with C1 = C2 = 100 pF (or XC1 = −159V).
The value of C3 follows from
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XC3 = −XL − XC1 − XC2 = −1,571 + 159 + 159 = −1,253V

or C3 = 12.7 pF. The total capacitance across L is CT = 10 pF.
The simulation of the oscillator is shown in Figure 3.31. The fundamental

frequency of oscillation is 10.01 MHz.

3.3.6 Tuned-Collector Oscillator

A tuned-collector oscillator is shown in Figure 3.32. The ac model is similar to
the one shown in Figure 3.14(b), except that the resistor hie must be included.

Figure 3.31 Simulation for Example 3.9.
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Figure 3.32 A tuned-collector oscillator.

Hence, the analysis of this oscillator is somewhat similar to the one used for the
FET tuned-drain oscillator.

3.4 Op-Amp Tuned Oscillators

Tuned oscillators can also be designed using an op amp. Figure 3.33 illustrates
a Pierce oscillator using an op amp. The analysis is very similar to that of the
FET Pierce oscillators. The frequency of oscillation is given by [see (3.12)]

vo =
1

√LCT
(3.68)

where

Figure 3.33 A Pierce oscillator using an op amp.
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CT =
C1C2

C1 + C2

The gain of the inverter configuration is Avo = −R2 /R1 and the feedback factor
is

b (vo ) = −
C2
C1

Therefore, the gain condition is

|Avo | =
R2
R1

≥
C1
C2

(3.69)

Although the previous results are straightforward, it is of interest to analyze
the op-amp oscillator ac model shown in Figure 3.34 where the inverter gain is
Avo = −R2 /R1 , and its output resistance is Ro . From Figure 3.34, assuming that
R1 @ 1/vC1 , the open-loop gain is

Av =
vo
vf

=
AvoZR

ZR + Ro

where

ZR =
Z2(Z1 + Z3)
Z1 + Z2 + Z3

The feedback factor is

b =
vf

vo
=

Z1
Z1 + Z3

Figure 3.34 An ac model for the op-amp oscillator.
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Hence, the loop gain is

bAv =
AvoZ1Z2

Z2(Z1 + Z3) + Ro (Z1 + Z2 + Z3)

−AvoX1X2
−X2(X1 + X3) + jRo (X1 + X2 + X3)

Setting the loop gain equal to one shows that

X1 + X2 + X3 = 0 (3.70)

and the loop-gain condition is

AvoX1
X1 + X3

= −
AvoX1

X2
= 1

or

Avo = −
X2
X1

= −
C1
C2

(3.71)

which of course, is identical to (3.69).
If the inductor losses are considered in the analysis, it follows from (3.23) that

at vo

ZR ≈
X 2

2 (vo )
Rs

and the gain condition is

Avo >
X 2

2 (vo ) + RsR
X1(vo )X2(vo )

Figure 3.35 illustrates a Hartley oscillator using an op amp. The frequency of
oscillation is given by

vo =
1

√LTC

where LT = L1 + L2 if M = 0.
The feedback factor is

b (vo ) = −
L1
L2

and the required gain is
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Figure 3.35 A Hartley oscillator using an op amp.

|Avo | =
R2
R1

>
L2
L1

Example 3.10

Design the op-amp Pierce oscillator in Figure 3.33 to oscillate at 10 kHz.

Solution
The op amp used is a general-purpose op amp, such as the 1458 or 741. General-
purpose op amps have typical slew rates of 0.5 V/ms and gain-bandwidth products
( fT ) of 1 MHz. These parameters limit the frequency of oscillation. Of course,
there are many special purpose op amps with high slew-rate values and high fT
values, which can be used to attain higher frequency of oscillation.

Using supply voltage values of V + = 5V and V − = −5V, the op amp output is
limited to its saturation values (i.e., approximately ±5V). In this case the SR limits
the frequency of oscillation to

fo <
SR

2p |vo | =
0.5 × 106

2p (5)
= 15.9 kHz

Hence, the oscillator should perform well at 10 kHz.
Letting L = 100 mH, the required total capacitance, from (3.68), is

CT =
1

(2p fo )2L
=

1

(2p104)2(100 × 10−6)
= 2.53 mF

Letting C1 = 10 mF, then

C2 =
C1CT

C1 − CT
=

10 × 10−6(2.53 × 10−6)

10 × 10−6 − 2.53 × 10−6 = 3.39 mF
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From (3.69), the required gain is

|Avo | ≥
C1
C2

=
10 × 10−6

3.39 × 10−6 = 2.9

The gain condition can be satisfied with R2 = 200 kV and R1 = 50 kV (i.e.,
| Avo | = 4).

The simulation is shown in Figure 3.36. The output is shown across C1 .
The fundamental frequency of oscillation is 10.79 kHz. Although not shown, the
waveform across C2 has a peak value of approximately 5V.

A circuit that limits the amplitude of vo in an op-amp tuned oscillator is shown
in Figure 3.37. Other limiting circuits that can be used are those shown in
Figures 1.18, 1.19, and 1.21.

3.5 Delay-Line Oscillators

A delay-line oscillator uses a transmission line as a delay line in the feedback path
to accomplish the necessary phase shift for oscillation. The oscillator is shown in
Figure 3.38(a). The amplifier is assumed to have a constant voltage gain with phase
shift u, namely,

Av = Aoe ju

The transmission line is assumed to be ideal and to be described by the feedback
factor

b ( jv ) = e−jvt

where t is the delay time. The phase shift introduced by the transmission line (i.e.,
f = −v t ) is a linear function of frequency, as shown in Figure 3.38(b). The slope
of the phase shift is

df
dv

= −t

The phase shift associated with the loop gain is u + f (or u − v t ). Oscillations
occur at the frequency vo when u + f = 0.

In an RLC tuned circuit, QL and the phase shift are related by

QL = −
vo
2

df
dv

Defining the Q of the delay-line oscillator in a similar way gives

QL =
vot

2

which shows that high-Q values are obtained with long time delays.
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Figure 3.36 Simulation for the oscillator in Example 3.10.

Delay lines can be implemented with coaxial cable, although the resultant
length can be long. Surface acoustic delay lines are more practical, but more
expensive.
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Figure 3.37 An amplitude-limiting mechanisms for op-amps tuned oscillators.

Figure 3.38 (a) Delay-line oscillator and (b) its phase shift.

3.6 Voltage-Controlled Tuned Oscillators

In a voltage-controlled oscillator (VCO) either the capacitance or inductance of
the tuned circuit is varied to change the frequency of oscillation. VCOs are used
in many electronic applications, such as AM and FM modulation, TV tuners, and
frequency synthesizers.

A varactor-tuned oscillator uses the voltage-controlled capacitance of a varactor
diode (also known as varicaps) to accomplish the electronic tuning. Varactor diodes
of different types (i.e., abrupt and hyper-abrupt) having a wide range of capacitances
are available. Abrupt varactor diodes operate over a wide range of tuning voltages,
and the phase noise performance is lower than the one obtained with hyper-abrupt
varactor diodes. The phase noise performance of a varactor diode is determined
by its series resistance.

Hyper-abrupt varactor diodes have a more linear characteristic than the abrupt
diode. Hence, they are a good choice for wide-band VCOs. For example, it is
possible to cover a range of one octave with a tuning voltage of 1V to 20V.
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The varactor diode symbol is shown in Figure 3.39(a), and its circuit model
in Figure 3.39(b). The varactor diode junction capacitance (C) is given by the
formula

C =
Co

S1 +
VR
f Dn

where Co is the value of the capacitance at zero voltage, VR represents the reverse
bias voltage, f is the junction contact potential (f ≈ 0.7V for Si and 1.2V for
GaAs), and n is a number from 0.3 to 2. Lower values of n are associated with
abrupt junction diodes, and larger values with hyper-abrupt junction diodes.

The total varactor capacitance CT is composed of the sum of the junction
capacitance C plus the case capacitance CC . The resistance Rs represents the series-
loss resistance of the diode. The unloaded Q of a varactor diode is

QU =
1

vCTRs

For example, if at 100 MHz the capacitance C1 is 100 pF and QU = 80, then
Rs = 0.2V. The Q of many varactor diodes is specified at 50 MHz, and for varactor
diodes used at microwave frequencies the QU is usually specified at 1 GHz.

Figure 3.40 shows typical characteristic of a varactor diode. For this diode a
bias voltage of 4V produces a capacitance of 9.5 pF.

Figure 3.39 (a) Varactor-diode symbol and (b) model.

Figure 3.40 Typical varactor’s characteristics.



3.6 Voltage-Controlled Tuned Oscillators 163

A basic schematic of a varactor-tuned oscillator is shown in Figure 3.41(a).
The capacitance of the varactor is determined by the voltage V, which is set by
V +, Ra , and Rb . The RFC is used to isolate the dc signal from the ac signal.
Another varactor-tuned oscillator is shown in Figure 3.41(b). This configuration
is recognized as a Clapp oscillator with the varactor diode used in place of C3 (see
Figure 3.30). The relations (3.66) and (3.67) apply to the VCO with Rs being the
sum of the series-loss resistance of the inductor and the varactor equivalent series
resistance.

Another important parameter is the tuning ratio TR (or the capacitance ratio).
For example, if a varactor specifies

TR =
CT (2V)
CT (30V)

= 3

and CT (2V) = 15 pF (i.e., the total capacitance at 2V), then CT (30V) = 5 pF.
In the previous oscillators, at the frequency of oscillation, the resonant circuit

can be represented by a parallel tuned circuit with an equivalent inductance L, a
fixed value of capacitance Cf , and a variable varactor diode capacitance Cv . There-
fore, the frequency of oscillation is

vo =
1

√L (Cf + Cv )
(3.72)

For simplicity, write Cv in the form

Cv =
Co

V n
b

where Co now represents the capacitance at Vb = 1V. Then, (3.72) can be written
as

L =
1

v2XCf + CoV −n
b C

Figure 3.41 (a) A varactor-tuned oscillator and (b) a Clapp oscillator using a varactor diode.
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The unmodulated frequency of oscillation (i.e., v = vo ) is obtained when
Vb = Vo and Cv = Cvo , where

Cvo = CoV −n
o

If Vo is varied by DV, the unmodulated frequency is varied by a small Dv given
by

L =
1

(vo + Dv )2[Cf + Co (Vo + DV )−n ]

or

1

v 2
o XCf + CoV −n

o C =
1

(vo + Dv )2[Cf + Co (Vo + DV )−n ]

The previous relation gives

S1 +
Dv
vo

D2 =
Cf + CoV −n

o

Cf + Co (Vo + DV )−n

Finally, the tuning sensitivity (K ) in hertz/volt is

K =
dv
dV

=
nvo
2Vo

S Cv,o
C1 + Cv,o

D
The use of a varactor diode in a crystal oscillator is illustrated in Figure 4.40.

3.7 Large-Signal Analysis of Oscillators

A large-signal analysis is required to analytically determine the amplitude of
the oscillation. In tuned oscillators the mechanism that stabilizes the oscillation
amplitude is the nonlinear behavior of the active device. Basically, the transistor’s
transconductance decreases as the oscillation amplitude grows. To analyze the
transconductance behavior of a BJT under large-signal conditions we consider the
circuit in Figure 3.42 where

vBE = VBEQ + vi (t ) (3.73)

= VBEQ + V1 cos v t

Therefore, iC is given by

iC = Is e vBE /VT = Is e VBEQ /VT e x cos v t (3.74)
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Figure 3.42 Large-signal analysis of a BJT.

where

VT =
nq
kT

and

x =
V1
VT

where Is is the saturation current, VT is the thermal voltage, q is the electron charge
(1.6 × 10−19 C), k is Boltmann’s constant (1.38 × 10−23 J/K), and T is the temperature
in degrees Kelvin. At a room temperature of 300°K, it follows that VT = 26 mV.

For small-signal excitation x ! 1 (or V1 ! 26 mV), and (3.74) can be approxi-
mated by

iC = Is e VBEQ /VT [1 + x cos v t ]

or

iC = ICQ + ic (t )

where the dc value of iC is

ICQ = Ise
VBEQ /VT

and its ac value is

ic (t ) = ICQ x cos v t =
ICQ

VT
V1 cos v t = gmV1 cos v t

where gm is the small-signal transconductance, namely,
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gm =
∂iC

∂vBE |
iC = ICQ

=
ic (t )
vi (t )

=
IC
VT

(3.75)

For large-signals, the function e x cos v t in (3.74) can be expanded in a Fourier
series as

e x cos v t = Io (x) + 2 ∑
∞

n = 1
In (x) cos nv t

where In (x) (n = 0, 1, . . . ,) are the modified Bessel functions of the first kind of
order n and argument x. Hence, (3.74) can be expressed in the form

iC = ICQ3Io (x) + 2 ∑
∞

n = 1
In (x) cos nv t4 (3.76)

From (3.75) it is seen that the dc value of iC is affected by the amplitude of
the sinusoidal signal and it is given by

IC,dc = ICQIo (x)

If the load circuit ZL in Figure 3.42 is a tuned circuit with a high value of QL ,
only the fundamental component of iC contributes to the output voltage vo . From
(3.76) the fundamental component of iC is 2ICQ I1(x) cos v t. The large-signal
transconductance Gm (x) is defined as the ratio of the fundamental component of
iC to the voltage V1 . That is,

Gm (x) =
2ICQI1(x)

V1
=

2IC,dcI1(x)
V1Io (x)

=
2IC,dcI1(x)
VT xIo (x)

or, using (3.75),

Gm (x) = gm
2I1(x)
xIo (x)

(3.77)

A plot of (3.77) is shown in Figure 3.43. For small argument (x → 0) the
modified Bessel function can be approximated by Io (x) = 1 and I1(x) = x /2. Hence,
it follows that for small signals (i.e., for x → 0) (3.77) reduces to Gm (x) = gm , as
shown in Figure 3.43.

It also follows from (3.76) that a calculation of 2In (x) /Io (x) for a given x
provides information about the amplitude of the harmonics. For example, for x = 10
it follows that 2I1(x) /Io (x) ≈ 1.9, 2I2(x) /Io (x) ≈ 1.6, and 2I3(x) /Io (x) ≈ 1.25.
Hence, if the dc collector current is 1 mA, the amplitude of the first harmonic is
1.9 mA, for the second harmonic it is 1.6 mA, and for the third harmonic it is
1.25 mA, showing that a drive of x = 10 produces a significant number of harmonics.

Low values of x , say x = 1, results in low harmonic distortion, but can also
lead to problems with the oscillator design.
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Figure 3.43 Plot of the function
Gm (x)

gm
=

2I1(x)
xIo (x)

. (From: [1].  1971. Reprinted with permission of Pearson

Education, Inc.)

The exponential relationship between the collector current and the base-to-
emitter voltage shows that a large amplitude vbe voltage produces a series of periodic
pulses in the collector current. The smaller the width of these current pulses, the
higher the harmonic content. However, from the phase noise discussion in Chapter
2 there is a relation between the collector pulse width and the resulting phase noise.

In tuned oscillators, capacitors are used to provide feedback. In addition,
capacitors might be needed for coupling and bypass purposes in order to ensure
that the feedback oscillator signal appears across the base to emitter junction of
the transistor. For example, consider the GB oscillator shown in Figure 3.44. If
there is no oscillation the voltage difference between the capacitors Cb and C2 sets
the Q point value of vBE (i.e., VBEQ ≈ 0.7V), and ICQ is given by

Figure 3.44 (a) A GB oscillator and (b) the small-signal model.
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ICQ =
VTH − 0.7

RE +
RTH

b

where

VTH =
VCCR2
R1 + R2

and

RTH = R1 || R2

An oscillation signal will produce an ac variation in vBE [see vi (t ) in Figure
3.42] that affects the resulting average value of vBE and iC . However, this is usually
a second-order effect and the large-signal transconductance can be calculated using
(3.77) with gm given by (3.75). The analysis of this effect is discussed in Clarke
and Hess [1] where the resulting Gm (x) was found to be given by

Gm (x) = gmF1 +
ln Io (x)
Vl VT

G 2I1(x)
xIo (x)

(3.78)

where

Vl = ICQSRE +
RTH

b D
The parameter Vl represents the sum of the quiescent voltages across RE and RB .
It is also equal to VTH − 0.7.

If

Vl @
ln Io (x)

VT
(3.79)

which is satisfied in most circuits with good beta stability, the value of Gm (x) in
(3.78) reduces to that in (3.77).

The small-signal model of the GB oscillator in Figure 3.44(a) is shown in Figure
3.44(b). For this oscillator

b =
vf

vo
=

C1
C1 + C2

and

Av =
vo
vf

=
gm

s
C

s2 + s
1

RTCT
+

1
LCT

=
gmRT (2as)

s2 + 2as + v 2
o
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where

RT = XRp || RC || RL C || Fn2XRE || hib CG

n =
C1 + C2

C1

a =
1

RTCT

and

vo = √ 1
LCT

Therefore, it follows that the loop gain is

bAv =
1
n

gmRT (2as)

s2 + 2as + v 2
o

(3.80)

At the resonant frequency vo the oscillation will grow if bAv > 1, or from
(3.80) when

gmRT
n

> 1

or

gm >
n

RT
(3.81)

The small-signal gm decreases to its large-signal value Gm (x) and the small-
signal model in Figure 3.44(b) is replaced by the large-signal model shown in Figure
3.45. Only the fundamental components of vbe = V1 cos vot are considered since
the tuned-circuit shorts all other harmonics to ground. The amplitude of vbe (t )

Figure 3.45 Large-signal model of the GB oscillator shown in Figure 3.44.
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(i.e., V1) at which the oscillator stabilizes can be calculated assuming that the
transistor does not saturate. For the large-signal model in Figure 3.45 the loop
gain is identical to (3.80) but with gm replaced by Gm (x), namely,

bAv =
1
n

Gm (x)RT (2as)

s2 + 2as + v 2
o

At the resonant frequency the large-signal loop gain is unity when

Gm (x) =
n

RT
(3.82)

In order to use the plot in Figure 3.43, (3.82) is written in the form

Gm (x)
gm

=
n

gmRT
(3.83)

Equation (3.83) gives the value of Gm (x)/gm that sets the loop-gain equal to
unity. Then, from the plot in Figure 3.43 the value of x is obtained (or V1 =
xVT ). The amplitude V1 is the amplitude of vbe at which the oscillation amplitude
stabilizes.

Example 3.11 illustrates the previous large-signal analysis in a GB oscillator.

Example 3.11

(a) A design for the GB oscillator in Figure 3.27(b) at fo = 1.5 MHz is shown in
Figure 3.46. For this design, calculate the oscillation waveform of vo (t ).
(b) Calculate vo (t ) if the load resistor is changed to 20 kV.

Solution
(a) For this oscillator the feedback factor is

b =
C1

C1 + C2
=

1.142 × 10−9

1.142 × 10−9 + 80 × 10−9 = 0.0141

and

n =
C1 + C2

C1
=

1
0.0141

= 71

The total capacitance CT is

CT =
C1C2

C1 + C2
= 1.126 nF
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Figure 3.46 GB oscillator for Example 3.11.

and the resonant frequency is

fo =
1

2p √ 1
LCT

=
1

2p √ 1

10 × 10−6(1 × 10−9)
= 1.5 MHz

The Q point value of IC is

ICQ ≈ IEQ =
10 − 0.7

22 × 103 = 0.423 mA

and the small-signal gm is

gm =
ICQ

VT
=

0.423 × 10−3

26 × 10−3 = 16.27 mS

From (3.82) the amplitude V1 stabilizes when

Gm (x)
gm

=
n

gmRT
=

71

(16.27 × 10−3)(8 × 103)
= 0.545

and it follows from Figure 3.43 that x = 3. Therefore,

V1 = xVT = 3(26 × 10−3) = 78 mV

Vo = nV1 = 71(78 × 10−3) = 5.54V

and the output voltage is
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vo = 5.54 cos vot (3.84)

It is of interest to observe that for this example the value of V1 (i.e., the dc
value across RE) is

Vl = 10 − 0.7 = 9.3V

and therefore, (3.79) is satisfied.
The simulation of this oscillator is shown in Figure 3.47(a). The Q point is at

VCE = 10.6V and IC = 0.426 mA. The output waveform, shown in Figure 3.47(b),
oscillates between ±5.4V at a fundamental frequency of 1.498 MHz in fairly good
agreement with (3.84). The base-to-emitter voltage and collector current waveforms
are shown in Figure 3.47(c). The peak value of vbe shows that V1 ≈ 78 mV. From
the discussion in Chapter 2, the pulse width and amplitude of the iC waveform
when the BJT conducts affects significantly the phase noise of the oscillator. The
SSB phase noise for this oscillator is shown in Figure 3.47(d).
(b) If RL = 20 kV, then

Gm (x)
gm

=
n

gmRT
=

71

(16.27 × 10−3)(20 × 103)
= 0.218

In this case, from Figure 3.43, the value of x is 8.8, and it follows that

V1 = xVT = 8.8(26 × 10−3) = 228 mV

and

Vo = nV1 = 71(0.228) = 16.1V

But Vo cannot be 16.1V. In this case the BJT saturates and the amplitude Vo is
limited to approximately VCC = 10V. With Vo = 10V, it follows that V1 = 141 mV
and x = 5.42. This value of x implies that the large-signal value of Gm (x) is

Gm (x)
gm

= 0.33

or

Gm (x) = 16.27 × 10−3(0.33) = 5.37 mS

The reason that Gm settles at 5.37 mS is due to the saturation of the BJT. The
corresponding vo is

vo (t ) = 10 cos vot (3.85)

The simulation of the oscillator with RT = 20 kV is shown in Figure 3.48(a).
The output waveform is limited by saturation and in agreement with (3.85). The
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Figure 3.47 (a) The GB oscillator for Example 3.11, (b) the output waveform, (c) the vBE and iC waveforms,
and (d) the SSB phase noise.
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Figure 3.48 (a) Simulation data for the GB oscillator in Example 3.11 with RL = 20 kV, (b) the vBE and iC
waveforms, and (c) the SSB phase noise.

base-to-emitter voltage and the collector current waveforms are shown in Figure
3.48(b), and the SSB phase noise is shown in Figure 3.48(c).

This example shows how the SSB phase noise of the oscillator is affected by
the collector current pulse width and amplitude. In this oscillator, a higher value
of x decreased the current pulse width with a corresponding decrease in the SSB
phase noise. This is one type of analysis that can be performed to reduce the phase
noise.

For n-channel FETs if the device is operating in the square-law region the drain
current is given by

iD = IDSSS1 −
vGS
VP

D2 for VP < vGS < 0 (3.86)

where vGS and VP are negative numbers.
To analyze the transconductance of such FETs under large-signal conditions,

we let

vGS = VGSQ + V1 cos v t (3.87)

Substituting (3.87) into (3.86) produces
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iD =
IDSS

V 2
p

FV 2
x − 2VxV1 cos v t + V 2

1 cos2 v tG (3.88)

IDSS

V 2
p
FSV 2

x +
V 2

1
2 D − 2VxV1 cos v t +

V 2
1

2
cos 2v tG

where

Vx = VP − VGSQ

The voltage Vx is negative if the FET is biased in the square-law region.
Equation (3.88) shows that iD contains three terms. The first term is a dc term

(called Io ) of value

Io =
IDSS

V 2
p
SV 2

x +
V 2

1
2 D

The second term, whose amplitude is denoted by I1 , represents the fundamental
current,

I1 = −2
IDSS

V 2
p

VxV1 (3.89)

and the third term, with amplitude denoted by I2 , represents the second harmonic,

I2 =
IDSS

V 2
p

V 2
1

2

From (3.89) a large-signal transconductance can be defined as

Gm =
I1
V1

= −2
IDSS

V 2
p

Vx (3.90)

which happens to be identical to the small-signal transconductance gm , since

gm = −2
IDSS

V 2
p

(Vp − vGS ) |
vGS = VGSQ

= −2
IDSS

V 2
p

Vx

A plot of (3.90) is shown in Figure 3.49. The transconductance is a linearly
decreasing function of vGS , where the largest value, denoted by gmo , occurs at
vGS = 0 and it is given by

gmo = −2
IDSS
VP
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Figure 3.49 Transconductance variation for operation in the square-law region.

If the value of vGS in (3.88) is such that it exceeds VP during some part of the
cycle, as shown in Figure 3.50, then the corresponding iD can no longer be expressed
by (3.88). The resulting iD contains many Fourier terms. The Fourier analysis of
the signal shown in Figure 3.50 can be found in Clarke and Hess [1]. The amplitude
of the fundamental component is given by

I1 =
2Ip

p

3
4

sin f +
1
12

sin 3f − f cos f

(1 − cos f )2 (3.91)

where f is the conduction angle, namely,

cos f =
Vx
V1

and Ip is the peak value of iD, namely,

Ip =
IDSS

V 2
p

(V1 − Vx )2

Figure 3.50 A typical iD for VGSQ < VP .
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Figure 3.51 shows a plot of the normalized fundamental component I1 /Ip
versus Vx /V1 . Negative values of Vx occur when VGSQ is selected to bias the FET
in the square-law region (i.e., VP ! VGSQ ).

For operation in the square-law region, the graph of I1 /Ip agrees with (3.89).
This can be seen better if (3.89) is written in the form

I1
Ip

=
−2 SVx

V1
D

S1 −
Vx
V1
D2

(3.92)

and observing that for Vx /V1 = −1, (3.92) gives I1 /Ip = 0.5 in agreement with
Figure 3.51.

If the load circuit of the FET is a tuned circuit with a high value of QL , only
the fundamental component of iD contributes to the output voltage. A large-signal
transconductance Gm is defined as the ratio of I1 to V1 . That is,

Gm =
I1
V1

Figure 3.51 Plot of the normalized fundamental component vs. Vx /V1. (From: [1].  1971.
Reprinted with permission of Pearson Education, Inc.)
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If the peak value of iD is IDSS , Gm can be expressed in the form

Gm =
2IDSSSI1

Ip
D

2S−
V1
Vp
D =

gmoSI1
Ip
D

2S−
V1
Vp
D

A plot of Gm /gmo is shown in Figure 3.52.
Just as in the discussion of BJTs, the small-signal gm decreases to its large-signal

value Gm at which point a large-signal model of the oscillator can be developed for
the calculation of the loop gain and the value of Gm at which the oscillator voltage
stabilizes.

For example, consider the grounded-gate oscillator shown in Figure 3.12(a).
It follows from the ac model in Figure 3.12(d), with gm replaced by Gm , that the
large-signal loop gain is

Figure 3.52 Plot of Gm /gmo versus −V1 /Vp . (From: [1].  1971. Reprinted with permission of
Pearson Education, Inc.)
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bAv =
C1

C1 + C2

Gm
CT

s2 + s
1

RTCT
+

1
LCT

(3.93)

where

RT = Rp || RL || R′P ≈ R′P ≈ n2SRS || 1
gm

D
and

CT =
C1C2

C1 + C2

Setting the loop gain in (3.93) equal to 1 gives the frequency of oscillation as

vo =
1

√LCT

and the gain condition is

C1
C1 + C2

GmRT ≥ 1

which can be expressed as

Gm ≥
C1

C1 + C2

1

SRs || 1
gm

D (3.94)

Equation (3.94) gives the value of Gm that sets the large-loop gain equal to
unity. Then, from Figure 3.52 the value of the oscillation amplitude V1 follows.
Of course, V1 is the amplitude of the oscillator voltage between the gate and source.
The voltage vo is

vo = SC1 + C2
C1

D V1 cos vot (3.95)

Example 3.12

Calculate vo (t ) for the GG oscillator designed in Example 3.3.

Solution
In the oscillator of Example 3.3 (refer to Figure 3.13): C1 = 95 pF, C2 = 190 pF,
L = 1 mH, RS = 302V, RD = 1.25 kV, ID = 4.5 mA, gmo = 6.86 mS, and
gm = 4.2 mS. Therefore, from (3.95),
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Gm =
C1

C1 + C2

1

SRs +
1

gm
D =

(95 × 10−12)

95 × 10−12 + 190 × 10−12
1

(302 + 238)
= 2.5 mS

From Figure 3.52, with

Gm
gmo

=
2.5 × 10−3

6.86 × 10−3 = 0.364

it follows that

V1 ≈ 0.7(−VP ) = 0.7(3.5) = 2.45V

Then,

Vo = nV1 = 3(2.45) = 7.3V

or

vo (t ) = 7.3 cos vot (3.96)

where the frequency of oscillation is 19.75 MHz.
The simulation for this example is shown in Figure 3.13. The output waveform

varies between ±7.2V with a fundamental frequency of 19.95 Hz in good agreement
with (3.96).

Reference

[1] Clarke, K. K., and D. T. Hess, Communications Circuits: Analysis and Design, Upper
Saddle River, NJ: Pearson Education, Inc., 1971.
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Crystal Oscillators

4.1 Introduction

As their name implies, crystal-controlled oscillators use a crystal usually made
from quartz for their operation. Quartz exhibits a very interesting property: if a
mechanical stress is applied to the crystal along a certain direction or axis, a voltage
is generated along a perpendicular direction. Conversely, an ac voltage applied
to the crystal changes its physical shape, producing mechanical vibration. This
phenomenon between mechanical and electrical effects is called the piezoelectric
effect. Other crystalline materials exhibit piezoelectric effects, but quartz is the
most suitable material for oscillators. If the frequency of an applied signal is equal
to the mechanical resonant frequency of the crystal, the crystal will vibrate and
only a small voltage is required to keep it vibrating. In fact, the main reason for
using a crystal oscillator instead of an LC tuned oscillator is that the Q associated
with crystal oscillators are 1,000 to 10,000 times greater than those associated
with LC tuned oscillators. The crystal will act like a very-high Q tuned circuit,
permitting oscillations (i.e., vibrations) only at its resonant frequency. The resonant
frequency of the crystal is very important since at frequencies slightly above and
below its resonant frequency the amplitude of the crystal vibrations are essentially
zero. The oscillation frequency of a crystal oscillator is the same at that of the
crystal.

4.2 Crystal Characteristics

The crystal symbol is shown in Figure 4.1(a). A typical quartz crystal and mount
are shown in Figure 4.1(b). The crystal plate is supported by springs or wires
attached to points that do not attenuate the mechanical vibrations. The wires are
then connected to the pins for external electrical connections. The electrical contacts
to the crystals are made with special metal plate contacts. Typical crystal-holder
(HC) dimensions are shown in Figure 4.1(c) for an HC-49/U holder. The HC-49/U
holder is the resistance-weld version of the older solder-seal HC-18/U holder. Many
types of holders (i.e., metal, plastic, ceramic) are available for crystals.

The quartz crystals used in oscillators must be cut and polished to extremely
accurate dimensions. Crystals are classified according to the manner in which the
crystal was cut from the original quartz material. A variety of cuts are used, among
them are the X, Y, AT, BT, GT, and SC cuts. For example, in an AT cut the crystal
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Figure 4.1 (a) Crystal symbol, (b) crystal and mount, and (c) crystal-holder dimensions (in inches)
for the HC-49/U.

is a cut along its x-axis at an angle of 35° with respect to its z-axis. Each cut exhibits
different characteristics, especially temperature effects. Temperature stability in
crystals refers to the variation of its nominal resonant frequency as a function of
temperature. It is the allowable frequency drift in ppm (parts per million) over a
specified temperature range. Typical temperature stability specifications are from
10 to 100 ppm in hertz per degrees Celsius. The AT-cut crystals are very popular
because of their small temperature variation. For example, an AT-cut crystal can
be specified with a temperature range of 30 ppm (or 0.0003%) over a temperature
range of −55°C to 105°C. The X-cut crystals have negative temperature coefficient.
That is, the crystal frequency decreases with increases in temperature. The Y-cut
crystals have positive temperature coefficients.

Frequency tolerance (or accuracy), also expressed in ppm, describes how close
the actual crystal frequency is to its specified frequency at a reference temperature
(usually 25°C). For example, a 3.24500-MHz crystal with a frequency tolerance
of 10 ppm is cut differently from one with a specified frequency of 3.24555 MHz.

The sum of the frequency tolerance and the temperature tolerance is known
as the overall tolerance. The overall tolerance is a measure of the frequency deviation
over a temperature range of operation with respect to the nominal frequency.

Example 4.1

The frequency tolerance of a 32.768-kHz crystal is listed as 20 ppm at 25°C.
Calculate the frequency of operation of the crystal and the associated timing error.

Solution
The 32.768-kHz crystal is used in digital watches. Since 215 = 32,765, it follows
that division by 15 stages of division 2 provides a 1-Hz pulse.

The 20-ppm accuracy means that the crystal frequency of operation can vary
by
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D f =
±20

106 (32,768) = ±0.6554 Hz

or the frequency of operation can be between 32,767.3446 < f < 32,768.6554.
In a week, a watch using such crystal can vary by

±20

106 S604,800
seconds
week D ≈ ±12 seconds/week

or 50 seconds/month, or 10 minutes/year, which is not bad for an inexpensive
watch.

The 32.768-kHz watch crystals are of the tuning-fork variety. It is an NT-cut
crystal that is shaped like a tuning fork. The crystal is commonly manufactured
in the NC-38 holder, which is shaped like a tube (about 3 mm by 8 mm).

Crystals are affected by temperature variations, vibrations, shock, and aging.
Aging is a systematic crystal effect that results in a change in the operational
frequency of the crystal. It is observed over a period of time (days to years). The
main causes are associated with a mass transfer due to internal contamination,
excessive drive level, or a chemical reaction in the crystal structure. For example,
a crystal can specify a maximum aging per year of 5 ppm.

In an AT-cut crystal the fundamental resonant frequency is related to the crystal
thickness by the formula

fo ≈
167.64 × 103

t

where t is expressed in centimeters. For example, for fo = 1 MHz the required
thickness is t = 0.16764 cm. As the fundamental frequency increases, the required
thickness becomes smaller. The small thickness associated with higher fo makes
the crystal very fragile and susceptible to fracture. This places a practical limitation
on the highest fo possible. Many manufacturers provide crystals with fundamental
frequencies from a few kilohertz to about 30 MHz. Fundamental frequencies
higher than 30 MHz are associated with crystals fabricated using the inverted mesa
technology. Crystals can also be operated at their higher mechanical overtones,
especially the third and fifth overtone. Crystals operated at their overtones are
normally used above 20 MHz. For example, typical frequency ranges for AT crystals
are: 30 to 90 MHz at the third overtone; 50 to 150 MHz at the fifth overtone;
and 100 to 180 MHz at the seventh overtone.

There are several classifications of crystal oscillators. Standard crystal oscilla-
tors (XOs) have typical accuracy of 20 to 50 ppm. These crystals are suitable
for many digital timing applications. Temperature-controlled crystal oscillators
(TCXOs) use the output signal from a temperature sensor to generate a correction
voltage that depends on temperature. This voltage is applied to a varactor diode
whose reactance variation compensates for the crystal frequency variation due to
temperature. TCXOs have typical aging rate of 0.5 ppm/year and typical tempera-
ture stability of 0.5 ppm. Accuracy is of the order of 1 ppm.
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Oven-controlled crystal oscillators (OCXOs) use a crystal placed in a stable
oven. The oven temperature is adjusted so that the frequency versus temperature
slope is zero. OCXOs have typical aging rate of 0.005 ppm/year and typical
temperature stability of 0.001 ppm. Accuracy is of the order of 0.01 ppm. These
devices are costly.

An important application of crystals is in voltage-controlled crystal oscillators
(VCXOs). This type of oscillator commonly uses a crystal in series with a voltage-
controlled capacitor to vary the frequency of oscillation.

The reactance characteristics of a crystal are illustrated in Figure 4.2(a). An
expanded view of the characteristics of the fundamental mode is shown in Figure
4.2(b). The crystal exhibits several series resonances, which are modeled by several
series-resonant branches, as shown in Figure 4.2(c). The first RLC branch (i.e.,
R1 , C1 , and L1) models the fundamental mode of oscillation, and the other
branches the odd overtones. The overtone frequencies are approximately odd multi-
ples of the fundamental frequency. Spurious resonances appear between the domi-
nant modes. For operation around a certain resonant frequency the crystal can be
modeled by the circuit of a single branch, simply denoted by L, C, and R, as shown

Figure 4.2 (a) Typical reactance characteristics of a crystal, (b) reactance characteristics of the
fundamental mode, (c) equivalent circuit of a crystal where n represents the nth odd
overtone, and (d) model for operation at a certain resonance.
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in Figure 4.2(d). The inductor L is the electrical equivalent of the crystal mass, the
capacitor C represents the crystal stiffness or elasticity, and R represents the heat
losses due to mechanical friction in the crystal. The series L, C, R portion of the
circuit is called the motional arm of the crystal (or circuit). The capacitor Co
represents the shunt capacitance of the electrodes in parallel with the holder capaci-
tance. It is called the static arm of the crystal (or circuit).

The overtone element values are calculated using

Ln = L

Cn =
C

n2

and

Rn = n2R

where n is the nth overtone (n = 3, 5, 7, . . .).
The impedance of the equivalent circuit in Figure 4.2(d) is given by

Z (s) =
s2 + SR

L Ds + v 2
s

sCoFs2 + SR
L Ds + S1 +

C
Co

Dv 2
s G (4.1)

=
s2 + S vs

QU
Ds + v 2

s

sCoFs2 + S vs
QU

Ds + S1 +
C

Co
Dv 2

s G
where

vs = 2p fs =
1

√LC
(4.2)

and

QU =
vsL

R
(4.3)

If R is neglected (due to a high-QU value) the impedance reduces to

Z (s) =
s2 + v 2

s

sCoFs2 + S1 +
C

Co
Dv 2

s G
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which shows that the crystal exhibits a series resonance at vs and a parallel reso-
nance (i.e., an antiresonance) at

va = 2p fa = vsS1 +
C

Co
D1/2

=
1

√LCT
(4.4)

where

CT =
CCo

C + Co

Typical magnitude and phase plots of (4.1) are shown in Figure 4.3. The
impedance plot in Figure 4.3 [or reactance plot in Figure 4.2(b)] shows that the
circuit has a series and a parallel resonance. At the series resonance frequency vs ,
XL = −XC and the crystal branch impedance is simply R. The resistor R is also
called the equivalent series resistance (ESR) at series resonance. At series resonance,
the resistor R appears in parallel with the reactance Co . However, |XCo | @ R so
the crystal essentially appears resistive. Between fs and fa the impedance is inductive
with the phase being 90°. This is an important region of operation, which is called
the parallel-resonance region (or the region of usual parallel resonance). In Figure
4.2(b) the frequency fr is the frequency where the reactance is zero. The difference
between fr and fs is due to Co . Hence, for practical purposes fs ≈ fr and no distinction
is made between these two frequencies.

The parallel-resonant frequency is given by (4.4). From (4.4), since Co @ C,
the relation between fa and fs is approximately given by

Figure 4.3 Impedance plot of the crystal.
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fa = fsS1 +
C

Co
D1/2

≈ fsS1 +
C

2Co
D (4.5)

Hence, the frequency separation (D f ) between fa and fs is

D f = fa − fs ≈ fsS C
2Co

D
This frequency separation is very small. For example, for a crystal with fs = 2 MHz
and Co = 300C, it follows that D f = 3.33 kHz and fa = 2003.33 kHz. The frequency
range D f is known as the pulling range.

The crystal parameters can be measured very accurately using a variety of
equipment, such as an impedance analyzer, a capacitance meter, and a crystal
impedance meter. It is important to know if a crystal is specified to operate at its
fundamental or at an overtone mode. The reason is that crystal overtones are not
exactly integers multiples of the fundamental. Hence, a crystal manufacturer will
calibrate a third overtone crystal at the third overtone and not at the fundamental.

Two figures of merit used in the specifications of crystals are r and M. The
parameter r is defined as

r =
Co
C

It provides a measure of the separation between fs and fa . The parameter M is the
ratio of the impedance of the static arm of the crystal to the impedance of the
motional arm at series resonance, which is R. That is,

M =
1

vsCoR
= QU

C
Co

= QU
2( fa − fs )

fs

Hence, the parameter M also provides a measure of the separation between fa and
fs . In fact, M and r are related by QU = Mr. Crystals operating in the fundamental
mode have high values of M (see Example 4.2). Crystals operating at an overtone
have smaller values of M. It can be shown that an inductive region exists for values
of M greater than 2.

From Figure 4.2(b) it is seen that for frequencies between fs and fa the impedance
is inductive (i.e., the crystal appears inductive), and for f < fs or f > fa , the impedance
is capacitive. The region above series resonance, where fs < f < fa , is known as the
parallel-resonance region. In oscillator applications the crystal is operated either
at series resonance or in the parallel resonance region. Crystals are not operated
at the anti-resonant frequency.

Next, consider the crystal circuit shown in Figure 4.4(a). At frequencies lower
than fs the motional arm impedance is high and the current increases as the frequency
increases due to the decreasing reactance of Co . As the frequency reaches the series
resonant frequency ( f = fs ≈ fr ), the current increases significantly since it is only
limited by the crystal resistance R [see Figure 4.4(b)]. As the frequency increases
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Figure 4.4 (a) A crystal in series with a load RL and (b) the current response.

toward fa the motional arm exhibits a net inductive reactance, which is in parallel
resonance at fa with Co . At parallel resonance the circuit exhibits a high resistance
and the resulting current is low. At series and parallel resonance the crystal appears
resistive and the applied voltage and current are in phase. Figure 4.4(b) also shows
that at frequencies higher than fa the circuit is again controlled by Co .

An equivalent circuit for the crystal for frequencies between fs and fa can be
obtained as follows. Consider Figure 4.5(a) where

jXm = jSvL −
1

vC D
The input impedance of the circuit is given by

ZIN =
jXCo

(R + jXm )

R + j XXm + XCo
C

or

ZIN =
RX 2

Co

R2 + XXm + XCo
C2 + j

XCo
FR2 + Xm XXm + XCo

CG
R2 + XXm + XCo

C2 (4.6)

The ESR, denoted by Re , is given by the real part of (4.6). The imaginary part of
(4.6) is denoted by Xe . A typical plot of Re and Xe is shown in Figure 4.5(b).

From Figure 4.5(b) it is observed that the function Xe is zero at fr . At f = fr ≈
fs , the equivalent resistance is approximately R, since |XCo | @ R . From (4.6), in
the cases that

|XCo
+ Xm | @ R (4.7)

the following relation approximates the behavior of the crystal impedance in the
parallel-resonant region:
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ZIN =
R

S1 +
Xm
XCo

D2
+ j

XmXCo

Xm + XCo

or

Re ≈
R

S1 +
Xm
XCo

D2
(4.8)

and

Xe = vLe ≈
XmXCo

XmXCo

(4.9)

The equivalent model for the crystal in the parallel-resonance region is shown in
Figure 4.5(c).

For frequencies around the series resonance of the crystal we let v = vs + dv ,
where dv represents a small frequency increment. Hence, the impedance behavior
of Xm can be approximated by

Xm = vL −
1

vC
=

1
vC

[v2LC − 1]

≈
1

vsC F2dv
vs

+
(dv )2

v 2
s
G ≈

1
vsC S2dv

vs
D

and

Xm
XCo

≈ −
2Co

C
(v − vs )

vs

Therefore, (4.8) and (4.9) are approximated as

Re ≈
R

F1 −
2Co (v − vs )

Cvs
G2

≈ R

and

Xe ≈
S 1

vsC D 2(v − vs )
vs

F1 −
2Co (v − vs )

Cvs
G2

≈ S 1
vsC D 2(v − vs )

vs
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and it follows that

ZIN ≈ R + jS 1
vsC D F2(v − vs )

vs
G (4.10)

= R F1 + jQU
2(v − vs )

vs
G

which shows that the equivalent circuit is composed of a resistor of value R in
series with a reactance whose sign depends on whether v is greater or less than
vs . An inductive reactance results for v > vs . It is also observed that the series
resonance does not depend on Co .

The previous approximations are based on the assumption in (4.7). It is
observed that if dv → 0 (i.e., Xm → 0), the assumption is identical to the figure
of merit requirement that

M =
1

vsCoR
@ 1

which is valid for crystals operating in the fundamental mode. Also, if dv → Dv
(i.e., for operation close to fa ) the assumption (4.7) is not valid.

An equivalent circuit can also be obtained for the behavior of the impedance
around fa , namely

ZIN ≈
Rp

1 + jQU
2(v − va )

vs

(4.11)

where the equivalent parallel resistance Rp is given by

Rp =
1

R (vsCo )2 (4.12)

This relation for ZIN is recognized as the behavior of a high-Q parallel-resonant
circuit.

Equations (4.10) and (4.11) are used to develop the narrowband equivalent
circuits shown in Figure 4.6 for the crystal behavior around the series resonance
and the parallel resonance.

Crystal oscillator design is either based on a design at series resonance or in
the parallel-resonance region where the crystal behavior is inductive.

When the crystal is operated with a parallel load capacitance CL , as shown in
Figure 4.7(a), its parallel resonance, denoted as the load-resonant frequency fL , is
given by

fL = fsS1 +
C

Co + CL
D1/2

≈ fsF1 +
C

2(Co + CL )G (4.13)
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Figure 4.6 (a) Narrowband equivalent circuit for the crystal around the series resonance for
v > vs and (b) narrowband equivalent circuit for the crystal around the parallel resonance
for v < va .

Figure 4.7 (a) Crystal with external load capacitance CL and (b) equivalent model at fL .

where fs < fL < fa . Equation (4.13) follows from (4.5) with Co replaced by
Co + CL . The frequency separation (D f ) between fL and fs due to CL is given by

D f =
fsC

2(Co + CL )

For the circuit in Figure 4.7(a), for frequencies around its parallel resonance,
the input impedance [see (4.6)], is

ZIN = Re + jXe (4.14)

where
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Re =
RX 2

Co

R2 + F 1
v (CL + Co )

−
1

vCo
G2

=
RX 2

Co

R2 + X 2
CoS CL

CL + Co
D2

(4.15)

and, since XCL
= |XCo || Xm | at fL , we obtain

Xe = vLLe = |XCL
| =

1
vLCL

(4.16)

If

XCoS CL
CL + Co

D @ R

(4.15) can be further approximated by

Re ≈ RSCL + Co
CL

D2 (4.17)

Equations (4.16) and (4.17) permit the crystal with the external load capaci-
tance CL to be represented by the model in Figure 4.7(b).

Example 4.2

(a) Consider a 2-MHz series resonant crystal described by L = 0.528H, C =
0.011993 pF, R = 100V, and Co = 4 pF. Calculate the series-resonance frequency
fs , the parallel-resonant frequency fa , and the crystal QU . Also, calculate the figure
of merits r and M.
(b) Consider the 2-MHz crystal in part (a) with the value of C specified as
C = 0.012 pF instead of 0.011993 pF. Calculate fs and fa .

Solution
From (4.2), fs is

fs =
1

2p √LC
=

1

2p√0.528(11.993 × 10−15)
= 2.000042 MHz

and from (4.4), with CT = 0.011957 pF, fa is

fa =
1

2p √LCT
=

1

2p√0.528(11.957 × 10−15)
= 2.003051 MHz

The frequency separation is
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D f = fa − fs = 3 kHz

Also, note that (4.5) provides a good approximation for fa since it gives

fa = fsS1 +
C

2Co
D = 2.000042 × 106F1 +

11.993 × 10−15

2(4 × 10−12) G = 2.003049 MHz

The unloaded QU of the 2-MHz crystal is

QU =
vsL

R
=

2p (2 × 106)(0.528)
100

= 66,350

The reactances of L and C at 2 MHz are

XL = −XC = vL = 2p (2 × 106)(0.528) = 6.635 MV

In the parallel-resonance region, say at 2.001 MHz, the reactances of the crystal
elements are

XL = vL = 2p (2.001 × 106)(0.528) = 6.6384 MV

XC = −
1

vC
= −

1

2p (2.001 × 106)(11.993 × 10−15)
= −6.632 MV

and

XCo
= −

1
vCo

= −
1

2p (2.001 × 106)(4 × 10−12)
= −19.9 kV

Hence, jXm = j (6.6384 − 6.632) = j6.4 kV.
The parameter r is

r =
Co
C

=
4 × 10−12

11.993 × 10−15 = 333.5

and the parameter M is

M =
1

vsCoR
=

1

2p (2 × 106)4 × 10−12(100)
= 199

(b) With C = 0.012 pF, it follows that fs = 1.999459 MHz and fa = 2.002456
MHz. In this case the specified crystal frequency of operation (i.e., 2 MHz) is
between fs and fa . This example shows how small variations in the value of C (and
also on L) can make a difference in the resulting fs and fa values.
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To further understand the electrical properties of a crystal consider its pole-
zero diagram, shown in Figure 4.8(a), where (4.1) is expanded in the form

ZIN =
(s − sz1)(s − sz2)

sCo (s − sp1)(s − sp2)
(4.18)

For example, for a 2-MHz crystal with L = 0.528H, C = 0.011993 pF, R = 100V,
and Co = 4 pF it follows that

QU =
vsL

R
=

2p (2 × 106)(0.528)
100

= 66,350

vs = 12.56663 Mrad/s

Dv = vsS C
2Co

D = 12.56663 × 106F0.011993 × 10−12

2(4 × 10−12) G = 18.839 krad/s

and

vs
2QU

=
12.56663 × 106

2(66,350)
= 94.7

Hence, there is a pole at s = 0 and the conjugate poles and zeroes are located at

sz1 = −94.7 + j12.56663 × 106

sz2 = −94.7 − j12.56663 × 106

sp1 = −94.7 + j12.58547 × 106

sp2 = −94.7 − j12.58547 × 106

Figure 4.8 (a) Typical pole-zero diagram of a crystal and (b) pole-zero diagram in the vicinity of
the series resonance.
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These values show that the vertical spacing is about 105 times larger than the
horizontal spacing. Hence, near a complex zero the impedance behaves as an
isolated zero with a very high QU , and near a complex pole it behaves like an
isolated complex pole with, also, a very high QU . The high QU values associated
with a crystal oscillator provide excellent frequency stability and reduction of the
harmonics.

From Figure 4.8(b), in the vicinity of the series resonant frequency vs , we can
make the following approximations in (4.18):

s ≈ jvs

(s − sz1) =
vs

2QU
+ j (v − vs )

(s − sp1) ≈ −jDv = −jvs
C

2Co

(s − sz2) ≈ (s − sp2) ≈ 2jvs

Hence, ZIN is approximated by

ZIN ≈

vs
2QU

+ j (v − vs )

jvsCoS−jvs
C

2Co
D = RF1 + jQU

2(v − vs )
vs

G
which is recognized as the behavior of a high-Q series resonant circuit.

In the vicinity of the parallel-resonant frequency va , the following approxima-
tions apply:

s ≈ jvs

(s − sz1) ≈ jDv = jvs
C

2Co

(s − sp1) =
vs

2QU
+ j (v − va )

(s − sz2) ≈ (s − sp2) ≈ 2jva

Hence, ZIN is approximated by

ZIN ≈
Rp

1 + jQU
2(v − va )

vs

where Rp is given by (4.12).



4.2 Crystal Characteristics 197

When a crystal is to be operated in the parallel-resonance region. the manufac-
turer constructs the crystal to resonate at the listed frequency when an external
load capacitance is connected in series with the crystal. The load resonant frequency,
denoted by fL , is the frequency at which the crystal is resonant when a given
external load capacitance CL is connected in series with the crystal. This is illustrated
in Figure 4.9(a) where the basis of a crystal impedance bridge measuring system
is illustrated. In Figure 4.9(a) a tuned oscillator is completed by either a variable
resistor or the crystal (see switch S1). The tuned oscillator is designed to operate
at a frequency close to the desired crystal frequency. Hence, it plays a role in
selecting the desired mode of operation for the crystal. From a pole-zero point of
view, the tuned circuit adds canceling poles and zeroes at the operating frequency
of the crystal. The oscillator is adjusted so the frequency and amplitude of oscillation
is the same through both paths. Hence, the crystal operates at fs (zero-phase shift)
and the value of the variable resistor is equal to R. If switch S2 connects a load
capacitor in series with the crystal, the circuit will oscillate at the frequency fL .

Figure 4.9 (a) Crystal impedance bridge setup and (b) equivalent crystal load circuits.
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The value of the variable resistor that produces the same oscillation is equal to
Re .

At fL , the series combination of the crystal reactance (XXTAL ) and the reactance
of the load capacitor CL (i.e., XCL

= −1/vLCL where vL = 2p fL ) is zero (i.e., zero-
phase shift). Hence, the crystal reactance is

XXTAL =
1

vLCL
(4.19)

For example, specifying a 10-MHz crystal at a load capacitance of 30 pF is
the same as specifying a crystal reactance of 530.5V at 10 MHz. Typical values
of the load capacitance are from 10 to 32 pF.

Crystals operating in the parallel-resonance region operate between fs and fa
with a certain load capacitance. Series resonant crystals do not have a load capaci-
tance specification.

From the previous discussion it is seen that a crystal has a frequency specification
of fL at a load capacitance CL when its reactance at fL is given by (4.19). There
is a single frequency fL for each value of CL . In a parallel-resonance oscillator
configuration, such as the tuned Colpitts oscillators in Chapter 3, the crystal replaces
the inductor and the load capacitance specification is the total capacitance across
the (inductive) crystal. This capacitance value, equal to CL , produces parallel
resonance at fL . In Section 4.4 various oscillator configurations that take advantage
of this effect are discussed.

A crystal is usually specified by giving the maximum value of R, the maximum
value of Co , and the minimum value of C. The values of Co and C fix the maximum
value of the ratio r = Co /C. For computer simulation purposes once the values of
R, Co , and C are specified, the value of L follows from (4.2) for a crystal operating
at series resonance. For a crystal operating in the parallel-resonance region at a
given load capacitance, the value of fs is calculated using (4.13), and then, (4.2) is
used to calculate L.

Some typical crystal parameters are given in Table 4.1. Since there are many
varieties of crystals, the designer should obtain from the manufacturer the specific
data for the desired crystal.

It is common for manufacturers to list for a given crystal holder the maximum
shunt capacitance, the maximum ESR, the maximum load capacitance, the typical
value of C, and the maximum drive level.

For example, for a crystal frequency in the 10- to 20-MHz range in an HC-49/U
holder, in the −10°C to 60°C temperature range, a manufacturer specifies a tempera-
ture stability of 10 ppm, series CL between 10 and 40 pF, a calibration tolerance of
10 ppm, a maximum ESR of 25V, a maximum shunt capacitance of Co = 7 pF,
a value of C in the 10- to 20-fF range, and a maximum drive level of 0.5 mW.

The crystal maximum drive level is the maximum dissipation allowable in the
crystal. The oscillator circuit determines the drive level in the crystal. An overdriven
crystal will deteriorate fast. For example, a manufacturer lists the maximum drive
level for a crystal in an HC-49/U holder at 1 mW. Other maximum drive levels
listed by manufacturers for crystals operating at frequencies below 100 kHz is in
the range of 5 mW, in the frequency range of 1 to 30 MHz maximum drive levels
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Table 4.1 Typical Crystal Parameters

L (H) C (pF) R (V) Co (pF) QU

20 kHz 4,000 0.005 40,000 7 12,500
200 kHz 27 0.024 2,000 10 17,000
450 kHz 8.5 0.015 1,050 5 23,200
1 MHz 3.16 0.008 400 3.2 50,000
2 MHz 0.528 0.012 100 4 66,000
4 MHz 0.21 0.007 22 2.4 240,990
8 MHz 0.014 0.027 8 5.6 88,680
10 MHz 0.0101 0.025 5 5.5 126,000
15 MHz 0.00417 0.028 5 4 78,500
30 MHz 0.0101 0.0027 45 6 42,300

(3rd overtone)
150 MHz 0.002814 0.0004 70 6 37,887

(7th overtone)

of 10 mW are found, with 1 mW being typical. Overtone crystals are usually rated
at 1 to 2 mW.

The drive level can be calculated using

PXTAL = I 2
rmsRe

where Irms is the rms current through the crystal. A current probe can be used to
measure Irms .

Example 4.3

Calculate QU , fp , D f, and L for the seventh overtone crystal operating at
150 MHz listed in Table 4.1.

Solution
From (4.5), with fs = 150 MHz, we obtain

fp = 150 × 106F1 +
0.0004 × 10−12

2(6 × 10−12) G = 150.005000 MHz

and it follows that D f = fp − fs = 5 kHz. This result also follows from

D f = fs
C1

2Co
= 150 × 106 0.0004 × 10−12

2(6 × 10−12)
= 5 kHz

The value of L is calculated using (4.2):

L =
1

(2p × 150 × 106)2(0.0004 × 10−12)
= 2.814 mH
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The value of QU , from (4.3), is

QU =
2p × 150 × 106(0.002814)

70
= 37.887

and the value of M is

M =
1

vsCoR
=

1

(2p × 150 × 106)(0.0004 × 10−12)70
= 2.52

High overtone crystals have low values of M. In fact, values of M less than 1 are
found.

Example 4.4

A 1-MHz crystal is specified to operate with a load capacitance of 32 pF. The
crystal manufacturer specifies Co = 5 pF, R = 400V and C = 10 fF for the 1-MHz
crystal with CL = 32 pF. Calculate L and QU for the crystal.

Solution
The load resonant frequency is 1 MHz. Hence, from (4.13)

106 = fs F1 +
10 × 10−15

2(2 × 10−12 + 32 × 10−12)G ⇒ fs = 0.999865 MHz

and it follows that

L =
1

(2p fs )
2C

=
1

(2p106)210 × 10−15 = 2.539H

The value of QU follows from

QU =
vsL

R
=

2p106(2.539)
400

= 39,828

Because of its resonant characteristics, a crystal is operated either as a series
resonant circuit or in the parallel resonant region. A series-mode oscillator uses a
crystal in a series-resonant configuration where it appears as a pure resistor of
value R at the frequency fs . A parallel-mode oscillator uses a crystal in the parallel
resonance region, with CL specified. In the parallel mode of operation the crystal
appears inductive. Crystals operated in the parallel mode are specified by the
manufacturer to resonate at the frequency fL with a specific load capacitance. The
frequency listed on a crystal package is the desired frequency of operation. However,
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it depends on the mode of operation. That is, it can be for a series-mode oscillator
or for a parallel-mode oscillator with a specific load capacitance CL .

The basic parallel-resonant crystal oscillator is the Pierce oscillator shown in
Figure 4.10(a) and discussed in detail in Section 4.4. This oscillator consists of an
inverter amplifier, the inductive crystal and two capacitors. These capacitors and
the circuit stray capacitance determine the value of the load capacitance. The
resistor limits the drive current in the crystal. The crystal operates at a certain load
frequency in the parallel-resonant region at the given load capacitance. If the crystal
fails the oscillator will not oscillate.

The basic series oscillator consists of two inverters with the crystal connected
in series, as shown in Figure 4.10(b). The crystal operates at its series resonant
frequency. If the crystal fails, the oscillator usually continues to oscillate at a higher
frequency due to the high-frequency feedback paths through the ICs.

In the series-resonance oscillator the frequency of oscillation is determined by
the crystal with no easy means for frequency adjustment. The capacitor Cc is a
coupling capacitor, and the resistor R1 limits the drive current in the crystal.

A popular, low-cost clock oscillator is shown in Figure 4.11. It consists of two
CMOS inverters (7404 type) and a series resonant crystal. The feedback resistors
Rf bias the inverters in the linear region.

4.3 Frequency Pulling in a Crystal Oscillator

The frequency of resonance of a crystal can be adjusted by using a load capacitor
CL in series with the crystal, as shown in Figure 4.12.

The input impedance in Figure 4.12 is

Figure 4.10 (a) A basic parallel-resonant configuration and (b) a basic series-resonant configuration.
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Figure 4.11 A clock oscillator using a series-resonant crystal.

Figure 4.12 Capacitor CL in series with the crystal.

ZIN ( jv ) = jXCL
+

jXCo
(R + jXL + jXC )

jXCo
+ R + jXL + jXC

(4.20)

=
j (XCo

+ XCL
)FR + jXL + jSXC +

XCo
XCL

XCo
+ XCL

DG
R + jXL + j (XCo

+ XC )

where XCL
, XCo

, XL , and XC are the reactances of CL , Co , L, and C, respectively.
Let

X ′C = XC +
XCo

XCL

XCo
+ XCL

and observing that

XCo
+ XC = X ′C +

X 2
Co

XCo
+ XCL

we can write (4.20) in the form
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ZIN ( jv ) =
j (XCo

+ XCL
) (R + jXL + jX ′C )

R + jXL + jSX ′C +
X 2

Co

XCo
+ XCL

D
(4.21)

Letting

n =
XCo

+ XCL

XCo

=
Co + CL

CL

(4.21) can be expressed in the form

ZIN ( jv ) =
jnXCo

XR + jXL + jX ′C C

R + jXL + jSX ′C +
XCo

n D
or

ZIN ( jv ) =
jnXCo

Xn2R + jn2XL + jn2X ′C C
jnXCo

+ n2R + jn2XL + jn2X ′C
(4.22)

which is recognized as the parallel combination of a capacitor Co /n with three
elements in series consisting of an inductor n2L, a resistor n2R, and a capacitor
C ′ /n2, as shown in Figure 4.13. The capacitor C ′ is given by

C ′ =
C (Co + CL )
C + Co + CL

Since the circuit in Figure 4.13 is similar to that in Figure 4.2(d) it follows that
(4.22) is similar in form to (4.1), and therefore, the series resonance is given by

Figure 4.13 Equivalent circuit of the circuit in Figure 4.12.
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v ′s = √ 1

(n2L )SC ′
n2D =

1

√LC ′
(4.23)

and the parallel-resonant frequency is

va =
1

√(n2L )
SC ′

n2DSCo
n D

SC ′
n2D + SCo

n D

= √ 1

LS CCo
C + Co

D = vs√1 +
C

Co

or

fa ≈ fsS1 +
C

2Co
D

The parallel-resonant frequency of the crystal with a series load capacitor is identical
to that of the crystal by itself. Hence, the series load capacitor only affects the
series-resonant frequency. In terms of poles and zeroes, the poles of ZIN are not
affected by the addition of the series capacitor, only the zeroes are affected.

Equation (4.23) can also be written in the form

v ′s = vs√1 +
C

Co + CL

or

fs′ ≈ fsF1 +
C

2(Co + CL )G (4.24)

This relation shows that fs′ → fa as CL → 0 and fs′ → fs as CL → ∞. The pulling
range (i.e., the interval between fs′ and fs) is

D f =
fsC

2(Co + CL )
(4.25)

Equation (4.24) shows that the series load capacitor can be used to pull the
series resonant frequency.

Further analysis of the circuit in Figure 4.13 shows that its impedance is given
by
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ZIN =
s2 +

vs
QU

s + v 2
s S1 +

C
Co + CL

D
s

Co
n Fs2 +

vs
QU

s + v 2
s S1 +

C
Co

DG (4.26)

A comparison of (4.26) with (4.1) shows that the poles of the two functions are
identical. The zeroes of (4.26) are located at

s = −
vs
QU

± jvs√1 +
C

Co + CL
−

1

4Q2
U

≈ −
vs
QU

± jvsF1 +
C

2(Co + CL )G
Since the real part of the zeroes in (4.26) and (4.1) are the same, the circuit Q is
not affected by CL . Narrowband equivalent circuits are similar to those in Figure
4.6, with R replaced by nR.

The capacitor Co has no effect on the series resonance of the crystal. However,
from (4.23) it is seen that fs′ can be changed by varying Co . Of course, the value
of Co also affects the parallel-resonant frequency fa .

The parallel-resonant frequency can be changed by adding a load capacitor in
parallel with the crystal (i.e., with Co ). In this case, as in (4.13), the load capacitor
adds to Co and the parallel-resonant frequency, previously denoted by fL , is given
by

fL ≈ fsF1 +
C

2(Co + CL )G (4.27)

which shows that fL → fa as CL → 0 and fL → fs as CL → ∞. Hence, in this case
the pulling range (i.e., the interval between fL and fs) is

D f =
fsC

2(Co + CL )
(4.28)

The frequency fL is the specified frequency of operation for the crystal at a
given CL . At this frequency the crystal reactance is inductive and given by (4.19).
In an appropriate configuration, such that the crystal sees a load capacitance of
CL , the circuit will oscillate at the frequency fL .

The pullability of a crystal is an important parameter to the designer that wants
to obtain several operating frequencies by changing the load capacitance. The
pullability, which is given by (4.27), provides a measure of the frequency shift that
can be obtained for a crystal operating in the parallel mode. It can be expressed
in ppm as

D f
fs

=
106C

2(C0 + CL )
(ppm) (4.29)

The pullability, expressed in ppm/pF, is known as the pullability sensitivity
(PS) or trimming sensitivity (TS). It represents the average pulling per pF around
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a certain value of CL , and it can be obtained by taking the derivative of (4.10)
with respect to CL , namely,

PS =
−106C

2(C0 + CL )2 Sppm
pF D (4.30)

Hence, the PS is calculated at a certain value of load capacitance.
Another useful relation is the pullability between two load capacitances,

denoted by CL1 and CL2 . It is given by

D f =
C (CL2 − CL1)106

2(C0 + CL1)(C0 + CL2)
(ppm) (4.31)

A typical pullability curve (or frequency shift curve) is shown in Figure 4.14.
It is seen from Figure 4.14, or from (4.30), that small values of CL results are large
values of PS, while larger values of CL are associated with smaller PS values. In
general, in a fixed frequency oscillator a high value of CL is desired. In a VCXO
a low value of CL is desired so that an appropriate pulling range is obtained.

Example 4.5

(a) Calculate the pullability for a crystal that lists Co = 5 pF and C = 0.015 pF if
a load capacitance of 20 pF is used.
(b) Repeat part (a) if CL = 30 pF.
(c) Calculate the pullability (or timing range) between CL = 20 pF and CL =
30 pF.
(d) Calculate the pullability sensitivity for the crystal.

Solution
(a) Using (4.29), the shift from fs with CL = 20 pF is

D f
fs

=
106(0.015 × 10−12)

2(25 × 10−12)
= 300 (ppm)

Figure 4.14 A pullability curve for Co = 4 pF and C = 0.012 pF.
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(b) Similarly, using CL = 30 pF the shift from fs is 214 ppm.
(c) The pullability (or timing range) is (300 − 214) ppm = 86 ppm. The pullability
between two values of load capacitances can also be calculated using (4.31), namely,

D f =
0.015 × 10−12(10 × 10−12)106

2(25 × 10−12)(35 × 10−12)
= 86 (ppm)

(d) From (4.30), the pulling sensitivity around CL = 20 pF is

PS =
−106(0.015 × 10−12)

2(35 × 10−12)2 = 6.12 Sppm
pF D

Example 4.6

Discuss the selection of a crystal to oscillate at 10 MHz when the circuit load
capacitance is 15 pF. A series pulling capacitor is used to vary the load capacitance
between 10 and 25 pF.

Solution
Applications that use a pulling capacitor usually require the selection of an AT-cut
crystal due to its good temperature stability. When compared to a BT-cut crystal
(which has poor temperature stability), the required pulling in a given system with
an AT-cut crystal is less.

The power dissipation that the crystal will experience in the oscillator deter-
mines the type of crystal holder and the maximum power dissipation of the crystal.
Let us select an HC-49 holder that can dissipate 1 mW.

Some typical specifications for the desired AT-cut crystal are a calibration
tolerance of 25 ppm at 25°C, a temperature stability of 30 ppm in the range of
−10°C to 60°C, and an aging specification of 5 ppm in the first year, and 2 ppm/year
thereafter.

Assume that the oscillator is to be operated for 5 years. Therefore, the total
tolerance for the crystal is 25 + 30 + (5 + 10) = 70 ppm.

For the package selected, the maximum value of Co is listed as 5 pF. Then,
from (4.31) the value of C that produces a pulling of −70 ppm when CL varies
from 15 to 10 pF is

106C (10 × 10−12 − 15 × 10−12)

2(20 × 10−12)(15 × 10−12)
= −70 ⇒ C = 8.4 fF

Next, we check that the value C = 8.4 pF can pull +70 ppm as CL varies from
15 to 25 pF. Using (4.31), it follows that C = 8.4 pF can attain such a pulling
value. To allow for some margin of error, let us specify a larger value of C, say
C = 11 fF.

The value of Re can be specified to be between 25 and 50V, say Re = 40V. If
Re = 40V it follows from (4.19) that R is
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R =
Re

S1 +
Co
CL

D2
=

40

S1 +
5 × 10−12

15 × 10−12D2
= 22.5V

The value of L does not need to be specified, since the crystal is specified to
operate at 10 MHz. However, for simulation purposes the value of L is needed.
From (4.14) the value of fs is

fs =
10 × 106

1 +
11 × 10−15

2(20 × 10−12)

= 9.997251 MHz

and from (4.2) we obtain

L =
1

(2p × 9.997251 × 106)2(11 × 10−15)
= 23.04 mH

The pullability can also be controlled with the use of an inductor LL , as shown
in Figure 4.15. For this circuit the pulling range is given by

D f =
fsC

2FCo + CLS 1

1 − v 2
s LLCL

DG
where v 2

s LLCL < 1.

4.4 The Pierce, Colpitts, and Clapp Crystal Oscillators

Tuned-circuit oscillator configurations were discussed in Chapter 3. If the inductor
in these oscillators is replaced by a crystal operated in the parallel mode, the result
is a crystal oscillator. Depending where the ground is placed, the oscillator is known
as either a Pierce, Colpitts, or Clapp crystal oscillator.

Figure 4.15 Using an inductor to increase the pulling range.
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The three resulting ac configurations for crystal oscillator circuits are shown
in Figure 4.16. Figure 4.16(a) illustrates the Pierce oscillator. In the Pierce oscillator
the emitter is grounded. The crystal impedance must appear inductive since the
crystal is operated at fL . Pierce oscillators work fine and are simple to design in
the 100-kHz to 20-MHz range. They are very stable and output powers of 3 to
5 mW are typical.

The Colpitts crystal oscillator is shown in Figure 4.16(b) where the crystal
behaves inductively. This oscillator is grounded at the collector. It operates well
in the 1- to 20-MHz region. Typical output powers are in the low milliwatt range.

In crystal oscillator nomenclature the Colpitts type of configuration with the
base grounded is usually called the Clapp crystal oscillator. The Clapp crystal
oscillator is shown in Figure 4.16(c) where the crystal must appear inductive. Its
frequency of operation and power characteristics are similar to those of the Colpitts
crystal oscillator.

The Pierce, Colpitts, and Clapp crystal oscillators are basically the same circuit
(i.e., a Colpitts type configuration), but with the transistor grounded at its different
terminals. The circuit biasing resistors and stray capacitances appear in shunt with
different elements in each of the three configurations. This makes the performance
of the three configurations different. The Pierce configuration is usually the most
desirable. The analysis of the Pierce oscillator circuit follows.

The ideal operation of the Pierce oscillator is illustrated in Figure 4.17. The
crystal at series resonance is resistive, and the RC1 circuit provides a phase shift
of 90°. In the parallel-resonance region the crystal appears as an LeRe circuit. If
Re is neglected the phase shift provided by the tuned circuit is −180°. Therefore,
it is seen that if the crystal operates in the parallel resonance region, the total phase
shift is −360°. More specifically, if the crystal operates in the parallel resonance

Figure 4.16 (a) The Pierce crystal oscillator, (b) the Colpitts crystal oscillator, and (c) the Clapp
crystal oscillator.
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Figure 4.17 Ideal operation of the Pierce crystal oscillator.

region, the current i lags vo by 90°, and vf lags i by 90°. Thus, the base-to-ground
voltage vf lags the collector-to-ground voltage by 180°. The total phase shift around
the loop is −360°.

In an actual circuit the phase shift through the transistor is more than −180°
due to the junction capacitance and delay time. Let us assume that the phase shift
is −181°. For the total phase shift to be −360°, the crystal must appear inductive
(i.e., operate in the parallel resonance region) and the tuned circuit must provide
a phase shift of −179°.

The Pierce oscillator circuit is shown in Figure 4.18(a). For proper ac operation
the impedances of C1 and C2 must not load the input and output of the transistor,
respectively. Figure 4.18(b) shows the load impedance ZL seen by the transistor.
The crystal is replaced by its equivalent crystal resistance Re in series with its
equivalent inductive reactance jXe , where Xe = vLe . The impedance ZL , assuming
that R1 || R2 || hie ≈ hie , is given by

ZL = jX2 || FRe + jXe + j XX1 || hie CG

Figure 4.18 (a) A Pierce oscillator and (b) the load impedance ZL seen by the transistor.



4.4 The Pierce, Colpitts, and Clapp Crystal Oscillators 211

where X1 = −1/vC1 and X2 = −1/vC2 . Also, if | X1 | ! hie , we can approximate
ZL by

ZL =
jX2[Re + j (X1 + Xe )]
Re + j (X1 + X2 + Xe )

(4.32)

At resonance

X1(vo ) + X2(vo ) + Xe (vo ) = 0 (4.33)

which shows that the frequency of oscillation is

vo =
1

√LeCT
(4.34)

where

CT =
C1C2

C1 + C2
(4.35)

Note that if the crystal is specified to operate in the parallel-resonance region
at fL with an external load capacitance CL , then fo in (4.34) is equal to fL provided
that CT in (4.34) is equal to CL . The frequency of operation in a Pierce oscillator
is usually 5 to 50 ppm above its series resonance.

Using (4.33), (4.32) reduces to

ZL ( jvo ) =
X2(vo )

Re
[X2(vo ) + jRe ]

Furthermore, since |X2(vo ) | @ Re , we obtain

ZL ( jvo ) ≈
[X2(vo )]2

Re
(4.36)

The open-loop gain at resonance is

Av ( jvo ) =
vo
vf

= −gmZL ( jvo ) = −gm
[X2(vo )]2

Re
(4.37)

The voltage-feedback factor is

b ( jv ) =
vf

vo
=

jX1
Re + j (X1 + Xe )

(4.38)

Substituting (4.33) into (4.38) gives the voltage-feedback factor as
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b ( jvo ) =
jX1

Re − jX2
≈ −

X1
X2

= −
C2
C1

(4.39)

which shows that v1 lags v2 by −180°.
The loop-gain condition for oscillation is

b ( jvo )Av ( jvo ) > 1 (4.40)

Substituting (4.37) and (4.39) into (4.40) gives the gain condition, namely,

gm
X 2

2
Re

>
C1
C2

or

gm

v 2
o ReC1C2

> 1 (4.41)

To summarize, (4.34) gives the frequency of oscillation, and (4.41) gives the
gain condition.

The Pierce crystal oscillator is an attractive configuration since the stray capaci-
tances appear across the large capacitors C1 and C2 . Furthermore, the resistors
R1 and R2 do not appear in parallel with the crystal. The effect of the transistor
input and output impedances are minimized by selecting an appropriate transistor
and the values of C1 and C2 .

Some observations are in order. First, observe that larger output powers can
be obtained by making X2 large (i.e., small values of C2). Another observation is
that the crystal power dissipation [see Figure 4.18(b)] can be approximated by

P = i 2
1(rms)Re ≈

v 2
2(rms)Re

X 2
2

which shows that it can be reduced by making | X2 | large. A final observation is
that in a Pierce oscillator the crystal is not grounded. Some applications that require
the interchanging of crystals might be unsuitable for the Pierce configuration.

Example 4.7

Design a 2-MHz Pierce crystal oscillator. The load capacitance of the 2-MHz
crystal is specified to be 32 pF.

Solution
The oscillator configuration is shown in Figure 4.19(a). It uses a variable series
capacitor Cs with the crystal (shown as 40 pF) to adjust the frequency of oscillation.
Using an MPS5179 BJT with VCC = 12V, R1 = 26.5 kV, R2 = 33.5 kV and RE =
6 kV places the Q point at IC = 1 mA and VCE = 6V. The RFC is implemented



4.4 The Pierce, Colpitts, and Clapp Crystal Oscillators 213

Figure 4.19 (a) A 2-MHz Pierce crystal oscillator, (b) the resulting waveform, and (c) a capacitive
transformer.
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with a 1-mH inductor (XL1 = 12.6 kV). The crystal sets the frequency of oscillation
at 2 MHz when the load capacitance is 32 pF. The crystal parameters listed in
Table 4.1 were used. The value of C1 = 450 pF (XC1 = −177V) was selected so
that its reactance is much smaller than hie (hie = 2.5 kV). The ratio C1 /C2 was
selected to be between 1.5 and 2.

The total capacitance seen by the crystal is the series combination of C1 , C2 ,
and Cs . The series capacitance of C1 and C2 is 161 pF. The trimmer capacitor Cs
is set so that the series capacitance of Cs and 161 pF is 32 pF.

The inequality (4.41), with Re ≈ R = 100V, and C ′1 = 36.7 pF being the series
capacitance of Cs and C1 , requires that

gm > v 2
o ReC ′1C2 = [2p (2 × 106)]2100(36.7 × 10−12)250 × 10−12 = 0.14 mS

which is easily satisfied since at IC = 1 mA the value of gm is 40 mS.
The simulation data is shown in Figure 4.19(b). The fundamental frequency

of oscillation is 2 MHz. There are several ways that the oscillator signal can be
coupled to a load. For example, a capacitive coupled resistor connected to the
collector can be used. Such a resistor should not load the capacitor C2 . One can
also use an amplifier connected to the collector to extract the oscillation signal.
Another way is to connect a low-value resistive load using a capacitive transformer,
as shown in Figure 4.19(c). The oscillator signal is coupled to the 50V resistor
through the coupling network formed by C2 and C3 . When viewed from the
collector, the load resistor RL appears as

RLSC2 + C3
C2

D2 = 50S2,250
250 D2 = 4.05 kV

which does not load C1 .
In the Pierce configuration a trimmer capacitor for frequency adjustment can

also be placed in parallel with C2 .
Another dc bias configuration that works well with a Pierce oscillator is shown

in Figure 4.20. The design shown produces a Q point at VCE = 7.7V and IC =
3.6 mA. The load capacitance is 21 pF. The data shows that the fundamental
frequency of oscillation is 2 MHz.

An FET Pierce crystal oscillator is shown in Figure 4.21(a), and its ac model
in Figure 4.21(b). Figure 4.21(b) shows that C1 should be larger than Cgs and the
output resistance of the FET can be neglected if

rd @ |ZL | =
X 2

2 (vo )
Re

(4.42)

It also follows from the gain condition in (4.41) that

gm

v 2
o ReC1C2

> 1 (4.43)
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Figure 4.20 A Pierce oscillator at 2 MHz.

Example 4.8

Design the FET Pierce crystal oscillator in Figure 4.22(a) to oscillate at 10 MHz.
The load capacitance of the crystal is specified as 32 pF.

Solution
The 10-MHz crystal parameters are those listed in Table 4.1. Using a typical value
for rd of 20 kV, it follows from (4.42) that C2 @ 5 pF. Hence, let C2 = 19 pF.

Next, we let C1 = 100 pF, and from

C1C2
C1 + C2

= 32 pF

it follows that the value of C2 is 47 pF.
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Figure 4.21 (a) An FET Pierce crystal oscillator and (b) its ac model.

From (4.43), using Re ≈ R = 65V, it follows that

gm > (2p107)265(100 × 10−12)(47 × 10−12) = 0.1 mS

which is simple to satisfy.
The oscillator was designed using the 2N5459 JFET at VDS = 5V and ID =

2 mA. This JFET has the following typical parameters: VP = −3V and IDSS =
4.5 mA. Then, for ID = 2 mA it follows that VGS = −1V, gm = 2 mS,

Rs =
−VGS

ID
=

1

2 × 10−3 = 500V

and

RD =
VDD − VDS − IDRS

ID
=

12 − 5 − 1

2 × 10−3 = 3 kV

An RFC (L = 3 mH) was used in series with RD .
The simulation of the oscillator is shown in Figure 4.22. The resulting Q point

is at ID = 1.93 mA and VDS = 5.2V. The resulting oscillation is at 10.02 MHz.
A popular Pierce configuration is shown in Figure 4.23. It uses an unbuffered

IC inverter (such as the 4049 CMOS, the 7SU04 CMOS, the 74HCU04 CMOS,
or the HA7210) as the active linear device to provide a phase shift of approximately
−180°, and the other 180° are provided by the crystal and capacitors circuit. The
second inverter is used as a buffer to couple the oscillation signal.

The inverter is biased in the linear region by the feedback resistor Rf whose
value is in the 500-kV to 10-MV range. The resistor R1 is employed in certain
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Figure 4.22 The FET Pierce crystal oscillator for Example 4.8.

situations to reduce the crystal drive level. The crystal behaves inductively since it
operates in the parallel-resonance region. The load capacitance in the ideal case is
given by

CL =
C1C2

C1 + C2

In the actual oscillator the input and output capacitances of the inverter, as well
as the board parasitic capacitances, affect the capacitance seen by the crystal at its
terminals (i.e., the crystal load capacitance). In practice, the actual load capacitance
is estimated using

CL =
C1C2

C1 + C2
+ Cs
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Figure 4.23 A Pierce configuration using an IC inverter.

where Cs is the total effective stray capacitance. Typical values of Cs are from
2 to 7 pF.

Table 4.2 shows typical component values for operation of the oscillator in
the 1- to 25-MHz range using an appropriate crystal at the given load capacitance.

The design of the 10-MHz oscillator is now discussed. The loop gain is first
analyzed to check that the oscillation conditions are satisfied. To this end, the
inverter is simulated using a typical MOSFET configuration and biased using ±5V.
The 10-MHz crystal is represented with R = 15V, L = 10.1 mH, C = 25 fF, and
Co = 6 pF. The stray capacitance across the crystal is assumed to be 5 pF. In Figure
4.24(a) the loop gain is calculated by representing the circuit as a continuous circuit.
That is, the feedback loop is broken in Figure 4.23 and the crystal is loaded with
the input impedance of the inverter. A current signal of 1A is placed at the input
and the loop gain [vo /vi in Figure 4.24(a)] is calculated. The results of the simulation
are shown in Figure 4.24(b). The gain at 10.022 MHz where the phase is 0° is
15.85 dB, which shows that with the loop closed the circuit should oscillate at
10.022 MHz. This loop-gain simulation can be used to analyze the effects of the
loading capacitance and the crystal resistance on the loop gain. For example, the
maximum values of the load capacitance and of R can be determined.

The simulation of the 10-MHz oscillator is shown in Figure 4.24(c). The
resulting output signal oscillates at 10.02 MHz with an amplitude of approximately
5V.

Table 4.2 Component Values for Oscillation
in the 5- to 25-MHz Range Using Rf = 1 MV
and a Crystal at Its Fundamental Frequency

f (MHz) C1 = C2 R1 CL

5 33 pF 5 kV 20 pF
10 22 pF 1 kV 16 pF
15 15 pF 500V 12 pF
25 10 pF 330V 10 pF
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Figure 4.24 (a) Loop-gain simulation for the 10-MHz oscillator, (b) magnitude and phase of the loop gain,
and (c) simulation of the 10-MHz oscillator.
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Figure 4.24 (Continued.)

A design for a 32.768-kHz oscillator (i.e., a watch oscillator) is shown in Figure
4.25. This oscillator uses a 4049 CMOS, and the crystal load capacitance is specified
as 20 pF. The stray capacitance is estimated to be 7 pF.

Another design for a 32.768-kHz oscillator, using the Harris HA7210, is shown
in Figure 4.26. This IC can be externally programmed to operate between 10 kHz
and 10 MHz. In the 10- to 100-kHz range with the enable pin high and with a
high in the FREQ1 and FREQ2 pins, the IC places internal 15-pF capacitors from
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Figure 4.25 A Pierce configuration for a watch oscillator.

Figure 4.26 A 32.768-kHz Pierce oscillator using the HA7210.

pin 2 and pin 3 to ground (i.e., grounding pin 4). The two 15-pF capacitors make
the loading capacitance of the crystal to be 7.5 pF.

In the frequency range above 100 kHz the oscillator circuit in Figure 4.27 can
be used where C3 is a trimming capacitor. For example, with a 1-MHz crystal at
a load capacitance of 2.5 pF, the values of the components can be C1 = C2 =
33 pF and C3 = 5 pF to 20 pF trimmer.

Two Colpitts crystal oscillators are shown in Figure 4.28. The bias resistors
R1 and R2 appear in parallel with the crystal and, therefore, reduce the circuit Q.
The transistor’s input impedance should not load C1, and its output impedance
should not load C2.

Although the basic results in (4.32) to (4.41) apply to the Colpitts crystal
oscillator, it is of interest to perform the following analysis of the circuit. Consider
the ac model shown in Figure 4.28(c) where the crystal is represented by Re + jXe
The ac model assumes that the input and output impedances of the transistor do
not load the resonator. Hence, ZL is given by (4.32), and at resonance (4.33) to
(4.36) are also satisfied. Hence,

ZL ( jvo ) ≈
[X2(vo )]2

Re
(4.44)
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Figure 4.27 A Pierce oscillator using the HA7210.

Figure 4.28 (a) A Colpitts crystal oscillator, (b) a Colpitts crystal oscillator using a negative supply
voltage, and (c) the ac model.

The voltage vf is given by

vf = vo
Re + jXe

Re + j (X1 + Xe )
(4.45)

Using (4.33) in (4.45), we can write the voltage feedback factor as

b ( jvo ) =
vf

vo
=

Re − j (X1 + X2)
Re − jX2

if |X2 | @ Re then

b ( jvo ) ≈
X1 + X2

X2
=

C1 + C2
C1
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The gain of the emitter follower is

Av ( jv ) =
vo
vf

=
gmZL

1 + gmZL

Hence, the required loop gain is

b ( jvo )Av ( jvo ) =
X1 + X2

X2
S gmZL

1 + gmZL
D > 1

Using (4.44), the gain condition is

gm

v 2
o ReC1C2

≥ 1 (4.46)

which agrees with (4.41). Observe that in this configuration the phase shift through
the emitter follower is 0°, and also the phase shift through the feedback network
is 0°. A trimmer capacitor can be placed in series with the crystal to adjust the
frequency of oscillation. One way of pulling the frequency and coupling the oscilla-
tion signal is shown in Figure 4.29(a). Another way of coupling the signal from

Figure 4.29 (a) A Colpitts crystal oscillator with a frequency pulling capacitor Cs and coupling
circuit and (b) another coupling circuit.
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the oscillator is shown in Figure 4.29(b). A small resistance in series with the crystal
permits the extraction of the signal. The filtering produced by the crystal results
in an output signal with very low distortion.

An FET Colpitts crystal oscillator is shown in Figure 4.30. This oscillator works
better than the BJT version at the lower frequencies (down to 10 kHz) because of
the high value of RG . However, at the higher frequencies the low values of the
FET’s transconductance might present a problem.

Example 4.9

Design the Colpitts crystal oscillator in Figure 4.31(a) using the 10-MHz crystal
described in Table 4.1. The crystal load capacitance is specified by the manufacturer
to be 30 pF.

Solution
Let VDD = 10V and the Q point be at VCE = 5V and IC = 2 mA. The resistor
values for the desired Q point are shown in Figure 4.31(a). The capacitor C1 is
selected at 200 pF (or XL1 = −79V), and C2 = 270 pF. Then, the value of Cs
is 40.6 pF for a total load capacitance of 30 pF. The trimming capacitor Cs is
implemented with a variable capacitor (say, a 20- to 100-pF trimmer).

From (4.46), with Re ≈ R = 5V, the required loop gain is satisfied if

gm > v2C1C2Re = (2p10 × 106)2(200 × 10−12)(270 × 10−12)5 = 1.1 mS

The transistor’s gm value satisfies the above inequality since

gm =
IC
VT

=
2 × 10−3

25 × 10−3 = 80 mS

Figure 4.30 An FET Colpitts crystal oscillator.



4.4 The Pierce, Colpitts, and Clapp Crystal Oscillators 225

Figure 4.31 (a) Simulation of the Colpitts crystal oscillator in Example 4.9 and (b) the simulation
data.

The simulation data is shown in Figure 4.31(b) with Cs set at 41 pF. The
resulting Q point is at VCE = 5.03V and IC = 1.98 mA. The frequency of oscillation
is at 10.02 MHz.

The following example illustrates the design of an oscillator with an overtone
crystal. For example, when using a third-overtone crystal, care must be exercise



226 Crystal Oscillators

that the oscillator does not also oscillate at the fundamental frequency of the
crystal. Two methods that can be used to prevent the oscillation at the fundamental
frequency are shown in Figure 4.32. In Figure 4.32(a) a trap (i.e., a parallel LC
network) at the fundamental frequency is placed in the feedback path, and in Figure
4.32(b) the L in parallel with C2 is resonant at 2fo ; this produces a net inductive
reactance at fo and a net capacitive reactance at 3fo . Hence, only at 3fo are X1
and X2 capacitive for the oscillation condition to be satisfied.

Example 4.10

Design a 30-MHz Colpitts crystal oscillator. A third-overtone crystal is available
with a frequency stability of 20 ppm from −25°C to 50°C. The load capacitance
is specified as 27 pF, and the supply voltage is a 9V battery.

Solution
The Colpitts crystal oscillator is shown in Figure 4.33(a). The bias point for the
MPS5179 BJT was selected at VCE = 5V and IC = 500 mA. The Q point was
designed with RE = 8 kV, R1 = 46 kV, and R2 = 44 kV.

The load capacitance of 27 pF is obtained with C1 = 43 pF and C2 = 68 pF.
Observe that | XC2 | ! RE . Also, in order to provide for some tuning, a variable
capacitor Cv is placed in parallel with the crystal, as shown in Figure 4.33(a). Using
a 2- to 20-pF variable capacitor, it follows that the total capacitance seen by the
crystal when Cv is at a mid-value of 10 pF is

CT + Cv = 27 × 10−12 + 10 × 10−12 = 37 pF

In order to bring the load capacitance seen by the crystal back to 27 pF when Cv
= 10 pF, a series capacitor, as shown in Figure 4.33(a) is used. Its value is

(27 × 10−12)Cx

27 × 10−12 + Cx
= 27 × 10−12

or Cx = 46 pF.
The value of gm is 20 mS and satisfies (4.46).

Figure 4.32 Two methods for oscillation at the third overtone of the crystal.
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Figure 4.33 (a) The simulation of the 30-MHz Colpitts oscillator for Example 4.10 and (b) the
oscillator waveform.

The ADS simulation data for the oscillator is shown in Figure 4.33(b). The Q
point is at VCE = 5.47V and IC = 0.435 mA. The frequency of oscillation is at the
third overtone, or 30.32 MHz. No oscillation occurred at the fundamental.

An overtone oscillator that uses the 7SHU04 inverter (a very-high speed unbuf-
fered inverter) is shown in Figure 4.34. The values listed are for a crystal oscillator



228 Crystal Oscillators

Figure 4.34 A 30-MHz oscillator using a third-overtone crystal.

at 30 MHz with a load capacitance of 10 pF. The 18-pF and 2.2-mH inductor are
designed to be parallel resonant at 25 MHz. Hence, at 10 MHz the resonant circuit
appears inductive, and at 30 MHz it appears capacitive. Hence, only at 30 MHz
are the conditions for oscillations satisfied.

A Clapp crystal oscillator is shown in Figure 4.35(a). The ac model is similar to
that in Figure 3.27(c, d) (with no RL ). If RE || hib ≈ hib , C2 @ Cbe and C1 @ Cce ,
the ac model in Figure 4.35(b) is obtained. The transistor’s output capacitance
appears across the crystal, thus limiting the frequency of operation.

From Figure 4.35(b) the open-loop voltage gain is

Av =
vo
vf

= gmZL (4.47)

Figure 4.35 (a) A Clapp crystal oscillator and (b) its ac model.
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where

ZL =
(Re + jXe )F jX1 + Xhib || jX2 CG
Re + jXe + jX1 + Xhib || jX2 C (4.48)

=
(Re + jXe )Fj (X1 + X2) −

X1X2
hib

G
Re −

X2Xe
hib

−
X1X2

hib
+ j (X1 + X2 + Xe ) + j

ReX2
hib

If Re ! Xe , and

X1 + X2 @ X1X2 /hib (4.49)

then with X1 + X2 + Xe = 0 it follows that (4.48) reduces to

ZL =
−Xe (X1 + X2)

Re −
X2(Xe + X2)

hib

(4.50)

=
(X1 + X2)2

Re +
X 2

2
hib

Substituting (4.50) into (4.32) gives

Av =
gm (X1 + X2)2

Re + gmX 2
2

(4.51)

Observe that if gmX 2
2 @ Re , (4.51) reduces to

Av = SX1 + X2
X2

D2 = SC2 + C1
C1

D2

which is identical to (3.63).
The feedback factor is

b =
vf

vo
=

hib || jX2

jX1 + Xhib || jX2 C

=
X2

X1 + X2 + j
X1X2

hib

Using (4.49), it follows that
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b =
X2

X1 + X2
=

C1
C1 + C2

(4.52)

From (4.51) and (4.52) the loop gain condition is

bAv =
X2

X1 + X2

gm (X1 + X2)2

Re + gmX 2
2

> 1

which simplifies to

gm

v 2
o ReC1C2

> 1 (4.53)

The oscillator signal can be coupled to a high resistance load RL connected to
the collector or to a resistive load capacitively coupled to the emitter.

Example 4.11

Design the Clapp crystal oscillator shown in Figure 4.36(a) to oscillate at 10 MHz.

Solution
A 2N4124 BJT was selected and biased at VCE = 5V and IC = 1.5 mA, as shown
in Figure 4.36(a). This is a general purpose transistor that lists: fT = 300 MHz and
hfe (min) = 120.

Assume that the 10-MHz crystal described in Table 4.1 is used with a specified
load capacitance of 28 pF. This load capacitance can be obtained with C1 =
40 pF and C2 = 100 pF XXC2 = −158VC. The condition in (4.53) is satisfied since
gm = 60 mS.

The simulation data for the oscillator is shown in Figure 4.36(b), and the
resulting output is shown in Figure 4.36(b). The SSB phase noise of the oscillator
is shown in Figure 4.36(c).

4.5 The Grounded-Base Crystal Oscillator

The transistor’s fT value limits its frequency of operation, creating a problem when
the values of the capacitors needed to satisfy the oscillation condition in the Pierce,
Colpitts, and Clap crystal oscillators are comparable to the transistor’s terminal
capacitances. One way to solve this problem is to use a transistor with a higher
fT value or to use the crystal in a series resonance configuration. The grounded-
base (GB) crystal oscillator, shown in Figure 4.37(a), uses the crystal as a series
resonator.

The GB crystal oscillator works well at frequencies up to about 150 MHz.
Usually, third-overtone crystals are used up to about 70 MHz, and fifth-overtone
crystals up to about 150 MHz. The ac model is shown in Figure 4.37(b). Observe
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Figure 4.36 (a) Simulation of the Clapp oscillator in Example 4.11, (b) the simulation data, and
(c) the SSB phase noise.
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Figure 4.37 (a) The GB crystal oscillator and (b) its ac model.

the series connection of the crystal. At the frequency of oscillation the crystal
operates in series resonance, the transistor provides a phase shift of 0° and the
feedback-network phase shift is also 0°. The frequency of oscillation is

fo =
1

2p√LCT

where

CT =
C1C2

C1 + C2
(4.54)

A simple way to check if the crystal is operating in the series mode is to replace
the crystal by a short circuit and observe if oscillations can occur. Obviously, with
the crystal replaced by a short circuit in Figure 4.37(a) the circuit is recognized as
a GB configuration (see Figure 3.27).

A more detailed analysis of the operation of the circuit follows. In Figure
4.37(b) a reasonable approximation is

hib || RE ≈ hib

Also, at the crystal series resonance, the resistance hib + Zc ≈ hib + R does not load
C2 , where R is the crystal resistance. That is,

hib + R @
1

vC2

Then, the relation between vo and vf can be approximated by

vf ≈
voC1

C1 + C2
S hib

hib + R D
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or

b ( jv ) =
vf

vo
=

C1
C1 + C2

S hib
hib + R D (4.55)

Equation (4.55) expresses the feedback factor. Observe that the phase shift from
the feedback network, at the crystal series resonance, is 0°.

Since hib + R transforms to an equivalent resistance across the inductor L given
by n2(hie + R), where

n =
C1 + C2

C1

the load impedance seen by the transistor is

ZL ( jv ) = Rp || jvL || 1
jvCT

where

Rp = RL || n2(hib + R)

and CT is given by (4.54).
The open-loop voltage gain is given by

Av ( jv ) =
vo
vf

= gmZL ( jv ) (4.56)

Since the phase shift through the feedback network is 0°, the phase shift from
(4.56) must also be zero at the frequency of oscillation. This occurs at the resonant
frequency of the tank circuit. That is, at

vo =
1

√LCT

which is designed to be the same as the series resonant frequency of the crystal.
Hence, from (4.56)

Av ( jvo ) = gm FRL || n2(hib + R)G

At vo , the loop-gain condition is

b ( jvo )Av ( jvo ) =
C1

C1 + C2
S hib

hib + Rc
Dgm FRL || n2(hib + Rc )G > 1

where gmhib ≈ 1.
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In the case that RL @ n2(hib + R) the loop gain reduces to

b ( jv )Av ( jvo ) >
C1 + C2

C1

In the tuned GB oscillator the loaded QL of the circuit was low due to the
small resistive loading across the inductor L. In the GB crystal oscillator the QU
of the crystal determines the QL . This can be deduced from the analysis of the
loop gain of the circuit, namely,

b ( jv )Av ( jv ) =
C1

(C1 + C2)
ZL ( jv )

(hib + Zc )
(4.57)

The frequency stability can be evaluated from (4.57). The phase of (4.57) is

f ( jv ) = f1( jv ) − f2( jv ) (4.58)

where f1( jv ) is the phase of ZL ( jv ) and f2( jv ) is the phase of hib + Zc . Near
the resonant frequency vo , ZL ( jv ) can be expressed in the form

ZL ( jv ) ≈
Rp

1 + jQLS v
vo

−
vo
v D

where QL is the loaded Q of the parallel tuned circuit. Also, at series resonance
the crystal impedance can be approximated by the series RLC branch of the crystal.
Hence, we can write

Zc ≈ R + jvoLS v
vo

−
vo
v D

and it follows that

1
hib + Zc

=
1

(hib + R)F1 + jQxS v
vo

−
vo
v DG

where

Qx =
voL

R + hib
=

QU

1 +
hib
R

QU is the unloaded Q of the crystal.
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From (2.15) and (4.58) it follows that

df1
dv

=
−2QL

vo

and

df2
dv

=
−2Qx

vo

Hence, the frequency stability factor SF [see (2.1)] is given by

SF = −2(QL − Qx )

Since Qx @ QL , it follows that

SF ≈ 2Qx =
2QU

1 +
hib
R

Observing that hib is of the same magnitude as R, the Q of the series resonant
circuit in Figure 4.37 is controlled by QU , which is very high.

Example 4.12

Design the GB crystal oscillator shown in Figure 4.37 to oscillate at 45 MHz using
a series-resonant third-overtone crystal.

Solution
From Table 4.1, using the third overtone of the 15-MHz crystal, the parameters
are: R = 45V, C = 0.0031 pF, Co = 4 pF, and L = 4.17 mH. The tuned circuit is
designed with C1 = 50 pF, C2 = 270 pF, and L = 0.293 mH.

The transistor selected was the BFR92 at a Q point of VCE = 6V and IC =
1 mA. This transistor lists fT = 5 GHz.

The simulation is shown in Figure 4.38, as well as the resulting oscillation at
44.95 MHz.

4.6 The PI-Network Crystal Oscillator

The PI-network crystal oscillator is shown in Figure 4.39(a), and the ac model is
shown in Figure 4.39(b). This oscillator uses the series-resonant properties of the
crystal. It is used in the 1- to 100-kHz range. The output power is low with 0.5
to 1 mW being typical values. This oscillator is simple to design, but its frequency
stability is not as good as the Pierce oscillator.

At the frequency of oscillation, which is the series-resonance frequency of the
crystal, the crystal behaves like a short circuit. Hence, the transistor provides a
phase shift of −180° and the PI network the other −180° at
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Figure 4.38 The GB crystal oscillator for Example 4.12.

fo =
1

2p √LCT

where

CT =
C1C2

C1 + C2
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Figure 4.39 (a) The PI-network crystal oscillator and (b) the ac model.

The analysis of the oscillator in Figure 4.39(a) is a bit involved. Figure 4.39(b)
shows the PI-network loaded by the input resistance of the transistor, which is hie .
The impedance Zx is given by

Zx =
jX1SjXL +

jhieX2
hie + jX2

D
jX1 + jXL +

jhieX2
hie + jX2

=
−hieX1(X2 + XL ) − jX1X2XL

−X2(X1 + XL ) + jhie (X1 + X2 + XL )

(4.59)

At the frequency of oscillation

X1(vo ) + X2(vo ) + XL (vo ) = 0 (4.60)

Then, (4.59) simplifies to

Zx ( jvo ) = hieSX1
X2

D2 − jXLSX1
X2

D = hieSC2
C1
D2 − jXLSC2

C1
D

Since

hieSC2
C1
D @ |XL | = vL (4.61)

it follows that the real part of Zx is much greater than the imaginary part, or

Zx ( jvo ) ≈ Rx = hieSC2
C1
D2

The voltage vf is given by

vf = vx
jhieX2

jhie (X2 + XL ) − X2XL
(4.62)
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Using (4.60), we can express (4.62) in the form

vf

vx
=

−hie

hieSC2
C1
D + jvL

(4.63)

Using (4.61), (4.63) reduces to

vf

vx
≈ − SC1

C2
D (4.64)

Also, at vo

vx = voS Rx
Rx + R D (4.65)

where R is the crystal resistance. Therefore, from (4.64) and (4.65) the feedback
factor is

b ( jvo ) =
vf

vo
= −

C1
C2

S Rx
Rx + R D

The open-loop voltage gain of the transistor is given by

Av ( jvo ) =
vo
vf

= −gmFRx || (RIN + R)G

and the loop gain condition is

b ( jvo )Av ( jvo ) =
C1
C2

S Rx
Rx + R DgmFRL || (Rx + R)G > 1

4.7 Voltage-Controlled Crystal Oscillators

Voltage-controlled crystal oscillators find applications in many circuits, just like
those using a voltage-controlled tuned oscillator. The main difference is that with
a crystal the selectivity is high and the phase noise is low. Also, the range of
frequencies that can be controlled with a single crystal is small due to the limited
pulling range. For this reason some VCXO designs commonly use several crystals
to cover different frequency ranges.

The parallel-resonant frequency of crystals used in the parallel mode can be
varied using a capacitor in parallel with the crystal. For a series mode crystal a
series capacitor can be used to vary the series resonant frequency. A varactor diode
can be used to implement and vary the series capacitance, as shown in Figure 4.40.
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Figure 4.40 A VCXO configuration using a varactor diode as the voltage control device.

4.8 Ceramic-Resonator Oscillators

Ceramic resonators (CRs) make use of the mechanical resonances that occur in
piezoelectric ceramics (usually PZT–lead zirconium titanate). As a resonator, the
ceramic resonators’ performance is better than those of the LC tuned circuits, and
less than that of a crystal resonator. CRs are smaller in size and less expensive
than crystals; also, they are half the size of a comparable crystal. However, crystals
have typical temperature coefficients of 10−6/°C, and CRs have 10−5/°C. Figure
4.41 shows the typical shapes of two and three lead CRs. Murata has a good
application manual for their CRs [1]. Those with three leads have an internal built-
in load capacitor. CRs are used in many digital-clock applications, just like crystal
oscillators.

The symbol and equivalent circuit of the CR (shown in Figure 4.42) are identical
to those of the crystal. The impedance characteristics are similar to the one shown
in Figure 4.3 [or Figure 4.2(b)] for the fundamental vibration. Between the series
( fs ) and parallel ( fa ) resonance of the CR, the resonator is inductive. In this
frequency range the equivalent circuit is shown in Figure 4.42(c), where Re and
Le are the equivalent resistance and inductance for fs < f < fa .

The series resonant frequencies is

fs =
1

2p √LC

Figure 4.41 Typical shapes of CRs.
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Figure 4.42 (a) CR symbol, (b) equivalent circuit, and (c) equivalent circuit for fs < f < fa .

and the parallel-resonant frequency is

fa = fs√1 +
C

Co

Since the operation is similar to that of a crystal, it can be used in the same oscillator
circuit configurations used with crystals. Typical element values for some CRs are
listed in Table 4.3. These values are, of course, for the fundamental mode. The
resulting QU values are lower than those of the crystal. Higher harmonic modes
exist due to the mechanical nature of the resonances.

A common way to construct a square-wave oscillator using a CR is shown in
Figure 4.43. The amplifier is a digital inverter gate; a second inverter is used as a
buffer stage. The feedback resistor Rf provides negative feedback to place the
inverter in the linear amplification region. Usually, a gain of about 10 is obtained
from a CMOS inverter. An Rf value of 1 MV is typical. In addition, the oscillator
might require a resistor Rd . The RdC2 combination is used to add some additional
phase shift and to reduce the gain at high frequencies, thus preventing undesirable
high-frequency oscillations. The resistor Rd is sometimes referred to as a damping
resistor.

The frequency of oscillator of the circuit in Figure 4.43 is given by

fo = fs√1 +
C

Co + CL

where

CL =
C1C2

C1 + C2

Table 4.3 Typical Values of the Components in the Equivalent Circuit of
Some Ceralock CRs (From: [1])

fo (MHz) L (mH) C (pF) R (V) Co (pF) QU

0.455 7.68(103) 16.7 10.1 272.8 2,136
2.0 1.71(103) 4.0 43.9 20.8 475
4.0 0.46(103) 3.8 9.0 19.8 1,220
8.0 0.13(103) 3.5 8.0 19.9 775
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Figure 4.43 A CR square-wave oscillator.

The design of square-wave oscillators in the frequency range of 375 kHz to
13 MHz is illustrated in Figure 4.44. The values listed in Table 4.4 are typical for
this oscillator. The RCA (HARRIS) CD4069UBE is a C-MOS that is commonly
used as the amplifier. Some C-MOS inverters ICs can have too much gain, which
can cause RC oscillations and ringing.

Figure 4.44 A C-MOS square-wave oscillator for use with CRs.



242 Crystal Oscillators

Table 4.4 Typical Values for the Oscillator in Figure 4.44

Frequency (kHz) VDD (V) CL1 (pF) CL2 (pF) Rf (MV) Rd (kV)

375–429 5 120 470 1 0
429–699 5 100 100 1 0
700–1,250 5 100 100 1 5.6
2,000–6,000 5 30 30 1 0
6,000–13,000 12 30 30 1 0

An example of a Colpitts CR oscillator at 455 kHz is shown in Figure 4.45.
This oscillator uses the Murata CSBLA455KC8-B0 ceramic resonator. This CR
has a fundamental frequency of oscillator at 455 kHz.

4.9 SAW Oscillators

Surface acoustic wave (SAW) resonators are available as one-port and two-port
resonators. The structure of the one-port resonator chip is shown in Figure 4.46.
It consists of an interdigitated transducer (IDT) and two grating reflectors. The
structure is fabricated on a quartz crystal substrate using a photolithographic
process. The chip is usually encapsulated in a ceramic package, and the resulting
component is small in size. The SAW resonators use the mechanical vibration of

Figure 4.45 A 455-kHz CR oscillator.
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Figure 4.46 Structure of a one-port resonator. (After: The Murata SAW Resonator Manual [2].)

the piezoelectric material (quartz) to generate the surface acoustic wave between
the reflectors.

SAW resonators can be used in oscillators just like quartz crystals or ceramic
resonators. In fact, they are used in many HF and RF applications where crystals
do not work at their fundamental frequency, or when better performance than
that obtained from a ceramic oscillator is needed. The fundamental frequency of
operation of SAW resonators is from 50 MHz to 1 GHz.

The equivalent circuit for a one-port SAW resonator is shown in Figure 4.47,
and typical values for the electrical parameters are shown in Table 4.5. The model
is identical to that of a quart crystal or ceramic resonator. Hence, its impedance
characteristic is similar to the one shown in Figure 4.2(a). The SAW resonator
exhibits a series resonance ( fs ) and a parallel resonance ( fa ). The oscillator configu-
rations used with quartz crystals or ceramic resonators are also used for SAW
resonators.

Figure 4.47 SAW resonator equivalent circuit.

Table 4.5 Typical Element Values for Some Murata SAW Resonators (From: [2])

Part Number fo (MHz) L (mH) C (pF) R (V) Co (pF)

SARCC304M30BX 304.30 164.495 0.001663 22.0 2.37
SARCC315M00BX 315.00 159.331 0.001602 22.0 2.25
SARCC423M22BX 423.22 110.088 0.001284 22.2 2.00
SARCC433M30BX 433.87 92.747 0.001451 20.2 2.00
SARCC433M92BX 433.92 96.529 0.001394 22.1 2.11
SARCC434M15BX 434.15 95.288 0.001410 20.0 1.97
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A Colpitts SAW oscillator configuration is shown in Figure 4.48. The SAW
resonator behaves inductively in the region fs < f < fa . The BJT must have an fT
value of a few gigahertz.

Example 4.13

Design the SAW oscillator in Figure 4.48 to oscillate at 315 MHz using the Murata
SARCC31500BLO.

Solution
The Murata SARCC31500BLO lists the following parameter values: L = 159.33
mH, C = 0.001602 pF, R = 22V and Co = 2.25 pF. The transistor selected is the
surface mount NEC 2SC4228 BJT, which has fT = 9 GHz. The Q point selected
is at VCE = 2.9V and IC = 7 mA, using VCC = 4V. Good beta stability is obtained
by designing the bias circuit with RE = 160V, R1 = 2 kV and R2 = 2 kV. Letting
C1 = 12 pF and C2 = 8 pF, it follows that CT = 4.8 pF. This SAW resonator has
a series resonance at

fs =
1

2p √LC
=

1

2p√159.33 × 10−6(0.001602 × 10−12)
= 315.021 MHz

and the parallel-resonant frequency occurs at

fa = fs√1 +
C

Co + CT
= 315 × 106√1 +

0.001602 × 10−12

2.25 × 10−12 + 4.8 × 10−12 = 315.055 MHz

Figure 4.48 A Colpitts SAW oscillator.
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The simulation is shown in Figure 4.49(a). The resulting Q point is at VCE =
2.7V and IC = 8 mA, and the frequency of oscillation is at 315.1 MHz.

The phase noise of the oscillator is shown in Figure 4.49(b). The harmonic
balance controller used with the oscillator in Figure 4.49(a) for the calculation of
the SSB phase noise is shown. The marker shows that +( fm ) = −105.1 dBc/Hz at
an offset of 10 kHz from the carrier.

In the Colpitts configuration shown in Figure 4.48 at frequencies above
500 MHz the parasitic capacitances begin to affect the design. For this reason, a
preferred configuration at higher frequencies is the Pierce configuration, since the

Figure 4.49 (a) ADS simulation for the oscillator in Example 4.13 and (b) the SSB phase noise.
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parasitic effects on the resonator are minimized. The Pierce oscillator requires the
use of a two-port SAW resonator in the feedback path to attain the required 180°
phase shift.

A two-port SAW resonator is shown in Figure 4.50(a) and its equivalent circuit
model in Figure 4.50(b). The coupling from port 1 to port 2 results in a phase
shift of 180°. Internal capacitances from ports 1 and 2 to ground can be included
in the model. However, these are usually small in comparison with the matching
circuit capacitances.

Figure 4.51 illustrates a Pierce SAW oscillator using a two-port SAW resonator.
The matching networks might be necessary to properly match the SAW resonator.
The collector matching network is used to transform the high collector resistance
to a lower resistance, and the base matching network is used to transform the
match the base resistance to the output resistance of the SAW resonator. The total
phase shift in the feedback path is due to the phase shift from the matching networks
plus the phase shift of the SAW resonator.

SAW oscillators are a good choice for remote keyless entry (RKE) transmitters.
These transmitters find extensive applications in the automobile industry due to
their simple design, low current consumption, long battery life, low phase noise
characteristics, and resistance to shock and vibration.

The following example illustrates a Colpitts SAW oscillator at 315 MHz, which
is one of the frequencies used in the United States for RFK transmitters.

A 315-MHz SAW resonator from RF Monolithics, Inc (i.e., the RO2073E) is
illustrated in Figure 4.52, as well as a bottom view showing the connections, and
typical values for the equivalent model. This is a 3 × 3 mm device. Some nominal
dimensions are E = 3 mm and F = 1.6 mm. Terminals 2 and 5 are interchangeable
and NC means no connection. The NC pads are used for mechanical support of
the SAW resonator. The manufacturer recommends grounding the support NC
pads in order to reduce the parasitic capacitance.

Two oscillator configurations, adapted from the RF Monolithics application
notes, are illustrated in Figure 4.53. These configurations are recognized as a GB

Figure 4.50 (a) A two-port SAW resonator and (b) equivalent model.
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Figure 4.51 A Pierce oscillator using a two-port SAW resonator.

Figure 4.52 (a) The RO2073E SAW resonator from RF Monolithics, (b) the electrical connections,
and (c) equivalent model of the resonator. (From: [3]. Reproduced with permission of
RF Monolithics, Inc.)
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Figure 4.53 (a) A SAW oscillator configuration for use in the 300- to 500-MHz range and (b) a
low-voltage design for RFK applications.

configuration with the SAW resonator acting as a high-Q bandpass filter between
base and ground. The inductor L1 can represent the inductance of a transmitter
antenna. Typical values for the oscillator components used in the 300- to 500-MHz
range are shown.

Figure 4.53(b) shows a design for RKE applications using a 3V battery. The
data input represents the modulation input signal. The Cb capacitors are RF bypass
capacitors and L1 represents the transmitter antenna.

Another popular band for remote control applications is the 418-MHz band.
The RO2103 SAW resonator from Monolithics operates at this frequency. This
SAW resonator is constructed in a TO39-3 case. A design using this resonator
follows.

Example 4.14

Design a 418-MHz SAW oscillator.

Solution
The oscillator configuration is shown in Figure 4.54. The SAW resonator used is
the Monolithics R02103. Typical values for the equivalent model of this SAR
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Figure 4.54 Design of the 418-MHz SAW oscillator for Example 4.14.

resonator are: R = 20V, L = 91.0109 mH, C = 1.59292 fF, and Co = 2 pF. The
transistor selected is the BFS17, which has an fT value of 2.5 GHz. The resistor
values in Figure 4.54 set the Q point at VCE = 3.75V and IC = 2.4 mA.

The design method for C1 , C2 , and L1 is the same as the method used for the
GB tuned oscillator. If L1 = 43 nH, it follows that letting C1 = 5 pF and C2 =
10 pF produces a resonant frequency of 418 MHz, with proper values for the
associated reactances.

The simulation data is shown in Figure 4.54, where the frequency of oscillation
is 418.6 MHz with C1 = 4.7 pF and C2 = 8 pF.



250 Crystal Oscillators

References

[1] Murata Manufacturing Co., Ltd, ‘‘Ceramic Resonators (CERALOCK) Applications
Manual,’’ Catalog P17E-14, Kyoto, Japan, 2004.

[2] Murata Manufacturing Co., Ltd, ‘‘SAW Resonators Applications Manual,’’ Catalog P36E,
Kyoto, Japan, 2001.

[3] RF Monolithics, Inc., ‘‘RO2073E SAW Resonator Datasheet,’’ Dallas, Texas.



C H A P T E R 5

Negative-Resistance Oscillators

5.1 Introduction

In this chapter the techniques that are used in the design of negative-resistance
oscillators (NROs) are discussed. Tuned-circuit oscillators and crystal oscillators
are usually designed using a feedback approach. In fact, whenever external lumped
elements are used for the feedback network, the feedback approach is the method
of choice. In oscillators operating in the microwave region the transistor’s internal
capacitances play an important part in the design. In this range of frequencies it
is more convenient to represent the transistor in terms of its scattering parameters
(i.e., S parameters). The matching network at one of the two ports of the transistor
is called the terminating matching network and the one at the other port is called
the load-matching network. The terminating matching network is used to provide
the proper termination so that the transistor presents a negative-resistance at the
other port (i.e., the load port), which is designed to satisfy the oscillation conditions.

Some of the material in Sections 5.2 to 5.7, and in the TE-Mode DRs in Section
5.12 were adapted or reproduced from the book by Gonzalez [1] ( 1997. Reprinted
by permission of Pearson Education, Inc., Upper Saddle River, NJ.)

5.2 Negative-Resistance Method

The theory and design of oscillators can also be approached using the negative-
resistance method. The method is used extensively in the design of RF and micro-
wave frequency oscillators. If an active device is used to supply an amount of
energy equal to the energy dissipated, the circuit can sustain oscillations. The
behavior of the active device can be represented by a negative resistance in series with
a reactance, as shown in Figure 5.1. The negative-resistance device is represented by
the amplitude- and frequency-dependent impedance

ZIN (A, v ) = RIN (A, v ) + jXIN (A, v ) (5.1)

where A is the amplitude of i (t ) and

RIN (A, v ) < 0

The oscillator is constructed by connecting the device to a passive impedance
denoted by

251
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Figure 5.1 A negative-resistance model.

ZL (v ) = RL (v ) + jXL (v ) (5.2)

If

RL (v ) + RIN (A, v ) > 0

the total loop resistance in Figure 5.1 is positive and the oscillation will die out.
The circuit will oscillate at the frequency (vo ) and amplitude (Ao ) where

ZIN (Ao , vo ) + ZL (vo ) = 0 (5.3)

Substituting (5.1) and (5.2) into (5.3), the oscillation conditions can be written
as

RIN (Ao , vo ) + RL (vo ) = 0 (5.4)

and

XIN (Ao , vo ) + XL (vo ) = 0 (5.5)

If

RL (v ) + RIN (A, v ) < 0 (5.6)

the oscillation is unstable and its amplitude will grow. From (5.6), the circuit in
Figure 5.1 is unstable if the net loop resistance is negative; that is, when

|RIN (A, v ) | > RL (v ) (5.7)

In a well-designed oscillator, at the start of oscillations, (5.7) is satisfied. That
is, when the amplitude A is small the oscillations begin to build up. The start of
oscillation condition in (5.7) is usually expressed in the form

|RIN (0, v ) | > RL (v ) (5.8)
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The oscillations will continue to build up as long as the loop resistance is
negative, as required by (5.7). The amplitude of the current will reach a steady-
state value (i.e., at A = Ao and v = vo ), when the loop resistance is zero and (5.4)
and (5.5) are satisfied. This is similar to satisfying the Barkhaussen criteria, which
we know that can not be exactly satisfied. To satisfy the start of oscillation condition
in (5.8), the build-up of oscillations in (5.7), and the oscillation conditions in (5.4)
and (5.5), the impedance ZIN (A, v ) must be amplitude and frequency dependent.
A typical negative-resistance variation produced by the active device is such that
at the start of oscillations RIN (0, v ) has its maximum value and then decreases
linearly as the amplitude increases. When RIN reaches the value RIN (Ao , v ), (5.4)
and (5.5) are approximately satisfied and the circuit will oscillate with amplitude
Ao at vo . This discussion is similar to that in Section 1.2 where a detailed analysis
shows that the circuit poles move between the right-half plane and the left-half
plane with (5.4) and (5.5) predicting the fundamental frequency of oscillation.

The frequency of oscillation determined by (5.4) and (5.5) might not be stable
since ZIN (A, v ) is amplitude and frequency dependent. Therefore, it is necessary
to find another condition to guarantee a stable oscillation. If the frequency depen-
dence of ZIN (A, v ) can be neglected for small variations around vo , Kurokawa
[2] has shown that a stable oscillation is obtained when (5.4) and (5.5) are satisfied,
and the following condition is also satisfied:

∂RIN (A)
∂A | A = Ao

dXL (v )
dv |

v = vo

−
∂XIN (A)

∂A | A = Ao

dRL (v )
dv |

v = vo

> 0 (5.9)

The derivation of (5.9) is given in Appendix A.
In many cases

dRL (v )
dv

= 0

(i.e., RL is a constant) and (5.9) simplifies accordingly. Also, when RL is constant
the term RL (vo ) in (5.6) is simply replaced by the constant value RL .

For frequencies around the frequency of oscillation a reasonable approximation
is to assume that RIN (A, v ) and XIN (A, v ) are only a function of the amplitude
of i (t ). In some cases the variation for RIN (A, v ) can be approximated by

RIN (A, v ) ≈ RIN (A) = −R0S1 −
A

AM
D (5.10)

where −R0 is the value of RIN (A) at A = 0, and AM is the maximum value of A.
In other words, the magnitude of the negative resistance is a linearly decreasing
function of A (see Figure 5.2).

A practical way of designing RL is to select its value for maximum oscillator
power. In Figure 5.1, if RIN is given by (5.10), the power delivered to RL by RIN
is
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Figure 5.2 Linear variation of the negative resistance as a function of the current amplitude.

P =
1
2

Re(VI*) =
1
2 |I |2 |RIN (A) | =

1
2

A2Ro S1 −
A

AM
D

Hence, the value of A that maximizes the oscillation power is found from

dP
dA

=
1
2

RoS2A −
3A2

AM
D = 0

which gives the desired value of A, denoted by Ao,max , that maximizes the power.
That is,

Ao,max =
2
3

AM

At Ao,max the value of RIN (Ao,max) is

RIN (Ao,max) = −
Ro
3

Hence, a convenient value of RL , which maximizes the oscillator power, is

RL =
Ro
3

(5.11)

Observe that (5.11) is valid when the negative input resistance varies linearly with
amplitude. In practice, the selection of RL , according to (5.11), produces good
results.

Example 5.1

(a) Determine the frequency of oscillation for the circuit in Figure 5.3, and the
negative resistance RIN that makes the circuit unstable. For simplicity in the analysis
use L = 1H and C = 1F.
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Figure 5.3 Circuit for Example 5.1.

(b) Determine if the oscillator is stable when the negative resistance is a linearly
decreasing function of the amplitude.
(c) If Ro = 45V and AM = 1A in (5.10), determine the value of RL for maximum
oscillator power.

Solution
(a) For the circuit in Figure 5.3,

ZIN = RIN

and

ZL (s) = s +
1
s

+ RL =
s2 + RLs + 1

s

From (5.5), since XIN = 0, it follows that

XL (vo ) = 0

or

jvo +
1

jvo
= 0 ⇒ vo = 1 rad/s

and from (5.4), at vo , we obtain that

RIN + RL = 0

or

RIN = −RL

The circuit is unstable for those values of RIN that make the loop resistance
be negative, namely,
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RIN < −RL

or the negative resistance values that satisfy

|RIN | > RL

(b) For the circuit to maintain a stable oscillation at vo = 1 rad/s the condition
(5.9) must be satisfied. With RIN given by (5.10), it follows that

∂RIN (A)
∂A

=
Ro
AM

Therefore, since Ro > 0, we have that ∂RIN (A)/∂A > 0.
Also, with XL = (v − 1/v ) it follows that

dXL (v )
dv

= 1 +
1

v2

Therefore,

∂RIN (A)
∂A | A = Ao

dXL (v )
dv |

v = vo

> 0

which shows that the oscillation is stable.
(c) From (5.10), the expression for RIN (A) is

RIN (A) = −45(1 − A)

Using (5.11) the value of RL that maximizes the oscillator power is

RL =
Ro
3

=
45
3

= 15V

and the amplitude of A is

Ao,max =
2
3

AM =
2
3

In some cases it is more convenient to represent the one-port negative-resistance
oscillator using the parallel model shown in Figure 5.4. In the parallel model
the voltage is the same across the two resistors. The negative-resistance device is
represented by the admittance

YIN (A′, v ) = GIN (A ′, v ) + jBIN (A′, v )

where A′ is the amplitude of v (t ), and GIN (A′, v ) < 0.
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Figure 5.4 The parallel circuit model for the one-port negative-resistance oscillator.

The network in Figure 5.4 will oscillate at the amplitude A′o and frequency
v = vo , when

YIN (A′o , vo ) + YL (vo ) = 0

or in terms of the real and imaginary parts of the admittance we have

GIN (A′o , vo ) + GL (vo ) = 0 (5.12)

and

BIN (A′o , vo ) + BL (vo ) = 0 (5.13)

The start of oscillation condition can be expressed in the form

|GIN (0, v ) | > GL (v )

For stable oscillation the Kurokawa condition must be satisfied. In terms of the
circuit in Figure 5.4 the condition reads

∂GIN (A′ )
∂A′ | A′ = Ao

dBL (v )
dv |

v = vo

−
∂BIN (A′ )

∂A′ | A′ = A′o

dGL (v )
dv |

v = vo

> 0

(5.14)

The selection of the impedance or admittance form for the negative resistance
should not be made arbitrarily. If the impedance plot of ZIN looks like a series-
impedance circuit, the equivalent negative-resistance circuit should be treated using
the impedance form. If the admittance plot of YIN looks like a parallel-admittance
circuit, the equivalent negative-resistance circuit should be treated using the admit-
tance form.

Further understanding of a negative-resistance oscillator is gained by the analy-
sis of the series RLC circuit shown in Figure 5.5. The active device is represented
by the negative resistance RIN (where RIN < 0) in series with the inductor L, and
the load network by RL in series with the capacitor C. Obviously, the inductor
and capacitor are interchangeable. The voltage that starts the oscillation can be
modeled, for simplicity, as a step voltage with a small amplitude E. For the
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Figure 5.5 A negative-resistance circuit.

series-tuned circuit the net loop resistance is RL + RIN . If | RIN | > RL the net loop
resistance is negative. The loop equation is

E
s

= I(s)(RL + RIN ) + I(s)sL +
I(s)
sC

or

I(s) =

E
L

s2 +
(RL + RIN )

L
s +

1
LC

The output voltage Vo (s) = I(s)RL can be conveniently expressed in the form

Vo (s) =

ERL
L

s2 + 2avos + v 2
o

(5.15)

where

vo = √ 1
LC

and

a =
RL + RIN

2voL
=

(RL + RIN )
2 √C

L
(5.16)

Of course, vo represents the resonant frequency and a the damping factor.
The time function vo (t ) is obtained by taking the inverse Laplace transform

of (5.15). The inverse transform depends on the location of the poles of (5.15) at

s = vo X−a ± j√1 − a2 C (5.17)
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There are three cases to consider in (5.17). First, (5.17) has real poles when a
> 1, and in this case the circuit does not have an oscillatory behavior, it simply
behaves like a first-order circuit. Second, if a = 1 the poles of (5.17) are equal and,
consequently, the circuit is not oscillating. Third, if a < 1 the poles in (5.17) are
complex conjugates and vo (t ) is given by

v(t) =
ERL

L
1

vo√1 − a2
e −avo t sin Xvo√1 − a2 tC

which can represents either a decaying (for 0 < a < 1) or a growing oscillation
(for a < 0). The exponential factor is e −avo t and the oscillation frequency is
vo√1 − a2.

For an oscillation we want a = 0, as shown in Figure 5.6. From (5.16), the
ideal case of a = 0 occurs when RL + RIN = 0 (or no losses in the circuit), and the
oscillation frequency is

vo = √ 1
LC

The previous analysis shows that an active component is required to implement
the negative resistance. Active components are nonlinear in nature and, therefore,
its impedance will be a function of the current amplitude in a series circuit. For
oscillations to begin and grow we want a < 0 (or | RIN | > RL ). At the start of the
oscillation, the term e −avo t increases exponentially. It increases until a steady state
is reached. This occurs when the nonlinearities of the active device decrease the
value of RIN so that RL + RIN = 0, or a = 0. In the ideal case that a = 0, the
growing oscillation reaches a steady state as shown in Figure 5.6.

The concept of Q in an oscillator circuit is related to the resonator’s effect
(i.e., the resonator’s Q) on the loop gain. The equivalent circuit of an NRO can
also be drawn as shown in Figure 5.7 where the resonator losses are represented
by RR , the load resistor is RL , and the active device negative resistance by RIN .
This circuit is similar to that in Figure 5.5, except that RR was included and the
resonator was viewed as composed of L, C, and RR . The loaded Q in Figure 5.7
is infinite, since RR + RL + RIN = 0. That is, in Figure 5.7, when the circuit oscillates,
the negative resistance cancels RR + RL . Hence, an oscillator is basically an infinite
QL resonator that (ideally) supports a constant amplitude sinusoidal voltage.

Figure 5.6 The oscillatory response of vo (t ).
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Figure 5.7 A negative-resistance circuit with RR representing the resonator losses.

The unloaded Q of the resonator is

QU =
vo

2RR

dX
dv |

v = vo

5.3 Oscillation Conditions—A Negative-Resistance Approach

In this section two oscillator configurations are analyzed to illustrate how the
negative resistance arises. Consider the Colpitts oscillator shown in Figure 5.8(a).
Its equivalent small-signal circuit, as viewed from the inductor, is shown in
Figure 5.8(b).

From Figure 5.8(b), it is observed that the transistor’s junction capacitance Cbe
has a negligible effect on the performance of the circuit if C1 @ Cbe ; and hoe can
be neglected if |ZC2 | ! 1/hoe . Hence, from Figure 5.8(b) the loop equations are

v1 = i1(Z1 + Z2) − ib (Z1 − hfe Z2) (5.18)

0 = i1(Z1) − ib (Z1 + hie ) (5.19)

Solving (5.18) and (5.19) for ZIN gives

Figure 5.8 (a) A BJT Colpitts oscillator and (b) small-signal model to calculate ZIN .
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ZIN =
v1
i1

=
(1 + hfe )Z1Z2 + hie (Z1 + Z2)

Z1 + hie
(5.20)

In (5.20), if | Z1 | ! hie (i.e., the transistor’s hie does not load the capacitor
C1), ZIN can be approximated by

ZIN ≈
hfe

hie
Z1Z2 + Z1 + Z2

= −gmX1X2 + j (X1 + X2)

or

ZIN ≈
−gm

v2C1C2
+

1
jvCT

(5.21)

where the input capacitance CIN associated with ZIN is the total capacitance of
the Colpitts oscillator, namely,

CIN = CT =
C1C2

C1 + C2

Equation (5.21) clearly illustrates that the input impedance has a negative real
part (i.e., a negative resistance) in series with the total capacitance CT . The negative
resistance is given by

RIN =
−gm

v2C1C2
(5.22)

The equivalent negative-resistance resonant circuit is shown in Figure 5.9,
where ZL = Rs + jvL, and Rs is the inductor’s loss resistance.

The gain condition for this circuit [see (5.8)] is | RIN | > Rs or

gm

v 2
o C1C2Rs

> 1 (5.23)

Figure 5.9 Equivalent negative-resistance circuit.
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and the frequency of oscillation is

vo =
1

√LCIN
(5.24)

The transistor’s gm is a function of the oscillation amplitude [i.e., gm (A)]. As
the amplitude builds up, the value of gm decreases. Hence, a convenient way of
writing the start of oscillation condition in (5.23) is

gm (0)

v 2
o C1C2Rs

> 1 (5.25)

where gm (0) being the small-signal value of gm .
At the start of oscillations the loop resistance is negative. As the oscillation

amplitude builds up, the value of gm decreases, and the oscillator reaches a steady
amplitude value of Ao when (5.23) is approximately equal to 1.

It is also observed that in this oscillator Rs represents the inductor’s losses,
which is determined by its QU . Hence, a design procedure based on (5.11) does
not readily apply.

Equation (5.25) places a limit on the maximum value of the capacitors C1 and
C2 , since for oscillations to start, Rs must satisfy

Rs <
gm (0)

v 2
o C1C2

(5.26)

For the case that C1 = C2 , (5.26) shows that

1
voC1

> √ Rs
gm (0)

or the minimum required reactance for oscillation is a function of the series loss
resistance of the inductor, and of the transistor’s conductance. If C1 ≠ C2 , (5.26)
must be satisfied.

The use of a feedback resistor R, as shown in Figure 5.10, results in the
following expression for ZIN :

ZIN =
−X1X2
1

gm
+ R

+ j (X1 + X2) (5.27)

Equation (5.27) shows that the negative resistance is reduced. Also, if R @ 1/gm ,
the dependence of the negative resistance on gm is reduced, which might result in
an improvement of the phase-noise characteristics.

The Hartley configuration shown in Figure 5.11(a) is analyzed in a similar way.
Its ac model is shown in Figure 5.11(b). Neglecting the loading of the transistor’s hie
and Cbe , and assuming no mutual coupling, it follows that
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Figure 5.10 A Colpitts oscillator with a feedback resistor R.

Figure 5.11 (a) A BJT Hartley oscillator, (b) its ac model, and (c) negative-resistance model.

ZIN =
v
i

= −gmv 2
o L1L2 + jv (L1 + L2) (5.28)

The negative resistance model in Figure 5.11(c) follows from (5.28).
With the load network composed of a capacitor and a resistance, as shown in

Figure 5.11(c), we obtain

vo = √ 1
(L1 + L2)C
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and the gain condition is

RL

L1L2v 2
o gm

< 1

In Figure 5.11, RL represents either coil losses or an external load resistor.
In some configurations the selection of ZIN and ZL is not obvious. For example,

consider the FET Pierce oscillator shown in Figure 5.12(a) and assume that the
inductor is lossless. Its small-signal model is shown in Figure 5.12(b). Since the
controlled source depends on vf = vgs , it is not obvious how to obtain an equivalent
circuit across either C1 , C2 , or L. A particular selection of ZL and ZIN that works
for this circuit is to select ZL to be the impedance between the drain and ground;
that is,

ZL ( jv ) = rd || jX2 || ( jX3 + jX1) (5.29)

and ZIN to be the equivalent impedance of the source gmvgs . Since

vgs = vo
X1

X1 + X3

then,

gmvgs = vo
gmX1

X1 + X3
=

vo
ZIN

Figure 5.12 (a) An FET Pierce oscillator, (b) its small-signal model, and (c) the equivalent negative-
resistance circuit at resonance.
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where

ZIN =
X1 + X3

gmX1
(5.30)

Observe that ZIN is purely real. It is a negative number if X1 + X3 is inductive,
and a positive number if X1 + X3 is a capacitive. Obviously, X1 + X3 better be
inductive for ZIN to represent a negative resistor, and for the circuit to have a
resonant frequency.

The frequency of oscillation requires that the imaginary part of ZIN + ZL ( jv )
be zero. Since ZIN is real, the imaginary part of ZL ( jv ) in (5.29) vanishes at the
frequency vo where

X1( jvo ) + X2( jvo ) + X3( jvo ) = −
1

vC1
−

1
vC2

+ vL = 0 (5.31)

or

vo =
1

√LCT

where

CT =
C1C2

C1 + C2

Furthermore, ZL ( jvo ) = rd is a real number.
At the frequency vo it follows from (5.31) and (5.30) that

ZIN = RIN =
−X2

gmX1
=

−C1
gmC2

and the equivalent negative-resistance model at resonance is obtained, see Figure
5.12(c). From Figure 5.12(c) oscillation occurs when the loop resistance is zero.
That is, when

−C1
gmC2

+ rd = 0

or

gmrd =
C1
C2

which is the well known gain condition for the FET Pierce oscillator.
The start of oscillation condition requires that the small-signal value of gm

[i.e., gm (0)] satisfy
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gm (0) >
C1

C2rd

5.4 Traveling-Waves and Power-Waves Concepts

In this section a short review of transmission lines concepts is given. A transmission
line of length d = l with real characteristic impedance Zo is shown in Figure 5.13(a).
The transmission line is excited with a sinusoidal source vs having an impedance
Zs , and terminated in the load ZL . The phasor form of the voltage and current
along a transmission line can be expressed in terms of an incident traveling-wave
voltage V +(d) and a reflected traveling-wave voltage V −(d) as

V (d) = V +(d) + V −(d) = Ae jbd + Be −jbd

and

I(d) = I +(d) − I −(d) =
Ae jbd

Zo
−

Be −jbd

Zo

where b is the propagation constant,

b =
v
vp

=
2p
l

(5.32)

In (5.32), vp is the velocity of propagation (i.e., the phase velocity) and l is the
wavelength (i.e., l = vp /f ).

The reflection coefficient at d = 0, known as the load reflection coefficient Go ,
is given by

Figure 5.13 (a) A transmission line with characteristic impedance Zo , load impedance ZL , and
length d = l ; and (b) the equivalent circuit at d = l. (From: [1].  1997. Reprinted by
permission of Pearson Education, Inc., NJ.)
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Go =
ZL − Zo
ZL + Zo

(5.33)

The reflection coefficient at a distance d from the load is given by

GIN (d) = Goe −j2bd (5.34)

The impedance at any point along the line is given by

ZIN (d) =
V (d)
I(d)

= Zo
1 + GIN (d)
1 − GIN (d)

(5.35)

Substituting (5.33) into (5.34) and then into (5.35) results in the following
expression for ZIN (d):

ZIN (d) = Zo
ZL cos bd + jZo sin bd
Zo cos bd + jZL sin bd

At the input of the line (d = l) the input reflection coefficient and input impedances
are given by GIN (l) and ZIN (l), respectively. Observe, from (5.35), that

GIN (l) =
ZIN (l) − Zo
ZIN (l) + Zo

(5.36)

The normalized incident and reflected traveling waves, denoted by a and b,
along the transmission line are defined by

a(d) =
V +(d)

√Zo
=

1

2√Zo
[V (d) + ZoI(d)]

and

b(d) =
V −(d)

√Zo
=

1

2√Zo
[V (d) − ZoI(d)]

At the input of the transmission line there is an input impedance ZIN (l), as
shown in Figure 5.13(b). This input impedance could also be implemented with
lumped elements, as shown in Figure 5.14(a). The circuit in Figure 5.14(a) has no
transmission line and the input impedance is denoted by ZIN . For this circuit we
can still define an input reflection coefficient in terms of a real source impedance
Zs as

GIN =
ZIN − Zs
ZIN + Zs

Thus, if Zs = Zo , then
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Figure 5.14 (a) Input circuit with Zs = Zo and (b) general case where Zs is complex.

GIN =
ZIN − Zo
ZIN + Zo

(5.37)

The source impedance is known as the normalizing impedance. If a transmission
line is inserted between Zs = Zo and a load in Figure 5.14(a), then GIN in (5.37)
represents the reflection coefficient associated with ZIN .

Equation (5.36) (which applies to a transmission line) and (5.37) (which applies
to a lumped network with Zs = Zo ) are equivalent in form. A (VSWR)IN can be
defined in terms of GIN for the circuit in Figure 5.14(a), namely

(VSWR)IN =
1 + |GIN |
1 + |GIN |

(5.38)

Hence, there is maximum power transfer when (VSWR)IN = 1 (or ZIN = Zs =
Zo ), and whenever (VSWR)IN > 1 there is a power mismatch. Observe that the
transmission-line concepts are useful even if there is no transmission line.

A generalization of the circuit in Figure 5.14(a) is shown in Figure 5.14(b),
where Zs is complex, or Zs = Rs + jXs . Since Zs is complex the reflection coefficient
concept used in (5.37) does not apply. However, a new set of waves, known as
power waves, was developed by Kurokawa to analyze such a circuit [3]. Kurokawa
introduced the incident and reflected power waves (ap and bp , respectively) defined
by

ap =
1

2√Rs
(V + ZsI )

and

bp =
1

2√Rs
(V − Zs*I )

The reflection-coefficient Gp associated with the power waves, also known as the
generalized reflection coefficient, is given by



5.4 Traveling-Waves and Power-Waves Concepts 269

Gp =
bp

ap
=

ZIN − Zs*
ZIN + Zs*

(5.39)

Observe that when the normalized impedance Zs is real and positive (say,
Zs = Zo ), the expressions for the power waves are identical to those of the traveling
waves [see also the similarity of the power reflection coefficient in (5.39) and the
input reflection coefficient in (5.37)]. A (VSWR)IN can be defined in terms of Gp
by replacing GIN by Gp in (5.38). Equation (5.39) shows that when ZIN = Zs* there
is maximum power transfer to ZIN , and (VSWR)IN = 1.

5.4.1 S Parameters

A short review of the S parameters concepts is now presented. For detailed informa-
tion on S parameter theory the reader is referred to Gonzalez [1]. For the two-
port network shown in Figure 5.15, the relations between the normalized reflected
waves b1(l1) at port 1 and b2(l2) at port 2, and the normalized incident waves
a1(l1) and a2(l2) are

b1(l1) = S11a1(l1) + S12a2(l2) (5.40)

and

b2(l2) = S21a1(l1) + S22a2(l2) (5.41)

Observe that port 1 is located at x1 = l1 and port 2 is located at x2 = l2 . Equations
(5.40) and (5.41) can be expressed in matrix form

Fb1(l1)

b2(l1)G = FS11 S12

S21 S22
GFa1(l1)

a2(l1)G (5.42)

Figure 5.15 Incident and reflected waves in a two-port network. (From: [1].  1997. Reprinted by
permission of Pearson Education, Inc., NJ.)
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The waves a1(l1), a2(l2), b1(l1), and b2(l2) are the values of the incident and
reflected waves at the specific locations denoted as port 1 and port 2 in Figure 5.15.
The parameters S11 , S22 , S21 , and S22 , which represent reflection and transmission
coefficients, are called the scattering parameters (S parameters) of the two-port
network, measured at ports 1 and 2. The matrix

FS11 S12

S21 S22
G

is called the scattering matrix. The term S11a1(l1) represents the contribution to
the reflected wave b1(l1) due to the incident wave a1(l1) at port 1. Similarly,
S12a2(l2) represents the contribution to the reflected wave b1(l1) due to the incident
wave a2(l2) at port 2, and so on.

The S parameters are seen to represent reflection or transmission coefficients.
From (5.42), the S parameters measured at the specific location shown as port 1
and port 2 in Figure 5.15 are defined as follows:

S11 =
b1(l1)
a1(l1) |

a2 (l2 ) = 0

(Input reflection coefficient with output properly terminated)

S21 =
b2(l2)
a1(l1) |

a2 (l2 ) = 0

(Forward transmission coefficient with output properly terminated)

S22 =
b2(l2)
a2(l2) |

a1 (l1 ) = 0

(Output reflection coefficient with input properly terminated)

S12 =
b1(l1)
a2(l2) |

a1 (l1 ) = 0

(Reverse transmission coefficient with input properly terminated)
If the two-port network in Figure 5.15 represents a transistor, the transistor

must be properly biased. Hence, the transistor S parameters are measured at a
given Q point, under small-signal conditions. In addition, the S parameters vary with
frequency; therefore, their values as the frequency is varied are usually measured.

In Figure 5.15 the two-port network is excited by the sinusoidal voltage sources
represented by the phasors E1 and E2 , and the source impedances are denoted
by Zo . The impedances Zo are also known as the reference impedances (or the
normalizing impedances). In practice, the S parameters are measured with a real
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Zo (usually Zo = 50V). The S parameters measured in Figure 5.15 are said to be
measured in a Zo system.

From Figure 5.15 (i.e., with E2 = 0) the input reflection coefficient S11 at
x1 = l1 is given by

S11 =
b1(l1)
a1(l1) |

a2 (l2 ) = 0
=

ZT1 − Zo
ZT1 − Zo

(5.43)

where ZT1 is the input impedance at port 1. Equation (5.43) shows that S11 is the
input reflection coefficient at port 1 with port 2 terminated in its normalizing
impedance Zo (i.e., a2(l2) = 0).

Similarly, S22 is the reflection coefficient of port 2 with port 1 terminated in
its normalizing impedance Zo [i.e., a1(l1) = 0]. That is,

S22 =
b2(l2)
a2(l2) |

a1 (l1 ) = 0
=

ZT2 − Zo
ZT2 − Zo

where ZT2 is the input impedance at port 2.
If we consider the quantity |S11 |2, it can be shown that

|S11 |2 = | b1(l1)
a1(l1) | 2 |

a2 (l2 ) = 0
=

PAVS − P1(l1)
PAVS

or

P1(l1) = PAVS X1 − |S11 |2 C (5.44)

where PAVS is the power available at port 1 and P1(l1) is the input power at port
1. Equation (5.44) shows that |S11 |2 represents the ratio of the power reflected
from port 1 to the power available at port 1. If |S11 | > 1, the power reflected is
larger than the power available at port 1. Therefore, in such case port 1 acts as a
source of power and oscillation can occur. Similar considerations apply to port 2.

5.4.2 Sp Parameters

For the case of a two-port network with complex source impedances Z1 and Z2 ,
as shown in Figure 5.16, we can define generalized scattering parameters (Sp
parameters) denoted by Sp11 , Sp12, Sp21 , and Sp22 in terms of the circuit power
waves as follows:

bp1 = Sp11ap1 + Sp12ap1

bp2 = Sp21ap1 + Sp22ap1

where
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Figure 5.16 Two-port representation in terms of generalized scattering parameters.

ap1 =
1

2√R1
(V1 + Z1I1)

ap2 =
1

2√R2
(V2 + Z2I2)

bp2 =
1

2√R2
(V2 − Z2*I2)

and

bp1 =
1

2√R1
(V1 − Z1*I1)

The resistors R1 and R2 are R1 = Re[Z1] and R2 = Re[Z2]. The values of the Sp
parameters depend on the terminal impedances Z1 and Z2 . These impedances are
known as the references impedances.

5.5 Stability Considerations

Figure 5.17 shows a two-port network connected to a source Es with source
impedance Zs and to a load ZL . The two-port network is characterized by its S
parameters measured in a Zo system. The input and output reflection coefficients
are given by

GIN = S11 +
S12S21GL
1 − S22GL

=
S11 − DGL
1 − S22GL

(5.45)

and

GOUT = S22 +
S12S21Gs
1 − S11Gs

=
S22 − DGs
1 − S11Gs

(5.46)

where
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D = S11S22 − S21S12 (5.47)

Gs =
Zs − Zo
Zs + Zo

and

GL =
ZL − Zo
ZL + Zo

The source and load impedances are assumed to be passive. Hence, the real parts
of Zs and ZL are positive, and it follows that | Gs | < 1 and | GL | < 1.

In the two-port network in Figure 5.17 oscillations are possible when either
the input or output port presents a negative resistance. This occurs when
| GIN | > 1 or | GOUT | > 1. The two-port network is said to be potentially unstable
when | GIN | > 1 or | GOUT | > 1. An appropriate selection of GL and Gs will make a
potentially unstable two port to oscillate.

If either |S11 | > 1 or |S22 | > 1, the two port is potentially unstable because the
termination GL = 0 or Gs = 0 will produce | GIN | > 1 or | GOUT | > 1.

A two-port network is unconditional stable at a given frequency if the real
parts of ZIN and ZOUT are greater than zero for all passive load and source
impedances. It can be shown that a two port is unconditionally stable if

K > 1 (5.48)

and

|D | < 1 (5.49)

where

K =
1 − |S11 |2 − |S22 |2 + |D |2

2 |S12S21 |

Figure 5.17 A two-port network connected to a source and a load. (From: [1].  1997. Reprinted
by permission of Pearson Education, Inc., NJ.)
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The unconditional stability conditions (5.48) and (5.49) can also be expressed
in terms of a single condition, namely m > 1, where

m =
1 − |S22 |2

|S11 − DS2*2 | + |S12S21 |
(5.50)

That is, if m > 1 the two-port network is unconditionally stable, and if m < 1 the
device is potentially unstable. Alternatively, the single m > 1 condition in (5.50)
can also be expressed in terms of m ′ (i.e., m ′ > 1), where m ′ is obtained by inter-
changing S11 by S22 in (5.50). If m > 1, it also follows that m ′ > 1, and vice versa.
The parameters m represents the distance from the center of the Smith chart to the
closest point on the output stability circle. Hence, if m > 1 the input stability circle
is outside the Smith chart and the device is unconditionally stable. The larger the
m the more stable the device is.

When the two-port in Figure 5.17 is potentially unstable, there are values of
Gs and GL for which the real parts of ZIN and ZOUT are negative. These values of
Gs and GL are useful in the design of oscillators. It can be shown from (5.45) and
(5.46) that the values GL and Gs that make | GIN | = 1 and | GOUT | = 1 lie on circles,
called stability circles.

The radius and center of the circle in the GL plane that produces | GIN | = 1
(i.e., the output stability circle), and in the Gs plane that produces | GOUT | = 1 (i.e.,
the input stability circle) are as follows:
Output stability circle:

rL = | S12S21

|S22 |2 − |D |2 | (radius) (5.51)

CL =
XS22 − DS1*1 C*
|S22 |2 − |D |2

(center) (5.52)

Input stability circle:

rs = | S12S21

|S11 |2 − |D |2 | (radius) (5.53)

Cs =
XS11 − DS2*2 C*
|S11 |2 − |D |2

(center) (5.54)

The expressions (5.51) to (5.54) can be calculated and plotted on a Smith chart
for a set of S parameters, and the values of GL and Gs that produce | GIN | = 1 and
| GOUT | = 1 can be easily observed. Figures 5.18 and 5.19 illustrate typical construc-
tions of the stability circles in a potentially unstable case. On one side of the stability
circle boundary in the GL plane, we will have | GIN | < 1 and on the other side
| GIN | > 1. Similarly, in the Gs plane on one side of the stability circle boundary,
we will have | GOUT | < 1 and on the other side | GOUT | > 1.
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Figure 5.18 Smith chart illustrating stable and unstable regions in the GL plane for (a) |S11 | < 1
and (b) |S11 | > 1. (From: [1]:  1997. Reprinted by permission of Pearson Education,
Inc., NJ.)

Figure 5.19 Smith chart illustrating stable and unstable regions in the Gs plane for (a) |S22 | < 1
and (b) |S22 | > 1. (From: [1].  1997. Reprinted by permission of Pearson Education,
Inc., NJ.)
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Next, we need to determine which area in the Smith chart represents the stable
region and which area represents the unstable region. In other words, the stable
region is where values of GL X| GL | < 1C produce | GIN | < 1 and where values of GsX| Gs | < 1C produce | GOUT | < 1. The unstable region is where values of GLX| GL | < 1C produce | GIN | > 1 and where values of Gs X| Gs | < 1C produce
| GOUT | > 1. From (5.45), for GL = 0 it follows that | GIN | = |S11 | . Hence, if the
magnitude of S11 is less than 1, then | GIN | < 1 when GL = 0. That is, the center of
the Smith chart in Figure 5.18(a) represents a stable operating point when
|S11 | < 1. On the other hand, if |S11 | > 1 then | GIN | > 1 when GL = 0, and the
center of the Smith chart represents an unstable operating point. Figure 5.18
illustrates the two cases discussed. The shaded area represents the values of GL
that produce a stable operation. Similarly, Figure 5.19 illustrates stable and unstable
regions for Gs .

In an unconditional stable case (i.e., when K > 1 and | D | < 1) the stability
circles fall completely outside the Smith chart or completely enclosed the Smith
chart. Hence, any passive terminations result in a stable condition.

5.6 Oscillation Conditions in Terms of Reflection Coefficients

In a microwave circuit a closed-loop gain function of the type in (1.4) can be
developed as follows. Consider the circuit shown in Figure 5.20(a) and its flow
graph in Figure 5.20(b). The coefficient GL ( jv ) represents the load reflection coeffi-
cient, and GIN ( jv ) the input reflection coefficient of an active device. GL ( jv ) is
associated with ZL , and GIN ( jv ) is associated with ZIN . The input impedance ZIN
represents the active device impedance. The incident and reflected waves from ZL
are aL and bL , respectively; and from ZIN the incident and reflected waves are aIN
and bIN , respectively. The incident wave an represents a small noise signal generated
in the circuit. From the flow graph in Figure 5.20(b) we can write

aL =
anGIN ( jv )

1 − GIN ( jv )GL ( jv )
(5.55)

Figure 5.20 (a) A microwave circuit and (b) its flow graph.
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Equation (5.55) is the closed-loop gain of the circuit in Figure 5.20(a). From
(5.55) we observe that the system is unstable when some disturbance produces a
growing signal aL . This occurs when the loop gain 1 − GIN ( jv )GL ( jv ) has right-
half plane zeroes. The Nyquist test can be applied to analyze the function 1 −
GIN ( jv )GL ( jv ) by determining the encirclements of the point GIN ( jv )GL ( jv ) = 1.

Equation (5.55) shows that for oscillations to occur the loop gain must be
unity; that is,

GIN ( jv )GL ( jv ) = 1 (5.56)

The notation used in (5.56) is very general. A more convenient way of expressing
(5.56) is to specify the frequency vo and the amplitude Ao at which (5.56) is
satisfied; that is,

GIN (Ao , vo )GL (vo ) = 1 (5.57)

where

GIN (Ao , vo ) =
ZIN (Ao , vo ) − Zo
ZIN (Ao , vo ) + Zo

(5.58)

and

GL (vo ) =
ZL (vo ) − Zo
ZL (vo ) + Zo

(5.59)

where

ZIN (A, v ) = RIN (A, v ) + jXIN (A, v )

and

ZL (v ) = RL (v ) + jXL (v )

Substituting (5.58) and (5.59) into (5.57), it follows that

ZIN (Ao , vo ) + ZL (vo ) = 0 (5.60)

which is, as expected, identical to (5.3). Hence, the oscillation condition (5.3) in
terms of reflection coefficients is identical to the oscillation condition in terms of
impedances. It also follows from (5.60) that

RIN (Ao , vo ) + RL (vo ) = 0

and

XIN (Ao , vo ) + XL (vo ) = 0 (5.61)

which are the conditions for oscillation.
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Example 5.2

(a) Use reflection coefficients to determine the values of RIN that make the circuit
in Figure 5.21(a) unstable. For simplicity in the analysis, choose L = 1H and
C = 1F.
(b) Determine the frequency of oscillation.

This example is identical to Example 5.1, except that in this example reflection
coefficients are used in the analysis. In Example 5.1 we found that the circuit is
unstable when RIN < −RL .

Solution
(a) The location of GIN and GL can be selected arbitrarily. For the circuit in Figure
5.21(a), the input and load reflection coefficients were selected at the location
indicated in the figure. That is,

Figure 5.21 (a) Circuit for Example 5.2 and (b) the Nyquist plot of GIN ( jv )GL ( jv ). (From: [1].
 1997. Reprinted by permission of Pearson Education, Inc., NJ.)
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ZIN = RIN

and

ZL (s) = s +
1
s

+ RL =
s2 + RLs + 1

s

where s = jv . Then, in a 50-V system

GIN (s) =
RIN − 50
RIN + 50

= C1

and

GL (s) =
ZL (s) − 50
ZL (s) + 50

=
s2 + s(RL − 50) + 1

s2 + s(RL + 50) + 1

The selection of ZIN = RIN made GIN (s) a constant, which is denoted by C1 .
In order to apply the Nyquist test, we form

GIN ( jv )GL ( jv ) = 1

or

(1 − v2) + jv (RL − 50)

(1 − v2) + jv (RL + 50)
=

1
C1

(5.62)

The Nyquist plot of (5.62) is shown in Figure 5.21(b) for C1 > 0 (the plot for
C1 < 0 is quite similar). The circuit is unstable when the number of encirclements
of the point 1/C1 is nonzero. Figure 5.21(b) shows that the circuit is unstable when

RL − 50
RL + 50

<
1

C1
< 1

Since 1/C1 < 1 for any value of C1 , it follows that the circuit is unstable when

RL − 50
RL + 50

<
RIN + 50
RIN − 50

Since RIN < 0, we can express the inequality in the form

(RL − 50)(RIN − 50) > (RIN + 50)(RL + 50)

which reduces to
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RL + RIN < 0

or simply

RIN < −RL

which is the expected result for the circuit in Figure 5.21(a) to be unstable.
(b) From (5.61), with XIN = 0, the frequency of oscillation is given by

XL ( jvo ) = jvo +
1

jvo
= jSvo −

1
vo
D = 0

or

vo = 1 rad/s

5.7 Two-Port Negative-Resistance Oscillators

The schematic diagrams for one-port negative-resistance oscillators are shown in
Figures 5.1 and 5.4. The general block diagrams for two-ports negative-resistance
oscillators are shown in Figure 5.22(a, b). The transistor network is characterized
by its S parameters, ZT is the terminating network impedance, and ZL is the load
impedance. Observe the notation used in Figure 5.22(a, b), which shows that in
an oscillator either port of the transistor can be used as the terminating port. Once
the terminating port is selected, the other port is referred to as the input port. The
load-matching network is connected to the input port, in agreement with the one-
port notation.

When the two-port is potentially unstable, an appropriate ZT permits the two-
port to be represented as a one-port negative-resistance device with input impedance
ZIN , as shown in Figure 5.1, or with input admittance YIN , as shown in Figure
5.4.

When the input port is made to oscillate, the terminating port also oscillates.
The fact that both ports are oscillating can be proven as follows. The input port
is oscillating when

GINGL = 1 (5.63)

and from (5.45) and (5.63) (using the nomenclature in Figure 5.2.2), it follows
that

GL =
1

GIN
=

1 − S22GT
S11 − DGT

or

GT =
1 − S11GL
S22 − DGL

(5.64)
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Figure 5.22 (a) Two-port oscillator models and (b) alternate representation. (From: [1].  1997.
Reprinted by permission of Pearson Education, Inc., NJ.)

Also, from (5.46)

GOUT =
S22 − DGL
1 − S11GL

(5.65)

Hence, from (5.64) and (5.65) it follows that

GOUT GT = 1

which shows that the terminating port is also oscillating.
A basic design procedure, based on the small-signal S parameters, for a two-

port oscillator can be as follows:

1. Use a potentially unstable transistor at the desired frequency of oscillation
vo .

2. Design the terminating network to make | GIN | > 1. Series or shunt feedback
can be used to increase | GIN | .

3. Design the load network to resonate ZIN , and to satisfy the start of oscilla-
tion condition in (5.8). That is, let
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XL (vo ) = −XIN (vo ) (5.66)

and

RL =
|RIN (0, v ) |

3
(5.67)

This design procedure is popular due to its high rate of success. However, it
is based on the small-signal S parameters and, therefore, cannot be used to properly
characterize the oscillator performance. For example, the frequency of oscillation
will shift somewhat from its designed value at vo . This occurs because the oscillation
power increases until the negative resistance is equal to the load resistance and
XIN varies as a function of A (i.e., as a function of the oscillation power). Also,
the procedure cannot be used to predict the oscillator power, or to calculate the
harmonics.

The following example illustrates the previous design procedure.

Example 5.3

Design the common-gate (CG) microwave oscillator shown in Figure 5.23(a) to
oscillate at 9 GHz. The S parameters of the FET at 9 GHz in a CG configuration,
at a given Q point, are

S11 = 0.5 | −95°

S21 = 1.1 | 44°

S12 = 0.35 | −31°

S22 = 0.8 | 46°

Solution
This example only considers the ac part of the design. From (5.48) and (5.49) it
follows that at 9 GHz: K = 0.355 and | D | = 0.405. Therefore, since K < 1 the
transistor is potentially unstable. Either port can be used as the terminating port.
For this design, port 2 is selected as the terminating port, as shown in Figure
5.23(b). Using (5.51) and (5.52), the stability circle radius and center at port 2
are: rT = 0.808 and CT = 1.493 |−59.8° . The terminating-port stability circle is
drawn in Figure 5.23(c). Any GT in the shaded region produces a negative resistance
(i.e., | GIN | > 1). The reflection coefficient GT is selected at point A in Figure 5.23(c),
or GT = 1 |−67.38° (i.e., ZT = − j75V). This capacitive reactance at 9 GHz can be
implemented with an open-circuited 50-V microstrip line of length 0.092l .

The value of GIN follows from (5.45), namely GIN = 1.49 |−100.43° . The associ-
ated input impedance is ZIN = −16.25 − j38.95V. The load-matching network is
designed using (5.66) and (5.67), namely,
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Figure 5.23 (a) The FET in a CG configuration, (b) a CG oscillator circuit, (c) the terminating port
stability circle, and (d) implementation of the oscillator.

XL = −XIN = 38.95V

and

RL =
|RIN |

3
=

6.25
3

= 5.42V
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Hence, ZL = 5.42 + j38.95V, or GL = 0.874 |103.76° . The microstrip implementa-
tion of ZL , as well as the complete ac implementation of the oscillator, is shown
in Figure 5.23(d). Further analysis and simulation of this oscillator requires the
large-signal model of the FET.

For negative-resistance oscillators at microwave frequencies using BJTs the
common-base (CB) configuration is normally used. For FETs, the CG configuration
is commonly used. As we will see in these configurations the transistors are usually
potentially unstable, and this is a very desirable condition in oscillator design.

In a negative-resistance oscillator, the capacitances of the transistor provide
some or all of the feedback needed for oscillation. However, a properly designed
series-feedback network can significantly increase the negative-resistance presented
by the two-port network. In other words, the unstable region of the two-port
network can be enhanced by the use of series feedback. In general, for BJTs a
series-feedback inductor of a few nanohenries, as shown in Figure 5.24(a), enhances
the unstable regions. For FETs, see Figure 5.24(b), either a series-feedback inductor
or a series-feedback capacitor of a few picofarads enhances the unstable regions.
The purpose of the series feedback element is to provide positive feedback, making
the configuration more unstable. Analytical and mapping methods that can be used
to design the series-feedback network are presented in Appendix B.

It is not always necessary to design the feedback network to maximize | GIN |
or | GOUT | . In fact, the next step in many designs involves the selection of the
terminating network and the observation of its effect on the input impedance.
In a potentially unstable two port, GT must be selected to be in the unstable
region so that | GIN | > 1. Series feedback can easily enhance the unstable region so
that (in some cases), even with GT = 0 (i.e., a 50-V termination), | GIN | is greater
than 1.

The next example illustrates in a simple manner the use of series feedback and
the selection of the terminating network.

Example 5.4

Design a 2.75-GHz oscillator using a BJT in a CB configuration. The S parameters
at 2.75 GHz, at a given Q point, are

S11 = 0.9 | 150°

Figure 5.24 Typical series feedback for (a) a BJT oscillator and (b) an FET oscillator.
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S21 = 1.7 | −80°

S12 = 0.07 | 120°

S22 = 1.08 | −56°

Solution
The transistor is potentially unstable at 2.75 GHz (since K = −0.64). The region
of instability in the Smith chart can be increased using series feedback, as shown
in Figure 5.24(a). Using the methods discussed in Appendix B, or using the tuning
capabilities of ADS, it follows that the largest magnitudes of S11 and S22 were
obtained using a series feedback inductor of value L = 1.45 nH. With L = 1.45 nH,
the resulting S parameters for the network in Figure 5.25(a) are

S11 = 1.72 | 100°

S21 = 2.08 | −136°

S12 = 0.712 | 94°

S22 = 1.16 | −102°

Either port can be used as the terminating port. In this design the emitter-to-
ground port was selected for the load matching network, and the collector-to-
ground port for the terminating network. The terminating port stability circle is
shown in Figure 5.25(b). Observe the large region of instability and note that the
center of the Smith chart is unstable. Hence, a 50-V resistor at the terminating
port will ensure that | GIN | > 1. However, a 50-V termination might not be the
most suitable since for the associated value of GIN the required value of GL for the
oscillator might be difficult to implement. In addition, some tuning capabilities are
needed in the matching network to attain the desired frequency of oscillation.

The values of GT and GIN are related by

GIN = S11 +
S12S21GT
1 − S22GT

One way that the value of GT can be selected is by varying GT in the unstable
region and calculating the associated value of GIN . The calculations are shown in
Table 5.1, where the magnitude of GT was set at 0.25, 0.5, 0.75, and 1, and the
angle of GT was varied from 90° to 270° in increments of 36°. From Table 5.1 it
is seen that there are many convenient values of GT that can be selected for this
design. The value selected was GT = 0.5 |162° and it follows that
GIN = 2.31 |117.6° (or ZIN = −25.6 + j24V). From (5.66) and (5.67) the impedance
of the load-matching network can be selected as ZL = 8.5 − j24V.
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Figure 5.25 (a) BJT with series inductive feedback, (b) terminating port stability circle, and (c) the
oscillator circuit.

A design for the terminating and load networks is illustrated in Figure 5.25(c).
Power is delivered to the resistors in the load and terminating networks, the 50-V
resistor can be used to extract the oscillator signal.

In what follows, design procedures for negative resistance oscillators will be
discussed and design examples given to illustrate the procedures. The following
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Figure 5.25 (Continued.)

Table 5.1 GIN Versus GT

GT GIN GT GIN

1 |90° 3.67 |−67.1° 0.5 |90° 2.80 |67°

1 |126° 3.79 |154.5° 0.5 |126° 3.11 |104.8°

1 |162° 3.67 |137.3° 0.5 |162° 2.31 |117.6°

1 |198° 1.78 |130.5° 0.5 |198° 1.88 |118.9°

1 |234° 1.52 |125.9° 0.5 |234° 1.62 |117.2°

1 |270° 1.33 |121.7° 0.5 |270° 1.44 |113.9°

0.75 |90° 4.68 |18.5° 0.25 |90° 2.05 |87.8°

0.75 |126° 4.13 |127.1° 0.25 |126° 2.21 |98.5°

0.75 |162° 2.35 |128.7° 0.25 |162° 2.07 |106.8°

0.75 |198° 1.84 |125.6° 0.25 |198° 1.86 |110.2°

0.75 |234° 1.57 |122.2° 0.25 |234° 1.68 |110.2°

0.75 |270° 1.38 |118.3° 0.25 |270° 1.55 |108.1°

examples deal with the specific design of a 1-GHz oscillator using the BJT AT41411
in a CB configuration. The Agilent AT41411 is a BJT (npn type) for use in low-noise
and wideband amplifiers, mixers, and oscillators at RF and microwave frequencies.

Example 5.5

(a) Analyze the stability of the BJT AT41411 in a CB configuration at 1 GHz.
(b) Analyze the effects of a series-feedback inductor [as in Figure 5.24(a)] on the
stability of the BJT AT41411.

Solution
(a) The typical S parameters of the AT41411 in a CE configuration at VCE = 8V
and IC = 25 mA in a 50-V system are shown in Table 5.2.

From the CE S-parameters, the CB S-parameters are calculated (see Table 5.3).
The simulation shown in Figure 5.26(a) also gives the CB S-parameters.
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Table 5.2 CE S-Parameters of the AT41411

S
Frequency S(1, 1) S(1, 2) S(2, 1) S(2, 2)

500.0 MHz 0.460/−137.000 0.025/56.000 13.210/100.000 0.570/−26.000
1.000 GHz 0.430/−175.000 0.038/58.000 6.850/80.000 0.520/−29.000
1.500 GHz 0.440/163.000 0.048/61.000 4.630/67.000 0.510/−32.000
2.000 GHz 0.470/148.000 0.062/61.000 3.470/56.000 0.500/−37.000
2.500 GHz 0.500/140.000 0.071/60.000 2.820/50.000 0.470/−39.000
3.000 GHz 0.530/132.000 0.092/61.000 2.360/40.000 0.460/−48.000
3.500 GHz 0.550/122.000 0.105/57.000 2.020/30.000 0.450/−60.000
4.000 GHz 0.560/112.000 0.122/53.000 1.740/19.000 0.450/−73.000

Table 5.3 CB S-Parameters of the AT41411

S
Frequency S(1, 1) S(1, 2) S(2, 1) S(2, 2)

500.0 MHz 0.929/175.209 0.009/127.126 1.925/−8.209 1.015/−4.481
1.000 GHz 0.982/170.132 0.037/152.131 2.002/−17.026 1.068/−9.239
1.500 GHz 1.084/164.744 0.083/157.542 2.148/−26.523 1.150/−14.274
2.000 GHz 1.252/158.536 0.162/160.089 2.396/−37.870 1.289/−20.885
2.500 GHz 1.410/151.586 0.245/152.997 2.590/−50.032 1.392/−29.495
3.000 GHz 1.778/140.811 0.450/148.793 3.194/−67.976 1.740/−42.549
3.500 GHz 2.467/117.608 0.934/128.975 4.303/−99.046 2.406/−68.392
4.000 GHz 2.784/66.432 1.550/81.511 4.846/−160.030 2.757/−122.137

The stability of the transistor in the CB configuration can be analyzed using
the ADS simulation shown in Figure 5.26(a) by varying the frequency from 500
MHz to 4 GHz. That is, setting in the S_Param component: Start = 500 MHz and
Stop = 4 GHz. The AT41411 in a CB configuration is potentially unstable at all
frequencies. Specifically, in Figure 5.26(a, b) the S parameters for the device in the
CB configuration at 1 GHz are listed and the stability circle of port 1 is drawn.
(b) There are several methods that we can use to analyze the effects of a series
inductor on the stability of the circuit. The most complete way is to map the
feedback plane onto the GIN plane. Another way is to find the value of L that
maximizes | GIN | . Both of these methods are discussed in Appendix B. A simple
way to analyze the effects of the feedback inductor is to calculate its effect on the
m factor; that is, to plot the m factor versus the series inductance value. One could
also analyze the effects of the series inductance on the K factor, since this is the
factor that usually becomes less than 1 (in the K and | D | test) in BJTs. The previous
method uses a 50-V termination. Later, the effect of a different termination is
analyzed.

Figure 5.27 shows the ADS simulation used and the resulting plot of m versus
the series inductance at 1 GHz. It is seen that a value of 2 nH makes the configuration
more unstable, since m decreases to about −0.9. However, for this circuit the series
inductor is not needed since the configuration is already unstable at 1 GHz and
the improvement was minimal. In fact, a plot of the Port 1 stability circle for the
circuit in Figure 5.27 is almost similar to that in Figure 5.26(b).
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Figure 5.26 (a) Stability simulation for the AT-41411 and (b) port 1 stability circle at 1 GHz.
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5.8 The Terminating Network

The general block diagrams for two-port negative resistance oscillators are shown
in Figure 5.22. The input reflection coefficient GIN and the terminating network
coefficient GT are related by

GIN =
S11 − DGT
1 − S22GT

(5.68)

Equation (5.68) describes the mapping of the GT plane onto the GIN plane. The
mapping of | GT | = 1 onto the GIN plane gives information about the passive imped-
ances at the terminating port that will make | GIN | > 1. The | GT | = 1 circle maps
onto a circle in the GIN plane with center at

CIN =
S11 − DS2*2

1 − |S22 |2

and radius of

rIN =
|S12S21 |

|1 − |S22 |2 |

Figure 5.27 Stability simulation for the AT-41411 with a series inductor.
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Figure 5.28 shows a typical mapping of the GT onto the GIN plane, where
| GIN |max is the largest magnitude that GIN can attain. | GIN |max is obtained when
the value of GIN on the |GT | = 1 circle has the same phase angle as CIN , or

|GIN |max = X |CIN | + rINC | CIN

Of course, the selection of GT does not have to produce the maximum value
of | GIN |max. The main point is that the selection of GT must produce sufficient
negative resistance in ZIN .

The mapping in Figure 5.28 can also be generated with ADS. Figure 5.29 shows
the simulation used to map the GT plane onto the GIN plane. The terminating
network is represented by the S1P_Eqn component which is a one-port reflection
coefficient defined by S(1, 1), where S(1, 1) = GT . The values of GT are generated
by the program, as described in the VAR component. The ParamSweep component
sweeps the resistance (r) values by fixing the reactance (x), and vise versa. By fixing
x at 0 and ±1 and sweeping r, the simulation generates the mapping of the constant
normalized reactances. When r is fixed at 0 and 1 and x is swept, the mapping of
the constant normalized resistances is generated. The selected values of r and x
are usually sufficient to properly view the mapping. To generate a smooth mapping
the number of points calculated for both variables were selected as described in
Figure 5.29.

Figure 5.28 Typical mapping of GT onto GIN .
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Figure 5.29 ADS simulation used to generate the mapping of the GT plane onto the GIN plane.

While the mapping can be generated as described in Figure 5.29 (i.e., using
the transistor’s S parameter) it is more accurate to generate the mapping using the
nonlinear model for the transistor.

Example 5.6

(a) Show the mapping of the GT plane onto the GIN plane for the AT41411 in a
CB configuration at 1 GHz.
(b) Select an appropriate value of GT (and the associated GIN ) for part (a).
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Solution
(a) Figure 5.30 shows the ADS simulation used and the resulting mapping of GT
onto the GIN plane for the AT41411 at 1 GHz. The nonlinear model of the transistor
was used, and the Q point is at VCE = 8V and IC = 25 mA. The mapping shows
an inversion since the r = 1 circle maps outside the r = 0 circle.
(b) From Figure 5.30, GT and its resulting GIN can be selected so that |GIN | > 1. A
value of |GIN | > 1 can be selected with GT on the r = 1 circle at the point m1. The
value of GT associated with GIN is obtained from

GT =
GIN − S11

GINS22 − D
(5.69)

that is, at m1:

GT = 0.961 | 15.93°

and

GIN = 1.545 | 154.23°

These values are displayed in Figure 5.30.

5.9 Oscillation-Conditions Simulations

ADS uses the components OscTest and OscPort to analyze and simulate the oscilla-
tor. The purposes of these components are as follows.

5.9.1 OscTest

OscTest is an ADS probe component that is used to evaluate the loop-gain associated
with a circuit. The OscTest probe component and its three-port S parameter values
are shown in Figure 5.31. OscTest is basically a three-port circulator with port 1
excited by the incident wave a1 , and with ports 2 and 3 defined by the reflection
coefficients G2 and G3 , respectively. The S parameters and the reflection coefficients
are defined in a Zo system (usually 50V). That is,

G2 =
a2
b2

=
Z2 − Zo
Z2 + Zo

and

G3 =
a3
b3

=
Z3 − Zo
Z3 + Zo

Since S21 = S32 = S13 = 1 and all other S parameters are zero, it follows that
b2 = a1 , b3 = a2 , and b1 = a3 . Then,
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Figure 5.30 Mapping of the GT plane for the A-41411.
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Figure 5.31 The OscTest component.

b1 = a3 = G3b3 = G3a2 = G3G2b2 = G3G2a1

Defining the ratio of b1 to a1 as G1,IN gives

G1,IN =
b1
a1

= G2G3

In other words, G1,IN is the loop gain.
OscTest calculates G1,IN , and it is denoted in ADS simply by S(1, 1) [or

S(1, 1) = G2G3].
In an NRO, G2 and G3 represent the input and the load reflection coefficients,

respectively. The use of OscTest in an NRO is illustrated in Figure 5.32. It is
recommended that OscTest be placed between the negative resistance and the load
network, pointing in the direction of the load network.

In the case of a tuned-circuit oscillator the OscTest should be placed between
the amplifier and the tuned circuit, as shown in Figure 5.33. The tuned circuit
provides the positive feedback. Figure 5.33 shows that OscTest is placed in the
direction of gain injection at the point where the feedback loop is normally broken
for the calculation of the open-loop gain.

A typical result of the loop gain from OscTest is shown in Figure 5.34(a). It
is a magnitude-phase plot of S(1, 1), which is equal to the loop gain [i.e., S(1,1)
= G2G3 in Figure 5.32]. This particular plot shows that the circuit has the potential
to oscillate at 800 MHz, where |S(1, 1) | > 1, and |S(1, 1) = 0°.

Figure 5.32 OscTest in a negative-resistance oscillator.
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Figure 5.33 OscTest in a tuned-circuit oscillator.

Figure 5.34 (a) Typical loop-gain results from OscTest and (b) a typical Nyquist plot from OscTest.

While most microwave circuits that have the potential to oscillate using the
loop-gain test will properly oscillate, this test is not sufficient to determine if the
circuit will oscillate. Hence, the next step is to generate the Nyquist plot and to
apply the Nyquist test. The Nyquist plot is also generated by OscTest. It is a polar
plot of S(1, 1) as shown in Figure 5.34(b).

5.9.2 Nyquist Test

The stability of an active circuit can be determined from the Nyquist plot of its
loop gain. The Nyquist plot is simply the frequency response of S(1, 1) (obtained
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from OscTest) in a polar graph. For the type of oscillators encountered at RF and
microwave frequencies it usually follows that the number of clockwise encirclements
of the 1 + j0 point in the Nyquist plot indicates the number of right-half plane
poles of the circuit. Thus, if the Nyquist plot encloses the 1 + j0 point clockwise
it is reasonable to conclude that the system is unstable and oscillations will occur.

5.9.3 OscPort

OscPort is an ADS probe component used to calculate the oscillator waveform
using a harmonic-balance simulation. It calculates the large-signal steady state form
of the oscillatory signal. The OscPort component should be inserted at the point
where OscTest was used and a harmonic-balance simulator must be inserted in
the program. Figure 5.35 illustrates the use of the OscPort component.

5.10 Large-Signal Analysis for NROs

The design method discussed in Section 5.7 has limitations since it is based on
small-signal S parameters. In this section a detailed method based on large-signal
measurements is developed for the design of oscillators. Basically, the method
consists of designing the terminating network so that the two-port presents an

Figure 5.35 (a) OscPort in an NRO and (b) OscPort in a tuned-circuit oscillator.
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appropriate negative resistance at the load port. Then, the large signal properties
of the resulting one port are measured to properly characterize the oscillator. Large-
signal design information can only be obtained using nonlinear techniques.

Small signal considerations can still be used to find the terminating impedance
that results in a negative resistance at the input port. However, a large-signal
simulation is necessary to provide the characterization of the oscillator performance,
such as oscillator power and harmonic information. In large-signal analysis a
nonlinear transistor model is used at the appropriate bias point.

The resulting one-port negative-resistance circuit at the load port can be charac-
terized by determining the input impedance as a function of the input power at
the oscillation frequency vo . This is a large-signal characterization of the one-port
network, which is also called a device-line characterization.

The large-signal characterization is achieved by implementing the circuit shown
in Figure 5.36(a) and calculating the input impedance ZIN (A, vo ) as a function
of the input power at the frequency of oscillation vo , and calculating the added
power. The added power PADD is defined as the reflected minus the available power
from the source. It is given by

PADD = PAVS X |GIN |2 − 1C (5.70)

where

PAVS =
V 2

s
8Rs

(5.71)

and

GIN =
ZIN − Rs
ZIN + Rs

(5.72)

Substituting (5.71) and (5.72) into (5.70) we obtain

Figure 5.36 (a) Large-signal measuring circuit and (b) power delivered to ZL .
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PADD =
V 2

s |RIN (A, vo ) |
2H[RIN (A, vo ) + Rs ]

2 + X 2
INJ

=
1
2 |I(A, vo ) |2|RIN (A, vo ) |

(5.73)

where I(A, vo ) is the current in the circuit.
Equation (5.73) shows that the added power is the power that the negative

resistance of the one-port will deliver when the current in the circuit is I(A, vo ).
If the one-port is now terminated in the load impedance ZL (vo ), as shown in
Figure 5.36(b), where

ZL (vo ) = −ZIN (A, vo ) (5.74)

the power delivered to ZL when the current in the circuit is I(A, vo ) is PADD . The
calculation of PADD as a function of ZIN (A, v ) and the use of (5.74) predicts fairly
well the frequency of oscillation and the resulting oscillator power.

While in a simulation the source impedance Rs can be made arbitrary, measure-
ment equipment has a typical source resistance of 50V. Hence, for the measurement
of PADD to be stable the negative resistance must satisfy |RIN | < 50V.

There are several ways of implementing the load impedance ZL (vo ) and, of
course, not all of them will lead to a stable oscillation. For stable oscillation we
have to check that ZL (vo ) satisfies the Kurokawa condition [see (5.9) and (5.14)].
The verification of the Kurokawa condition is easily simulated in ADS.

Example 5.7

Calculate PADD and ZIN for the oscillator design in Example 5.6 (see Figure 5.30).

Solution
The ADS simulation shown in Figure 5.37 is used to calculate PADD and ZIN for

the oscillator using the AT41411. The data is generated by sweeping the input
power from −40 to 10 dBm. Table 5.4 illustrates the resulting PADD and GIN . Also,
the value of ZIN is listed. The negative resistance in this design varies from a small
signal value of −11V to a large-signal value of −6V, and the associated PADD values
vary from about −30 to −12 dBm. The behavior of the negative resistance as a
function of amplitude can be deduced from the data in Table 5.4. It is also observed
that the negative resistance equivalent circuit should be treated using the impedance
form.

From the results in Table 5.4, the oscillator can be designed with a power of
−13.57 dBm with ZL = −ZIN = 9.85 − j13.09V. The ac schematic of the oscillator
is shown in Figure 5.37(b) where the reactance −j13.09V at 1 GHz is implemented
with C = 12.16 pF.

The oscillator design in Figure 5.37(b) is now analyzed with OscTest and
OscPort. OscTest is used to obtain the Nyquist plot in order to check the oscillation
conditions. Also, the Kurokawa condition for stable oscillation must be checked. In
Appendix B the Kurokawa condition is expressed in terms of reflection coefficients,
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Figure 5.37 (a) ADS schematic for the calculation of PADD and ZIN and (b) an ac schematic of the
oscillator for PADD = −13.45 dBm at 1 GHz.

which are a convenient form for simulation. OscPort is used to obtain the resulting
waveform, the frequency of oscillation, and the oscillation power.

Example 5.8

Verify the oscillation condition and the stability of the oscillation for the 1-GHz
oscillator design in Example 5.7 (see Figure 5.37).

Solution
(a) The oscillator schematic in Figure 5.38(a) is the oscillator in Figure 5.37 with
GT = 0.961 |15.93° and ZL = 9.85 − j13.09V (or R = 9.85V and C = 12.16 pF at
1 GHz). The probe component OscTest is inserted between the input and load
network. The value for Z in OscTest is chosen or varied until a readable plot is
obtained. The loop gain and the resulting Nyquist plot are shown in Figure 5.38(b).
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Table 5.4 Data of PADD Versus ZIN for the Oscillator

PAVS ZIN GIN PADD

−40.000 −11.028 + j10.845 1.532/154.374 38.704/180.000
−38.000 −11.027 + j10.848 1.532/154.366 36.705/180.000
−36.000 −11.025 + j10.853 1.532/154.354 34.706/180.000
−34.000 −11.022 + j10.862 1.532/154.335 32.708/180.000
−32.000 −11.018 + j10.876 1.531/154.305 32.712/180.000
−30.000 −11.010 + j10.897 1.531/154.258 28.717/180.000
−28.000 −10.999 + j10.931 1.530/154.183 26.726/180.000
−26.000 −10.980 + j10.986 1.529/154.064 24.741/180.000
−24.000 −10.949 + j11.072 1.526/153.876 22.765/180.000
−22.000 −10.897 + j11.208 1.522/153.577 20.804/180.000
−20.000 −10.809 + j11.425 1.516/153.107 18.870/180.000
−18.000 −10.656 + j11.767 1.505/152.371 16.984/180.000
−16.000 −10.375 + j12.298 1.485/151.244 15.188/180.000
−14.000 −9.851 + j13.091 1.451/149.604 13.567/180.000
−12.000 −8.887 + j14.149 1.393/147.498 12.268/180.000
−10.000 −6.274 + j14.889 1.260/146.375 12.305/180.000

−8.000 4.210 + j16.679 0.859/142.885 19.421/135.370
−6.000 17.056 + j13.828 0.522/145.579 15.512/118.411
−4.000 30.883 + j5.083 0.244/161.515 14.295/107.366

The figure shows that the 1 + j0 point is encircled in a clockwise direction. Therefore,
the circuit is unstable and oscillations are possible.

The ADS simulation in Figure 5.38(c) is used to check the Kurokawa condition,
since the simulation generates the data necessary to plot 1/GIN (A, vo ) at 1 GHz
by sweeping the power level. The data required to plot GL (v ) by sweeping the
frequency is generated by the load circuit shown in the schematic. The results from
the simulation are displayed in the Smith chart. Observe that the direction of GL (v )
is upward (from m1 to m2), and the direction of 1/GIN (A, vo ) is downward (from
m3 to m4). The plots intersect at a point where the angle going counterclockwise
from GL (v ) to 1/GIN (A, vo ) is between 0° and 180°, which satisfies the Kurokawa
condition.

The OscPort probe can now be used to calculate the frequency spectrum of
the oscillator voltage, as well as the steady-state time-domain waveform. The
number of harmonics used in the simulation is defined in the harmonic-balance
controller. Usually, seven harmonics are more than enough for an oscillator
simulation.

Example 5.9

Determine the fundamental frequency of oscillation, the harmonics, and the oscilla-
tion power for the 1-GHz oscillator design in Example 5.8 [see Figure 5.38(a)].

Solution
(a) The ADS simulation using OscPort is shown in Figure 5.39(a) with ZL = 9.85
− j13.09V. For clarity, a simplified dc bias network was used in Figure 5.39(a). A
practical implementation requires an appropriate dc bias network. The oscillator
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Figure 5.38 (a) Oscillator design with the Osctest component, (b) the loop gain and the Nyquist plot, and
(c) the Kurokawa condition.

voltage is observed at the load (i.e., at VL). The resulting frequency spectrum is
shown in Figure 5.39(b), as well as the oscillator waveform at VL. The fundamental
frequency of oscillation is, as expected, at 1 GHz, and the second harmonic is
−20 dB below the fundamental. The power dissipated in the 9.85-V resistor at the
fundamental frequency is −13.5 dBm, which agrees closely with the predicted PADD .

The previous design can be used as the starting point for a VCO centered at
1 GHz by replacing the capacitor with an appropriate varactor diode.

5.11 Design of Feedback Oscillators Using the Negative-Resistance
Method

In this section, some of the classical feedback oscillators are designed using the
negative-resistance method. In the following examples the negative-resistance tech-
nique is applied to the design of a Colpitts oscillator and a GB oscillator.
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Figure 5.38 (Continued.)

Example 5.10

Design the Colpitts oscillator in Example 3.6 using the negative-resistance method.

Solution
In Example 3.6 a 1-MHz Colpitts oscillator was designed using a 2N2222 BJT
biased at 8V, 10 mA. The oscillator circuit is shown in Figure 5.40(a) with the
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Figure 5.39 (a) Simulation of the 1-GHz oscillator design using OscPort and (b) waveform plot.

appropriate source component (i.e., P_1TONE) to measure its large-signal
characteristics at 1 MHz, namely PADD and ZIN (A, vo ). The results of the simula-
tion are shown in Figure 5.40(b).

From the data in Figure 5.40(b) the oscillator can be designed for an added
power of about 16 dBm with ZL ≈ 0.64 + j32V (or R = 0.64V and L = 5.07 mH).
The use of a series circuit for ZL agrees with the negative resistance behavior [see
Figure 5.40(b)]. These are the values used in Example 3.6 for ZL . Figure 5.40(c)
shows an implementation of ZL and the simulation for the Nyquist plot using the
OscTest probe. Observe that the Nyquist plot, shown in Figure 5.40(c), shows that
the circuit is indeed unstable.

Figure 5.40(d) shows the simulation using OscPort, and the resulting data. The
oscillation voltage across R shows that the power is 15.8 dBm in close agreement
with PADD . The oscillation voltage across Re is also shown. The power in Re is
13.4 dBm. The fundamental frequency of oscillation is at 998.1 kHz.

The GB oscillator was discussed in Section 3.3 using a feedback approach. In the
following example the negative-resistance method is used to design the oscillator. In
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Figure 5.40 (a) Simulation of the Colpitts oscillator in Example 5.10 for PADD and ZIN , (b) simulation
data, (c) simulation using OscTest and the Nyquist plot, and (d) simulation of the
oscillator using OscPort and the oscillator waveforms.
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Figure 5.40 (Continued.)

fact, the negative-resistance method is a convenient method to use in the design
of the GB oscillator.

Example 5.11

Design a GB oscillator to oscillate at 1.25 GHz using the negative-resistance
method.

Solution
The GB oscillator configuration is illustrated in Figure 5.41(a). The BJT used is
the Phillips BRF520, which has an fT of 8 GHz. The bias point selected is at
VCE = 5V and IC = 5 mA.
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Figure 5.40 (Continued.)

The ADS simulation in Figure 5.41(a) is used to generate the mapping of GT
onto GIN . The resulting data is shown in Figure 5.41(b). With GT selected at point
m1 (i.e., at r = 0 and x = −0.26), the termination can be implemented with a
9.8 pF capacitor. The resulting, small-signal GIN is 2.32 |−60.4° (or
ZIN = −53.5 − j49.2V).

With a 9.8 pf at the terminating port, the added power versus ZIN is obtained
using the simulation shown in Figure 5.41(c). From the data obtained (see Figure
5.41(c)), it is seen that with ZL = −ZIN = = 43 + j102V (or R = 43V and L = 13
nH) an added power of 6.15 dBm is obtained. The OscTest probe was used to
obtain the Nyquist and Kurokawa plots (not shown). As expected, the plots showed
that a stable oscillation will occur around 1.25 GHz.
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Figure 5.41 (a) The GB oscillator configuration for Example 5.11, (b) mapping of the GT plane onto the
GIN plane, (c) simulation for PADD and ZIN and the resulting data, and (d) harmonic-balance
simulation and the oscillator signal.

The harmonic-balance simulation with OscPort and the resulting data are
shown in Figure 5.41(d). The oscillator waveform shows that the fundamental
frequency of oscillation is 1.27 GHz and the power delivered to the 43-V resistor
is 6.8 dBm. The output signal can be coupled using a buffer amplifier; or since at
1.25 GHz the impedance of C = 9.8 pF has a magnitude close to one, a resistive
load much larger than the magnitude of this impedance can be connected in parallel
with C to couple the oscillator signal.
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Figure 5.41 (continued.)

5.12 Dielectric-Resonator Oscillators

Dielectric resonators (DRs) for oscillator applications in the RF and microwave
frequencies are of two types: those that operate in the TEM mode, and those that
operate in a TE mode.
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Figure 5.41 (continued.)

5.12.1 TEM-Mode DRs

A TEM-mode DR is similar to a coaxial cable. The main use of DR resonators
is to implement high-Q inductors in oscillators to resonate with a capacitor or
varactor.

DR resonators are available as quarter-wave resonators with one end shorted,
or as half-wave resonators with both ends open. For example, at resonance a
short-circuited quarter-wave transmission line appears as an open circuit, and at
frequencies below resonance it behaves like an inductor. These resonators are
usually made with ceramic dielectric material and, therefore, are also called
TEM-mode ceramic resonators (TEM-mode CRs). These particular resonators have
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found applications in many oscillators used in the wireless communication field.
For example, they can be used in VCOs in the range of 300 MHz to about 5 GHz.

Good performance is obtained by the use of a coaxial resonator, where the
resonator is shaped in the form of a cube of length d with a coaxial bore and
shorted at one end, as shown in Figure 5.42. The inner and outer surfaces are
plated with copper or with silver. The conductivity of the plating affects the Q of
the resonator. Those plated with copper are cheaper than those plated with silver.
However, when high-Q values are required, the silver-plated resonator is best.

The resonators are fabricated with a high dielectric constant in order to make
the component small and, therefore, to be useful as an inductive component in
microwave oscillators. The high value of the relative dielectric constant er is required
for circuit miniaturization since the size of the component is inversely proportional
to √er . This is a consequence of the fact that the wavelength in the dielectric
material ld is given by

ld =
lo

√er

where lo is the free space wavelength.
Typical values of er are from about 10 to 100 (e.g., er = 21, 38, 88, and 92),

with typical lengths of 3 to 14 mm. The high values, er = 88 and 92 are found in
DRs for the 300-MHz to about 1-GHz range, the value er = 38 are found in DRs
operating in the 800-MHz to 2.5-GHz range, and er = 21 in the 1- to 4-GHz range.
Typical values of the characteristic impedance are from 4V to 20V.

The Q of the DR describes the losses of the component, namely dielectric losses
and conduction losses. The temperature coefficient TC (in ppm/°C) indicates the
thermal stability of the DR. It describes how much the resonant frequency drifts
as a function of temperature.

The Murata, copper plated, DRR030 is a l /4 resonators that can be fabricated
to order in the 900-MHz to 1.6-GHz range with Q > 230 and characteristic
impedance of Zo = 7.4V. They are also available in the 1.9- to 3-GHz range with
Q > 380 and Zo = 15.4V. The length d of the resonator is given by

d =
3 × 1011

n√er fo
mm

Figure 5.42 Shape of a TEM-mode DR.
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where n = 4 for a l /4 resonator and n = 2 for a l /2 resonator. With n = 4 and
er = 92 we obtain

d =
3 × 1011

4√92 fo
=

7.82 × 109

fo
mm

At 1 GHz the length is d = 7.83 mm.
For a short-circuited coaxial-cable resonator [see Figure 5.43(a)] its capacitance

per unit length is given by

C =
2peoer

lnSD1
D2

D
and its inductance per unit length is given by

L =
mo
2p

lnSD1
D2

D
Hence, the characteristic impedance of the resonator is

Zo = √L
C

=
60

√er
lnSD1

D2
D

For the geometry of the resonator in Figure 5.42, a correction to the D1 /D2 ratio
is required. The correction can be obtained from the manufacturers.

The DR is usually designed with a l /4 length at a given frequency fo . The
impedance of a lossless short-circuited resonator is

Figure 5.43 (a) Coaxial line geometry and (b) plot of |ZIN (d ) | for a short-circuited resonator.
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ZIN (d) = jZo tan bd

A plot of ZIN (d) | is shown in Figure 5.43(b). The plot shows that for 0 < bd <
p /2 (or 0 < d < l /4) the shorted line is inductive, while for p /2 < bd < p the
shorted line is capacitive. Hence, at a frequency lower than the resonant frequency
of the resonator, the line is inductive.

Quarter-wave resonators behave like parallel-resonant circuits. To obtain an
equivalent input parallel resonant circuit the input admittance of a l /4 short-
circuited lossy transmission line is considered, namely,

YIN (d) = Yo coth(a + jb ) (5.75)

= Yo
1 + j tan bd tanh ad
tanh ad + j tan bd

For low losses (i.e., for ad ! 1) we have

tanh ad ≈ ad =
al
4

(5.76)

Since

bd =
2pd

l
=

vd
vp

and with d = l /4 at v = vo , and v = vo + Dv, we can write

bd =
vod
vp

+
Dvd

vp
=

p
2

+
pDv
2vo

Therefore,

tan bd = tanSp
2

+
pDv
2vo

D =
−1

tan
pDv
2vo

≈
−2vo
pDv

(5.77)

Substituting (5.76) and (5.77) into (5.75) gives

YIN ≈ Yo

1 − j
2vo

pDv
al
4

al
4

− j
2vo

pDv

= Yo

j
pDv
2vo

+
al
4

j
al
4

pDv
2vo

+ 1
(5.78)

Since
al
4

pDv
2vo

! 1 we can further approximate (5.78) as

YIN ≈ YoSal
4

+ j
pDv
2vo

D (5.79)
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In order to develop an equivalent circuit from (5.79), we consider the input
admittance of the parallel-tuned circuit shown in Figure 5.44. That is,

YIN = G +
1

jvL
+ jvC (5.80)

With v = vo + Dv and

1
vo + Dvo

≈
1 −

Dvo
vo

vo

(5.80) is rewritten as

YIN = G +
1 −

Dv
vo

jvoL
+ jvoC + jDvC (5.81)

Observing that

1
jvoL

+ jvoC = 0 or vo = √ 1
LC

(5.81) reduces to

YIN = G + j
Dv

v 2
o L

+ jDvC (5.82)

≈ G + j2DvC

Comparing (5.79) and (5.82), it follows that

R =
4Zo
al

(5.83)

C =
p

4voZo
(5.84)

Figure 5.44 Equivalent parallel circuit of a resonator.
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and

L =
1

v 2
o C

(5.85)

At resonance the input impedance is

ZIN (vo ) = R

which, of course, is very high since a is small. The QU of the resonator is

QU = voRC =
p

al
=

b
2a

In terms of QU , (5.83) can be expressed as

R =
QU

voC
(5.86)

For a given resonator the parameters Zo , vo , and its QU are known, then
(5.84), (5.85), and (5.86) are used to find the equivalent parallel circuit. Hence,
the l /4 resonator can be modeled by the parallel-resonant circuit in Figure 5.45
around the resonant frequency vo .

An application of a DR to a tuned varactor diode circuit is shown in Figure
5.45. For example, oscillator circuits in the 900-MHz region require very low
values of inductors (say, 5 nH). These inductor values can be conveniently imple-
mented using DR components.

5.12.2 TE-Mode DRs

A dielectric resonator oscillator (DRO) is a high-Q, temperature-stable oscillator
that is used in many practical applications at microwave frequencies. BJTs are used
in DROs with oscillation frequencies up to about 15 GHz; with GaAs FETs the
frequency of oscillation of the DROs can be extended to about 35 GHz. With
transistor DROs power levels of 10 to 15 dBm are possible.

Figure 5.45 A varactor circuit tuned with a DR inductor.
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Several compounds with dielectric constants between 20 and 80 are used in
the construction of dielectric resonators (DR). For microwave transistor oscillators,
dielectric resonators having a solid cylindrical shape can cover the frequency range
from about 1 to 40 GHz. In fact, dielectric resonators can operate up to 100
GHz. The problem with dielectric resonators at the lower frequencies is the large
dimensions of the resonator. Dielectric resonators having a coaxial tubular shape
(i.e., a hollow center) have been made for practical applications down to 500 MHz.

A good reference on DRs and applications is found in the text Dielectric
Resonators by Kajfez and Guillon [4]. A dielectric resonator will resonate in several
modes. The most commonly used mode in cylindrical resonators is a TE mode
(specifically the TE01d mode). The TE01d mode is the lowest-order mode of reso-
nance, so operating in this mode avoids the chances of the oscillator operating at
the frequency of resonance of a higher order mode. In order to understand the
coupling of a dielectric resonator to a microstrip line, consider Figure 5.46, which
shows the field distribution of the TE01d mode. The electric field lines are concentric
circles around the z-axis, and there is no z component of the electric field. The
magnetic field lines are illustrated in Figure 5.46.

Figure 5.47 shows the dielectric resonator coupled to the microstrip line. The
dielectric resonator is placed on top of the substrate at a distance d from the
microstrip line. The distance d and the DR characteristics determine the coupling.

Figure 5.46 Field distribution of the TE01d mode in a cylindrical resonator.

Figure 5.47 Coupling of a dielectric resonator to a microstrip line.
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Observe the magnetic coupling between the DR and the microstrip line. The metallic
enclosure is used to minimize the radiation losses and, therefore, to increase the
resonator Q. The TE01d is excited in the DR by the electromagnetic field produced
by the microstrip line. In turn, the DR reflects RF energy at its resonant frequency,
resulting in a high-Q resonator.

Figure 5.48(a) shows the DR coupled to a microstrip line with characteristic
impedance Zo and terminated in Zo impedances (usually Zo = 50V). Due to the
magnetic-field coupling, the resonator appears in series with transmission line. The
DR model is shown in Figure 5.48(b) where the magnetic coupling is modeled by
the transformer. The equivalent circuit of the DR coupled to the microstrip line is
illustrated in Figure 5.48(c). It consists of a parallel tuned circuit placed in series,
at the position XX ′, with the transmission lines. The values of R, L, and C in the
equivalent circuit of the DR depend on the DR characteristics and the distance d.
The impedance Z is given by

Z =
1
C

s

s2 +
s

RC
+

1
LC

=
1
C

s

s2 + 2as + v 2
o

(5.87)

where the bandwidth and resonant frequency are

BW = 2a =
1

RC

and

vo =
1

√LC

Letting s = jv, (5.87) can be expressed as

Z =
R

1 + jQU
Xv2 − v 2

o C
vvo

(5.88)

where

QU =
vo
2a

= voRC =
R

voL
(5.89)

Since the frequency of operation is very close to vo (i.e., v + vo ≈ 2vo ), we
can approximate (5.88) by

Z =
R

1 + j2QUd
(5.90)

where
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Figure 5.48 (a) Dielectric resonator coupled to a microstrip line, (b) magnetic coupling model for
the DR, and (c) equivalent circuit at the XX ′ plane.

d =
v − vo

vo

At the reference plane XX ′ the input impedance is given by
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ZXX ′ = Z + Zo

or

zXX ′ =
ZXX ′
Zo

=

R
Zo

1 + j2QUd
+ 1 (5.91)

For convenience, a coupling coefficient b is defined to measure the coupling between
the resonator and the microstrip transmission line. The coefficient b is defined as
the ratio QU to the external Q, where

QE =
2Zo
vL

The term 2Zo represents the total external resistance in Figure 5.48(c). Hence,

b =
QU
QE

=
R

2Zo
(5.92)

In cases that the resonator is terminated in a short circuit (i.e., ZXX = Z), then
the coupling coefficient is given by b = R /Zo . A short-circuit termination is easily
implemented with an open circuited transmission line of length l /4.

Since QU , QE , and the loaded Q (i.e., QL ) are related by

1
QL

=
1

QU
+

1
QE

it follows that

QL =
QU

b + 1

This relation shows how b affects QL .
In terms of b , we can write (5.91) as

zXX ′ =
2b

1 + j2QUd
+ 1

Observe that at v = vo (or d = 0) it follows that zXX ′ = 2b + 1. Then, the reflection
coefficient at v = vo , at the XX ′ plane, is

GXX ′ (vo ) =
zXX ′ − 1
zXX ′ + 1

=
b

b + 1
(5.93)
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In general, the reflection coefficient at the XX ′ plane is given by

GXX ′ =
zXX ′ − 1
zXX ′ + 1

=
b

b + 1 + j2QUd

Hence, the reflection coefficient seen at the input of the line, denoted by GYY ′ is

GYY ′ =
b

√(b + 1)2 + (2QUd )2
e

−j2Su + tan−1 2QUd
b + 1 D

(5.94)

At the resonant frequency (i.e., at v = vo or d = 0), (5.94) reduces to

GYY ′ (vo ) = GXX ′ (vo )e −j2u =
b

b + 1
e −j2u (5.95)

This relation shows that if b is a constant and the length of the line is varied from
u = 0° to 180°, the values of GYY ′ lie on a circle in the Smith chart. Thus, with the
appropriate selection of b , the reflection coefficient GYY ′ can implement any passive
impedance. Equation (5.95) is used to select the desired coupling and electrical
length of the transmission line for a particular input impedance.

The previous discussion shows that the parameters b , vo , and QU describe
the operation of the DR. These parameters are either measured or given by the
manufacturer of the DR. The coupling coefficient is calculated by measuring GXX ′
at the resonant frequency. The values of R, L, and C in Figure 5.48(c) can be
calculated in terms of b , vo , and Qu . The value of R follows from (5.92), and
the values of L and C from (5.89).

From Figure 5.48(c), at the resonant frequency vo , the S parameters of the
tuned circuit (i.e., the DR coupled to the transmission line) are

[S(vo )] = 3
b

b + 1
1

b + 1

1
b + 1

b
b + 1

4 (5.96)

From (5.96) it follows that b can be expressed in terms of the S11(vo ) and S21(vo )
parameters; that is,

b =
S11(vo )

1 − S11(vo )
=

1 − S21(vo )
S21(vo )

For a closely coupled resonator, typical values of b are from 2 to 20.
The value of QU can be found by measuring S21 . A typical plot of S21 in

decibels is shown in Figure 5.49. The insertion loss Lo is given by

Lo (dB) = −20 log |S21(vo ) |
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Figure 5.49 A typical plot of S21 (dB).

and the insertion loss value Lx is given by

Lx (dB) = Lo − 3 + 10 log(1 + 10−0.1Lo )

Hence, QU is found by dividing vo by the bandwidth where the insertion loss is
Lx .

Some practical circuit configurations for DROs are shown in Figure 5.50. In
the configurations shown in Figure 5.50(a, b) the DR acts as a series-feedback
element. The DR is connected to the terminating port, and the DR and transistor
produce a negative resistance at the load port.

In the configurations shown in Figure 5.50(c) and Figure 5.50(d) the DR acts
as a parallel feedback element. The forward gain of the transistor compensates for
the insertion loss of the DR. The DR is a high-Q tuned circuit, and therefore,
oscillation will occur when the oscillation conditions are satisfied. An advantage
of the parallel-feedback configuration is its wide tuning range.

The series-feedback configurations are simple to construct. The parallel configu-
ration is somewhat more difficult to construct because of the coupling of the two
lines.

The ADS program has a component called DR, shown in Figure 5.51(a), that
models the typical housing used in the coupling of a DR to a microstrip line. The
housing is shown in Figure 5.51(b). The DR manufacturer specifies the radius
(Rad) and height (H) of the resonator for a particular resonant frequency along
with Qdr. ErL and HL are the dielectric constant and height of the substrate on
which the DR is placed. These are the same parameters that affect the characteristic
impedance of the microstrip line to which the DR is coupled. Mode is another
important parameter, which controls the resonant mode of the DR. When Mode
is set to 0, the resonator will resonate in the TE01d mode.

DROs can be tuned over a narrow range of frequency using a metallic shield
with a tuning screw, as shown in Figure 5.52. Basically, the screw affects the height
HU and, therefore, the resonant frequency. The height h should be greater than
0.5, in order not to decrease the Q of the resonator. Tuning bandwidths of the
order of 0.1% to 1% of the resonant frequency are possible.

The DROs can also be tuned electrically. A varactor tuned DRO is shown in
Figure 5.53. The varactor is coupled to the DR, resulting in two coupled circuits.
The varactor’s capacitance can be changed with an appropriate dc bias voltage,
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Figure 5.50 (a) A series-feedback DRO using a BJT, (b) a series-feedback DRO using a GaAs FET,
(c) a parallel-feedback DRO using a BJT, and (d) a parallel-feedback DRO using a GaAs
FET.

and this in turn changes the resonant frequency of the DR. The varactor can provide
a resonant frequency tuning range of 1%. There are other ways of electrically
tuning a DR.

The temperature stability of a DR is expressed in parts per million per degree
centigrade (ppm/°C). DRs with temperature coefficients ranging from −10 to
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Figure 5.51 (a) ADS model for a DR and (b) DR housing.

Figure 5.52 A mechanical tuning arrangement for DROs.
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Figure 5.53 A varactor tuned DRO.

10 ppm/°C are available. For example, an 8-GHz DRO can be specified to have
a frequency stability of 500 ppm over a temperature range of −50°C to 80°C. This
requirement will keep the frequency drift to 4 MHz.

Example 5.12

Design a 10-GHz DRO using the ATF-13786 GaAs FET whose S parameters (at
10 GHz) in a CS configuration are:

S11 = 0.63 | 130°

S12 = 0.15 | 6°

S21 = 2.04 | 4°

S22 = 0.19 | 134°

The transistor power at the 1-dB compression point is P1dB = 15 dBm.

Solution
The ATF-13786 GaAs FET is biased at 3V, 40 mA. It is unconditional stable at
10 GHz since K = 1.14 and D = 0.358 |151.3° . Using a series-feedback capacitor
having a series reactance of Z = −j120V [implemented as an open-circuited shunt
stub, with l = 0.064l (or 22.68°), in Figure 5.54(a)] results in a potentially unstable
configuration in a 50-V system with the following S parameters:

S11 = 3.68 | −175.1°

S12 = 3.86 | −38.28°

S21 = 4 | 30.05°

S22 = 2.77 | 176.15°



5.12 Dielectric-Resonator Oscillators 325

Figure 5.54 (a) GaAs FET with series feedback, (b) stability circle at the terminating port,
(c) simulation of the DR oscillator, and (d) simulation using the DR component.

The previous calculations were made using the average small-signal S parame-
ters of the transistor. In what follows the nonlinear model of the device is used.
The gate-to-ground port was selected as the terminating port. The oscillator configu-
ration is shown in Figure 5.54(b), as well as the stability simulation. The stability
circle at the terminating port is drawn in the Smith chart shown in Figure 5.54(b).
Designing for GT at point A (i.e., GT = 0.666) and with l1 = l /2 (i.e., u = p ), it
follows from (5.93) that

GT = GXX ′ =
b

b + 1
= 0.666 ⇒ b = 2

The DRO can be represented by a parallel tuned circuit, as shown in Figure
5.54(c). With a typical QU = 1,000, it follows that

R = b (2Zo ) = 2(2)50 = 200V

C =
QU

voR
=

1,000

2p × 1010(200)
= 79.6 pF

and
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Figure 5.54 (continued.)
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Figure 5.54 (continued.)

L =
1

v 2
o C

=
1

(2p × 1010)79.6 × 10−12 = 3.183 pH

The DRO implementation is shown in Figure 5.54(c). For GT = 0.666 the small-
signal value of GIN is 1.14 |−102° (or ZIN = −5.4 − j40.3V). The simulation to
obtain PADD and ZIN at the load port of the oscillator was performed. The results
showed that the load network ZL ≈ 3.7 + j39V, implemented in parallel form,
produces an added power of 6.9 dBm. The implementation of the load network
is shown in Figure 5.54(c). The component OscPort was first changed to OscTEst
to verify the loop-gain condition for oscillation using the Nyquist plot, as well as
the Kurokawa condition.

Because of the many variables involved in the implementation of the DRO,
the previous design should be taken as a preliminary design for further CAD
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Figure 5.54 (continued.)

analysis and optimization. The output waveform in Figure 5.54(c) shows that the
fundamental oscillation is at 10 GHz with an output power of 6.845 dBm.

The simulation using the DR component in Figure 5.51 is shown in Figure
5.54(d). As expected, the results agree with those in Figure 5.54(c).

The following DRO example and the parallel-coupled implementation were
adapted from the Master’s thesis of J. Vasiliadis [5].
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Example 5.13

Design a 2-GHz DRO using the Infineon BFR183 BJT.

Solution
This transistor lists fT = 8 GHz. The ADS library has the SPICE model for the
BFR183 in package form. However, for this design the development of the transistor
model for the BFR183 in package form is illustrated. The SPICE data for the
BFR183 (given by Infineon) is shown in Figure 5.55(a). The transistor chip is
represented by the component BJT_model. There are also package parasitics that
should be included in the model. The package model is shown in Figure 5.55(a)
and the packaged component is denoted by Ch5_Ex12pt3_DCmodel.

The BFR183 BJT is biased at VCE = 8.2V and IC = 15 mA, as shown in
Figure 5.55(b). The resulting biased BJT component is denoted by Ch5_Ex_12pt3_
BJTmodel_DCbias.

The transistor stability is checked using the ADS simulation shown in Figure
5.55(c). The data shows that |S11 | > 1 and |S22 | > 1 at 2 GHz (with K = −0.937);
therefore, the transistor is potentially unstable. The load port (i.e., the collector-
to-base port) and the terminating port (i.e., the emitter-to-base port) stability circles,
shown in Figure 5.55(c), show that most of the Smith chart is unstable.

The ADS simulation shown in Figure 5.55(d) maps the GT plane onto the GIN
plane, where the terminating port (i.e., GT plane) was selected to be the emitter to
base (or ground) port. The point m1 corresponds to GIN = 2.425 |−6.79° and the
corresponding value of GT is GT = 0.724 |−126.3° . The associated negative resis-
tance is ZIN = −118.2 − j13.9V.

From (5.95), GT = 0.724 |−126.3° is realized with b = 2.623 and a line length
of 0.1754l . Using an alumina substrate with er = 9.6 and height of 30 mils, a line
width of 29.7 mils produces a Zo of 50V, and the effective dielectric constant is
eff = 6.46. Hence, the line length of 0.1754l at 2 GHz is 10.35 mm long. A Murata
DR for the 2-GHz range was used (see the Murata RESOMICS catalog O95E-8).
The DR component used is described in Figure 5.56. As a check on the design of
GT the ADS simulation shown in Figure 5.56 was used. First, the phase goal was
deactivated and K and HU were optimized for the magnitude goal. This simulation
produced the following values: HU = 2.885 mm and K = 2.63. Then, the ADS
simulation shown in Figure 5.56 with both goals activated was used. The data in
Figure 5.56 shows that the final values produced by the optimization, namely
GT = 0.725 |−126.3° with b = 2.605 and L = 10.38 mm. Also, the equivalent RLC
circuit for the DR is given.

Next, the added power simulation is performed as shown in Figure 5.57. The
data shows that the small-signal resistance is −118 − j13.9V. The large-signal data
shows that an added power of 12.5 dBm can be obtained with ZL = −ZIN = 109.2
+ j64.7V. The load circuit design is shown in Figure 5.58(a). It consists of a 6.55-
mm short-circuited stub followed by a 7.78-mm transmission line that produces
the desired load impedance ZL .

The design simulation, using OscPort, is shown in Figure 5.58(a). First, OscPort
was changed to OscTest to verify that the oscillation conditions are satisfied. As
expected, the circuit should have a stable oscillation at 2 GHz.
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Figure 5.55 (a) SPICE model for the BFR183 transistor and its package model, (b) the DC bias network
used for the packaged transistor, (c) stability simulation, and (d) mapping of the GT plane onto
the GIN plane.
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Figure 5.55 (continued.)

The harmonic balance simulation in Figure 5.58(a) was performed, and the
resulting waveform of the oscillator is shown in Figure 5.58(b). The fundamental
frequency of oscillation is at 2 GHz and the oscillator power is 12.2 dBm in good
agreement with the predicted values.

The phase-noise performance of the oscillator is now analyzed. The phase-
noise simulation is shown in Figure 5.59 where the phase noise is calculated from
1 Hz to 10 MHz. The SPICE flicker-noise parameters were not listed by the
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Figure 5.55 (continued.)
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Figure 5.56 The design of GT using the DR model in ADS.
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Figure 5.57 Added power simulation and the load circuit design.

manufacturer. For the simulation we used AF = 1.35 and two values of Kf :
Kf = 80e−13 and Kf = 80e−15. The resulting plot of +( fm ) shows a slope of
−30 dB/dec until fc with Kf = 80e−13, and essentially −20 dB/dec with Kf = 80e−15.
It is also observed that the +( fm ) has a value of −137.58 dBc/Hz at a 10-kHz
offset from the carrier, and the noise floor is at −170 dBc/Hz.
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Figure 5.58 (a) The simulation of the oscillator and (b) the oscillator waveform.

A yield analysis is performed next. Three yield specifications were considered:
the resonant frequency, the output power, and the SSB phase noise at 10 kHz from
the carrier. The circuit is said to ‘‘pass’’ the design specifications if the resonant
frequency is within 0.5% of 2 GHz, the output power is above 10 dBm, and the
SSB phase noise is less than −133 dBc/Hz at 10 kHz from the carrier.

The yield-analysis simulation is shown in Figure 5.60(a), and the simulation
results (i.e., the histograms) are shown in Figure 5.60(b). Typical process parameters
variations were entered for all components in the design.

ADS sets the oscillation frequency to 0 Hz when the oscillator fails to oscillate.
The size of the variable ‘‘indices’’ in Figure 5.60(b) shows the number of simulations
that did not oscillate. Only 8 of the 100 simulations did not meet the oscillation
conditions. The overall yield of the circuit is 15%, which is certainly unsatisfactory
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Figure 5.59 (a) Phase noise simulation and (b) the SSB phase noise.

for any fabrication process. It is also observed from the histograms that most
designs failed due to the frequency specifications.

Components sensitivity histograms are shown in Figure 5.60(c). These results
show that the design is already centered.

In order to improve the overall yield, the process parameters in dielectric
resonator section were analyzed as shown in Figure 5.61(a). The variations in the
radius and height of the DR affect significantly the resonant frequency. The simula-
tion controller Spec1 is set up so that the trial fails if the magnitude of GT is greater
than 0.728 within the frequency range of 1.99 to 2.01 GHz, which corresponds
to the frequency tolerance. The simulation data for |S11 | , shown in Figure 5.61(b),
shows that all values |S11 | are less than 0.728, so the Spec1 yield is 100%. However,
the data also shows that very few trials satisfy the resonant frequency specification
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Figure 5.60 (a) The yield-analysis simulation, (b) the simulation results, and (c) components sensi-
tivity histograms.

of 1.99 GHz < fo < 1.01 GHz. Hence, the variations in the resonant frequency of
the DR are determining the overall yield.

For a high yield the resonator frequency must be tuned using external means,
such as using a tuning screw to vary Hu. The ADS simulation in Figure 5.62 is
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Figure 5.60 (continued.)

used to tune the height of the tuning plate to make the resonant frequency of the
DR fall within the desired frequency tolerance. The height of the tuning plate is
allowed to vary from 1 to 10 mm. The yield-analysis controller is set up to convert
failures and therefore adjusts the value of Hu until the circuit passes the design
specifications. The postproduction tuning results, shown in Table 5.5, show that
using the tuning screw in the DR housing to adjust the frequency of oscillation
can bring the yield to about 87%.

In some designs the DR is coupled to the microstrip line as shown in Figure
5.63. The l/4 open-circuited transmission line presents a short circuit at the position
of the DR. Hence, the magnetic coupling is increased since the current is a maximum
at the DR location. From Figure 5.63, with GL = −1, we obtain at vo that

GXX ′ = S22 +
S12S21(−1)
1 − S22(−1)

=
b − 1
b + 1

and

GT =
b − 1
b + 1

e −j2u

Example 5.14

Design the terminating network for a 10-GHz oscillator using the DRO coupling
shown in Figure 5.63.

Solution
At the resonator location the open-circuited l /4 line provides the short circuit.
Hence,
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Figure 5.61 (a) The yield of the terminating network and (b) the simulation data.

GXX ′ =
b − 1
b + 1

= 0.666 ⇒ b = 0.047

Then, with l2 = l /2 it follows that GT = 0.666. Of course, in such a case b = 0.047,
which corresponds to an under-coupled case. The rest of the design is similar to
the previous example.
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Figure 5.62 Postproduction tuning simulation.

Table 5.5 Simulation Results

PreTuneYield PPT_Yield PPT_Converts

21.000 87.000 66.000

Figure 5.63 A DRO coupling with l1 = l/4.

5.12.3 Parallel-Coupled DRO

The circuit in Figure 5.64 shows a parallel-coupled dielectric resonator oscillator.
The DR in this configuration acts as a parallel-feedback element, which, along
with the transistor, presents a negative resistance at the load port.

The DR and coupling circuits in Figure 5.65 can model the circuit in Figure
5.64 by appropriately choosing the R, L, and C values of the parallel resonant
circuit (which models the DR) as well as the transformer turn ratios N1 and N2
(which are determined by the distance between the DR and the microstrip lines).
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Figure 5.64 Parallel-coupled dielectric resonator oscillator.

Figure 5.65 Parallel-coupled DR model.

The feedback through the microstrip line from emitter to collector impedes the
isolation of one port from the other making the whole design cumbersome.

A design procedure for a parallel-coupled DR oscillator at 2 GHz is now
illustrated. The complexity presented by the feedback can be analyzed using a
combination of iterative simulations. The simulations will measure the effect of
varying the above-mentioned parameters so as to obtain an adequate negative
resistance at the load port.

The circuit in Figure 5.66 shows the ADS simulation used to perform the first
of these iterative simulations. As a starting point, the DR is replaced by its equivalent
parallel-resonant circuit at 2 GHz, which was obtained in the simulation shown
in Figure 5.56. The length of microstrip lines ‘‘TL1’’ and ‘‘TL2’’ are set to a quarter-
wave length (i.e., to l = 14.75 mm), and ‘‘TL3’’ is set to 360°. Both transformer
turns-ratio coefficients are initially set to 1 and will be optimized in a subsequent
simulation. Pavs is set to 1, and the resulting input reflection coefficients as a
function of the line length TL4 are calculated. The simulation data in Table 5.6
shows that a line length for TL4 of 12 mm produces a negative resistance at the
load port (i.e., |GIN | = 1.481 |41.46° ).
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Figure 5.66 Parallel-coupled DR line length optimization.

Table 5.6 Load-Port Reflection
Coefficient Versus Line Length TL4

TL4_length GIN

6.000 0.548/99.759
7.000 0.640/91.707
8.000 0.756/83.714
9.000 0.902/75.396

10.000 1.082/66.203
11.000 1.290/55.268
12.000 1.481/41.459
13.000 1.508/27.821
14.000 1.477/10.077
15.000 1.593/−9.080
16.000 1.579/−16.555
17.000 1.494/−32.002
18.000 1.487/−48.741
19.000 1.345/−57.745
20.000 1.194/−63.741

Next, the effects of the transformers’ turns ratios are analyzed. The simulation
is shown in Figure 5.67. The simulation data (Table 5.7) shows that there are
many combinations for the two transformer ratios, which result in a negative
resistance at the load port. Figure 5.68 shows the simulation with the turns ratios
set equal to unity. The resulting frequency of oscillation is at 2 GHz. It was also
observed that small values of the coupling coefficients resulted in lower phase noise
but lower output power.
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Figure 5.67 Turns-ratio effect on the load-port negative resistance.

5.13 YIG Oscillators

Yittrium Iron Garnet (YIG) is a ferrimagnetic material. A YIG resonator uses the
resonant properties of a YIG sphere under the influence of a dc and ac magnetic
field. The YIG sphere can be modeled by a parallel RLC resonant circuit. The
value of the elements depends on the magnetization, coupling, and resonance line
width of the YIG sphere and on the applied dc magnetic field. The uniform dc
magnetic field is applied with an electromagnet with a single gap. The gap design
is important since a nonuniform dc magnetic field results in a tuning hysteresis
and spurious responses. A common-gate GaAs FET oscillator using a YIG resonator
is shown in Figure 5.69. A dc magnetic field is applied in the plane of the coupling
loop and an RF current is used to generate the ac field at a right angle to the dc
magnetic field. The design of the electromagnet system is cumbersome.

The YIG sphere is strongly coupled to the transmission line that connects the
active device. Assuming that the YIG sphere is magnetically saturated and that the
sphere diameter is much smaller than l /4, the YIG device can be modeled by a
parallel resonant circuit, as shown in Figure 5.70. The element values are given by

Go =
d2

moVvmQU

Lo =
moVvm

vod2
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Table 5.7 Simulation Data

GIN
Ratio 1 Ratio 2 = 1.000 Ratio 2 = 2.000 Ratio 2 = 3.000 Ratio 2 = 4.000 Ratio 2 = 5.000 Ratio 2 = 6.000 Ratio 2 = 7.000 Ratio 2 = 8.000

1.000 1.481/41.4 1.567/11.6 1.470/−1.8 1.407/−8.8 1.366/−13.1 1.338/−16.0 1.317/−18.1 1.302/−19.6
2.000 1.044/96.2 1.662/50.2 1.804/29.4 1.684/14.7 1.588/5.54 1.520/−0.58 1.471/−4.9 1.434/−8.2
3.000 0.930/118 1.287/80.0 1.690/52.0 1.877/37.7 1.796/24.5 1.707/15.2 1.633/8.58 1.575/3.5
4.000 0.843/131 1.201/100 1.392/71.9 1.701/52.7 1.895/42.1 1.856/30.9 1.783/22.2 1.715/15.4
5.000 0.817/141 1.051/108 1.306/91.6 1.456/67.4 1.705/53.0 1.891/44.6 1.887/35.4 1.833/27.3
6.000 0.813/148 0.949/116 1.217/100 1.346/83.5 1.501/64.7 1.708/53.2 1.878/46.2 1.903/38.5
7.000 0.818/153 0.886/124 1.106/105 1.307/95.0 1.383/77.7 1.532/62.8 1.710/53.4 1.862/47.2
8.000 0.826/157 0.849/130 1.018/110 1.223/99.9 1.339/89.4 1.417/73.6 1.557/61.5 1.712/53.4
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Figure 5.68 Simulation of the oscillator.

Figure 5.69 A YIG-tuned oscillator.

Co =
1

v 2
o Lo

where
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Figure 5.70 Equivalent RLC network for the YIG sphere.

vm = g8p2Ms

vo = 2pgHo

QU =
Ho −

4pMs
3

DH

The quantity 4pMs is the saturation magnetization of the sphere, mo = 4p (10−7)
H/m, V is the volume of the sphere, d is the coupling loop diameter, g is the gyro-
magnetic ratio (2.8 MHz/Oe), Ho is the applied dc magnetic field, QU is the
unloaded Q, DH is the resonance line width (approximately 0.2 Oe), vo is the
center frequency of resonance, and Ho is the dc magnetic field.

The frequency of resonance can be controlled accurately with the dc field from
an electromagnet. As the dc is reduced, the losses increase and at some point the
YIG sphere stops acting as a resonator.

5.14 Other Negative-Resistance Devices

Several two-terminal negative-resistance devices have been developed. Two that
have found practical application as oscillators in the microwave and millimeter
range are the Gunn diodes and the Impatt diodes. A brief description of oscillators
using these diodes is given.

5.14.1 Gunn Diodes

The Gunn diode symbol and characteristics are shown in Figure 5.71(a). The device
exhibits a negative resistance region. The Gunn diode is called a diode because of
its two terminals. However, it has no pn junction, nor does it resemble a Schottky
diode. In fact, Gunn diodes are bulk effect devices where two of the bulk semicon-
ductor material used in their fabrication are n-type GaAs and InP (Indium Phos-
phide). The frequency of operation is from about 10 to 180 GHz. In CW operation,
oscillation power levels of about 500 mW can be obtained at the lower frequencies,
and about 50 mW at the higher frequencies.

Figure 5.71(b) shows that at the threshold voltage (Vth ) the current reaches a
maximum value (i.e., Ith ). As the bias is further increased the current decreases
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Figure 5.71 (a) Gunn diode symbol and (b) characteristics.

and the device exhibit a negative resistance. The current will continue to decrease
until a breakdown voltage is reached were the diode will burn.

Different modes of operation are possible with Gunn diodes. The operation is
controlled either by the design of the diode or by the external circuit. The physics
of the device operation is quite involved. However, for oscillator design purposes
what is needed is an equivalent model of the device in the negative-resistance region.
In the negative-resistance region the diode can be represented by the model is
shown in Figure 5.72(a), where Rs is the diode series resistance, Lp and Cp are the
package inductance and capacitance, CG is the diode capacitance, and −RG is the
negative resistance of the diode. Typical values for a 10-GHz Gunn diode are:
Lp = 1 nH, Cp = 0.5 pF, Rs = 0.5V, and −RG −20V. In general, the elements Lp
and Rs can be neglected and the model reduces to a simple parallel RGCG circuit
with package capacitance Cp , as shown in Figure 5.72(b).

A basic Gunn diode oscillator is shown in Figure 5.73(a), where Cb is a bypass
capacitor. The ac model of the oscillator is shown in Figure 5.73(b). The load
network, represented by a parallel RLC circuit, is designed to satisfy the oscillation
conditions.

The resulting model in Figure 5.73(b) is that of a parallel negative-resistance
device. Hence, oscillations build up when |GG | > GL . The fundamental frequency
of oscillation is given by

vo =
1

√L(CG + Cp + C )

Figure 5.72 (a) Gunn diode model and (b) simplified model.
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Figure 5.73 (a) Basic circuit for a Gunn-diode oscillator and (b) its ac model.

In practice, Gunn-diode oscillators are implemented using either a coaxial or
rectangular waveguide cavity resonator. A rectangular waveguide circuit is shown
in Figure 5.74. In this resonator the dc is applied through a metal post to the Gunn
diode. The current in the post excite the fields inside the waveguide (usually a TE
mode), which is coupled to the load through the opening (i.e., iris). A tuning screw
is used to adjust the cavity resonant frequency. The shorted waveguide is designed
to provide the needed inductance to resonate the Gunn’s diode capacitance.

The design of the waveguide structure with a post and the diode is involved.
Numerical techniques have been used to calculate the impedance seen by the diode
and to completely describe the structure.

Figure 5.74 Waveguide circuit for the Gunn-diode oscillator.



5.14 Other Negative-Resistance Devices 349

Gunn-diode oscillators generate power with low efficiency (2% to 10%). Hence,
a good heat sink is necessary.

Gunn-diode VCOs with a varactor tuner are available with fairly constant
output power over a wide frequency range. Pulse operation is also used with
resulting larger powers than in CW operation.

5.14.2 Impatt Diodes

Impatt diodes (or Impact Ionization Avalanche Transit Time diodes) were developed
using the physics of avalanche and saturation velocity of carriers in a semiconductor.
The device is useful at millimeter frequencies where it can generate a large amount
of power. Impatt diodes have higher efficiency than Gunn diodes (about 20%
efficiency). However, they are more noisy because of the avalanche mechanism.

Impatt diodes are fabricated using Si and GaAs. The package is similar to that
of the Gunn diodes. The Impatt-diode characteristics and equivalent circuit are
shown in Figure 5.75. The device operation is in the breakdown region.

Because of the breakdown operation the applied voltage is high. For example,
in the X-band region, the required voltages are from 60V to 90V, while at millimeter
frequencies (say 100 GHz) the required voltage is around 10V. Pulse operation is
possible with significant increase of the output power.

The equivalent circuit of an Impatt diode is a series RC circuit as shown in
Figure 5.75(b). Typical negative-resistance values of −0.5V to −4V are typical for
RF currents of 50 mA to 1A. Lp and Cp are the package inductance and capacitance.

The matching of the low negative resistance associated with Impatt diodes
requires some ingenuity in the coaxial and rectangular waveguide structures. A
typical waveguide circuit for an Impatt-diode oscillator is shown in Figure 5.76.
The configuration shows that a graded transformer was used to attain the match.

Figure 5.75 (a) Impatt diode characteristics and (b) equivalent circuit.
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Figure 5.76 Rectangular waveguide circuit for an Impatt-diode oscillator.
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C H A P T E R 6

Nonsinusoidal Oscillators

6.1 Introduction

In this chapter a variety of nonsinusoidal oscillators are discussed. These oscillators
are usually referred to as relaxation oscillators. A relaxation oscillator is a circuit
that switches between two states, producing a periodic signal whose period depends
on the charging and discharging of a capacitor.

Relaxation oscillators are used to produce square waves, pulses, and triangular
waves. Square waves (also referred as a clock oscillator) are one of the most
important signals in digital circuits. A relaxation oscillator is basically an astable
multivibrator. That is, an electronic circuit that operates between two quasi-stable
states (i.e., on and off) at a certain frequency.

6.2 Various Relaxation Oscillators

6.2.1 Relaxation Oscillators Using Operational Amplifiers

A relaxation oscillator using an op amp is shown Figure 6.1. The operational
amplifier is connected in a Schmitt-trigger configuration with positive feedback
through R1 and R2 .

In a Schmitt trigger the output voltage is at one of its saturation values, denoted
by Vs

+ and Vs
−. The saturation values are about 1V below V + and 1V above V −;

that is,

Vs
+ ≈ V + − 1

and

Vs
− ≈ V − + 1

When vo = Vs
+ it follows that

v+ =
Vs

+R1
R1 + R2

and with R1 = R2 then

351
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Figure 6.1 A relaxation oscillator.

v+ =
Vs

+

2

When vo = Vs
+, capacitor C charges towards Vs

+. When the capacitor voltage
reaches Vs

+ /2, then v− > v+ and the Schmitt trigger output changes from Vs
+ to Vs

−.
With vo = Vs

−, it follows that

v+ =
Vs

−R1
R1 + R2

=
Vs

−

2

and the capacitor voltage decreases toward Vs
−. When the capacitor voltage reaches

Vs
− /2, then v− < v+ and the Schmitt trigger output changes from Vs

− to Vs
+. The

output switching between Vs
+ and Vs

− continues and its frequency is controlled by
the RC time constant. The resulting waveforms are shown in Figure 6.2.

To calculate the period of the oscillation, consider the charging of the capacitor
shown in Figure 6.3 where at time t = ta (see Figure 6.2) the output voltage has
just changed to Vs

+ and the capacitor voltage is at Vs
− /2. For t > ta (see Figure 6.3),

the capacitor voltage is given by

vc (t) = A + Be −(t − ta)/RC for ta ≤ t ≤ tb (6.1)

Since vc (ta ) = Vs
− /2 and vc (∞) = Vs

+, it follows from (6.1) that

Vs
−

2
= A + B
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Figure 6.2 The Schmitt trigger output voltage and the capacitor voltage.

Figure 6.3 Charging of the capacitor.

and

Vs
+ = A

Hence, since Vs
+ = −Vs

− we obtain

B =
Vs

−

2
− A = −

Vs
+

2
− Vs

+ = −
3
2

Vs
+

and from (6.1)

vc (t) = Vs
+ −

3
2

Vs
+ e −(t − ta)/RC (6.2)

From Figure 6.2 at t = tb the capacitor voltage reaches Vs
+ /2. Substituting

t = tb in (6.2) gives

vc (tb ) =
Vs

+

2
= Vs

+ −
3
2

Vs
+ e −(tb − ta)/RC

Solving for tb − ta gives
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tb − ta = RC ln 3 = 1.0986RC

From symmetry (see Figure 6.2) the time that it takes the capacitor to discharge
from Vs

+ /2 to Vs
− /2 is also given by 1.0986RC. Hence, the period of the oscillation

is

T = 2(tb − ta ) = 2.197RC ≈ 2.2RC (6.3)

Since the output voltage of the op amp in Figure 6.1 changes from Vs
+ to Vs

− ,
the slew rate of the op amp limits the frequency of operation.

For the case that R1 ≠ R2 , the period is given by

T = 2RC lnS1 +
2R1
R2

D (6.4)

Observe that if R1 = R2 , T ≈ 2.2RC in (6.4), which is identical to (6.3).

Example 6.1

Design the relaxation oscillator in Figure 6.1 to oscillate at 8 kHz.

Solution
Let R1 = R2 = 10 kV and C = 10 nF. Then, from (6.3),

R =
1

2.2fC
=

1

2.2(8 × 103)(10 × 10−9)
= 5.68 kV

The simulation of this oscillator is shown in Figure 6.4. The frequency of
oscillation is 8.13 kHz, which can be easily adjusted with a variable R.

Another op amp relaxation oscillator is shown in Figure 6.5. In this oscillator
the output voltage amplitude varies between Vz + 0.7V to −Vz − 0.7V. The resistor
RA limits the current for proper operation of the Zener diodes.

The waveform for vo is shown in Figure 6.5(b). The period of the oscillator
in Figure 6.5(a) is similar to that in Figure 6.1 [compare Figure 6.2 with Figure
6.5(b)], and it is given by either (6.3) or (6.4).

6.2.2 Relaxation Oscillators with Digital Gates

Relaxation oscillators can also be constructed using digital gates. A typical oscillator
using NAND gates is shown in Figure 6.6. The NAND gates in Figure 6.6 are
connected as inverters, such that when the digital inputs are 0 the output is 1, and
vice versa. The closing of the switch starts the oscillation.

Let us assume that the threshold voltage (VT ) of the CMOS NAND gates in
Figure 6.6 is VT = V + /2; that is, when the input voltage to the gate goes above or
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Figure 6.4 Simulation of the relaxation oscillator in Example 6.1.

below VT , the gates change states accordingly. To analyze this oscillator assume
that vo1 = V +, vo2 = 0, and the capacitor is uncharged. This situation is illustrated
in Figure 6.7(a). The capacitor in Figure 6.7(a) will charge toward −V +, with an
RC time constant. Therefore,

vx (t) = −vc (t) = V +X1 − e −t/RC C

When vx (t) reaches VT = Vs
+ /2, say at t = ta , the gates change states. The waveforms

are shown in Figure 6.7(b) where at t = t +
a we have that vo1 = 0, vo2 = V +, and

vc (ta ) = −VT . The circuit during the time interval t +
a ≤ t ≤ t −

b where vo1 = 0
and vo2 = V + is shown in Figure 6.7(c). Observe that vx (t −

a ) = VT , and
vx (t +

a ) = 1.5VT since the capacitor voltage can not change instantaneously, or

vc (t −
a ) = vc (t +

a ) = −VT

For t +
a ≤ t ≤ t −

b , the capacitor voltage is given by

vc (t) = A + Be −(t − ta)/RC ta ≤ t ≤ tb (6.5)
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Figure 6.5 (a) An op amp relaxation oscillator with a controlled output voltage and (b) the oscillator
waveform.

Figure 6.6 A relaxation oscillator using NAND gates.

Since vc (ta ) = −VT and vc (∞) = V +, it follows that A = V + and B = −1.5VT . Hence,
(6.5) is expressed in the form

vc (t) = V + − 1.5V +e −(t − ta)/RC ta ≤ t ≤ tb (6.6)
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Figure 6.7 (a) Oscillator circuit for 0 < t < t −
a (at t = t −

a the capacitor voltage is

vc (t −
a ) = vc (t +

a ) = −VT = −V +/2), (b) oscillator waveforms, (c) oscillator circuit for

t +
a ≤ t ≤ t −

b , and (d) oscillator circuit for t +
b ≤ t ≤ t −

c .

Also, for t +
a ≤ t ≤ t −

b , since vx (t) = V + − vc (t) it follows that

vx (t) = 1.5V +e −(t − ta)/RC t +
a ≤ t ≤ t −

b

The waveforms for ta ≤ t ≤ tb are shown in Figure 6.7(b).
At t = t −

b the voltage vx decreases to VT , and vc (t −
b ) = VT . Hence, the gates

switch states again. That is, vo1 = V + and vo2 = 0 at t = t +
b , as shown in Figure

6.7(b), and the circuit during the time interval t +
b ≤ t ≤ t −

c is shown in Figure 6.7(d).
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Figure 6.7 (continued.)

The time tb − ta can be calculated using (6.6); that is,

vc (tb ) =
V +

2
= V + − 1.5V +e −(tb − ta)/RC

or

tc − tb = RC ln 3 = 1.09RC

At t = t +
b , the voltage across the capacitor remains at V +/2. However, from

Figure 6.7(b) it is seen that vx (t +
b ) = −VT . In the interval t +

b ≤ t ≤ t −
c the capacitor

charges toward −V +, and vc (t) is given by

vc (t) = −V + + 1.5V +e −(t − tb)/RC

In the relaxation oscillator the above process repeats itself; that is, as shown
in Figure 6.7(b), vc (t) varies between VT and −VT , and vx (t) varies between 1.5VT
and −VT .

From symmetry, the period and frequency are given by

T =
1
f

= 2(tb − ta ) ≈ 2.2RC (6.7)

While the inverters in Figure 6.6 were implemented in using CMOS NAND
gates, there are other ways of implementing inverters—for example, a CMOS NOR
gate with the two inputs connected together functions as an inverter.
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Example 6.2

Design the relaxation oscillator shown in Figure 6.6 to oscillate at 10 kHz.

Solution
Let C = 1 nF, then from (6.7),

R =
1

2.2(10 × 103)(109)
= 45.4 kV

The internal operation of the gates used to build the oscillator in Figure 6.6
affects the waveforms associated with the circuit and, therefore, the oscillator
frequency. For example, CMOS NAND gates have protection diodes, which clamp
the input voltage between zero and V + . Hence, the switching action that makes
the voltage vx go negative or above V + is prevented by the protection diodes
of the first gate. A modification to the relaxation oscillator in Figure 6.6 that
improves the frequency stability is shown in Figure 6.8. The resistor Ra lets the
voltage vx go negative and above V +, as described in Figure 6.7(b), by providing
the needed voltage drop for vx′ to be at the clamp values of the gate. The resistor
Ra is usually designed to be 10 times larger than R1 .

A modification that produces a relaxation oscillator with an asymmetrical
square wave is shown in Figure 6.9. The diode D makes C to be charged by R1
in parallel with R2 when vo1 = 0 and vo2 = V +, and to be charged by R2 only
when vo1 = V + and vo2 = 0. Hence, the resistor R2 affects the time interval when
vo2 = V +.

Figure 6.8 A relaxation oscillator with improved frequency stability.

Figure 6.9 A relaxation oscillator that produces an asymmetrical square wave.



360 Nonsinusoidal Oscillators

A resistor Ra could be added to the input of the first gate (as in Figure 6.8) to
improve the circuit performance. Also, the addition of a second diode in series
with R2 could be used to control the interval when vo2 = 0.

Gated operation of the previous relaxation oscillator is obtained by using an
electronic switch to turn the oscillator on and off. For CMOS NAND gates, the
switch can be implemented as shown in Figure 6.10(a), and for CMOS NOR gates
as shown in Figure 6.10(b). The circuit in Figure 6.10(a) is turned on by a logic
1 input at vx , and that in Figure 6.10(b) by a logic 0 at the input vx .

If BJT inverters are used (such as the 7404 inverters) instead of CMOS inverters,
the resulting waveforms would be different since the voltages at which the gates
switch are different. The transfer characteristic of a 7404 inverter is shown in
Figure 6.11. The high (H) and low (L) values of the input and output voltages are
indicated, as well as the listed input current.

Figure 6.10 Relaxation oscillator with gated operation.

Figure 6.11 Characteristics of the 7404 inverter.
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When such inverters are used in the relaxation oscillator shown in Figure 6.6,
the period and frequency of oscillation of vo2 can be shown to be given by

T =
1
f

= T1 + T2 = RCSln
VOH + VIL − VOL

VIH − VOL
+ ln

VIH − 2VOH
VIL − VOH − IILR D

(6.8)

where T1 is the time that vo1 is high at VOH , and T2 is the time that is low at
VOL .

A check of (6.8) can be done by assuming that the inverters are CMOS gates.
Then, VOL = 0, VOH = V +, VIH = VIL = VT , and IIL = 0. Substituting into (6.8)
we obtain

T =
1
f

= RC (ln 3 + ln 3) ≈ 2.2RC

which is identical to (6.3).
A relaxation oscillator implemented with BJTs is shown in Figure 6.12. This

oscillator is also known as a BJT astable multivibrator. The resistors are selected
so that with no capacitors the BJTs are saturated (i.e., let RB1 < bRC1 and RB2 <
bRC2). The operation of the oscillator can be described as follows. If T1 and T2
are originally in the active region, any variation in iC1 or iC2 will drive one of the
transistors into saturation and the other into cut off. For example, if iC1 increases
then vBE2 decreases. This produces a decrease in iC2 and an increase in vCE2. The
increase in vCE2 produces an increase in vBE1 and eventually T1 saturates and T2
is cut off. At this point the capacitor C1 charges through RB2 , and this causes vBE2
to increase towards approximately 0.7V, at which point T2 saturates and T1 is
cut off. With T2 saturated the capacitor C2 charges through RB1 until T1 saturates
and T2 is cut off. The process repeat itself at a frequency determined by the values
of the base resistor and the capacitors.

In order to analyze the circuit in Figure 6.12 we begin by assuming that T1 is
saturated and T2 is cut off, as shown in Figure 6.13(a). For simplicity we assume

Figure 6.12 A BJT astable multivibrator.
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Figure 6.13 (a) Portion of the circuit showing T1 saturated and T2 in cut off, (b) portion showing T1 in
cut off and T2 saturated, and (c) the waveforms of the oscillator.

that when a transistor is saturated the base to emitter voltage is 0.7 and its collector
to emitter voltage is zero. In Figure 6.13(a), the time constant RC2C2 is such that
the capacitor charges fast to VCC − 0.7. Next, consider the time t ′ = 0 when the
transistors switch states [see Figure 6.13(c)]. That is, at t ′ = 0, T1 becomes cut off
and T2 is saturated. At t ′ = 0 capacitor C2 is charged to VCC − 0.7. Figure 6.13(b)
shows the oscillator circuit at t ′ = 0+ with the capacitor C2 voltage at VCC − 0.7.
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At this time vBE1 begins to rise toward 0.7 since C2 charges towards −VCC with
a time constant of RB1C2 . During this charging time T2 is saturated and vCE2
remains at 0V, as shown in Figure 6.13(b). From Figure 6.13(b), the expression
for vBE1 is

vBE1 = VCC − (2VCC − 0.7)e −t ′/RB1C2 (6.9)

which shows that at time t ′ = 0 the voltage is vBE1 = −VCC + 0.7 and at t ′ = ∞ the
voltage is vBE1 = VCC . At t ′ = T /2 the process repeats itself with RB2C1 determining
the pulse width from t ′ = T /2 to t ′ = T. Figure 6.13(c) shows the waveforms
associated with the oscillator.

When t ′ = T /2, the voltage vBE1 rises to 0.7V. From (6.9)

0.7 = VCC − (2VCC − 0.7)e −T /2RB1C2

or

T
2

= −RB1C2 ln
VCC − 0.7

2VCC − 0.7
≈ RB1C2 ln 2

where the approximation VCC @ 0.7V was used. If RB1 = RB2 and C1 = C2 , the
frequency of oscillation is

f =
1
T

=
1

2RB1C2 ln 2

If RB1 ≠ RB2 and C1 ≠ C2 , the frequency of oscillation is

f =
1
T

=
1

2(RB1C2 + RB2C1) ln 2

Detail analysis of the waveshapes, which includes the effect of the cut-in voltage,
the finite saturation voltage, and the switching time of the transistors, can be
performed easily in SPICE. The actual results will be in close agreement with the
waveshapes shown in Figure 6.13(c).

6.2.3 The Ring Oscillator

An odd number of inverters will oscillate in the ring configuration shown in Figure
6.14. This configuration is best analyzed in terms of the time delay (or propagation
delay) that the signal experiences as it goes through the ring inverters. If the
propagation delay of the inverter is tp , then the frequency of oscillation is given
by

fo =
1

2ntp

where n is the number of gates.
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Figure 6.14 Ring-oscillator configuration.

Manufacturers of inverters provide data regarding the propagation delay as a
function or the device load capacitance. For example, if n = 3 and the output
capacitance of the inverter has a nominal value of 10 pF producing a nominal
propagation delay of 20 ns, the frequency of oscillation is

fo =
1

2(3)20 × 10−9 = 8.33 MHz

However, if such an oscillator is constructed in the laboratory, the resultant fre-
quency of oscillation can vary considerable from the predicted 8.33 MHz.

Since the frequency of oscillation is controlled by the propagation delay, it is
difficult to properly control it. Too many factors affect the propagation delay,
including the variation in output capacitance from unit to unit. To better control
the frequency of oscillation, external elements are added.

While the two-stage relaxation oscillator is a general-purpose square-wave
oscillator, it might not be suitable for many timing circuits, especially in high-speed
digital circuits. A better square-wave oscillator is shown in Figure 6.15. This type
of configuration is known as a ring of three.

The frequency of oscillation for the circuit in Figure 6.15 is given by

f =
1

2R1CS0.405R2
R1 + R2

+ 0.693D (6.10)

In the case that R2 = 0, (6. 10) gives

f =
1.731
R1C

and with R1 = R2 = R, it reduces to

Figure 6.15 Ring-of-three oscillator.
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f =
0.6
RC

The ring-of-three oscillator can also be gated, as shown in Figure 6.16, for a
NAND CMOS implementation. The logic gate control voltage is vG . The oscillator
in Figure 6.16(a) has a normally low output, while the oscillator in Figure 6.16(b)
has a normally high output. The ring-of-three oscillator can also be constructed
with NOR gates.

6.3 Triangular-Wave Oscillators

In an RC circuit the capacitor waveform is exponential. However, if a capacitor
is charged from a constant current source the waveshape is linear (i.e., It /C). Hence,
a circuit that changes the direction of the charging current source in a periodical
manner can be used to generate a triangular-wave oscillator. Such a circuit can be
implemented using a Schmitt trigger (i.e., a comparator with hysteresis). Two
Schmitt trigger circuits are shown in Figure 6.17 with the associated characteristics.

The characteristics of the Schmitt trigger in Figure 6.17(a) are derived by
observing that vx can only be at either Vs

+ or Vs
− , and the voltage at the positive

input (v+ ) is

v+ = vx
R1

R1 + R2
+ vI

R2
R1 + R2

(6.11)

When vx = Vs
+, the required input voltage to change the output from Vs

+ to
Vs

− is denoted by vI = VLT . From (6.11), setting v+ = 0, vx = Vs
+, and vI = VLT ,

gives

Figure 6.16 Gated ring-of-three with (a) normally low output and (b) normally high output.
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Figure 6.17 (a) A Schmitt trigger circuit and its characteristics and (b) a Schmitt trigger circuit
with a reference voltage and its characteristics.

VLT = −
R1
R2

Vs
+

VLT is known as the lower threshold voltage of the Schmitt trigger.
When vx = Vs

−, the required input voltage to change the output from Vs
− to

Vs
+ is denoted by vI = VUT . From (6.11), setting v+ = 0, vx = Vs

−, and vI = VUT ,
gives

VUT = −
R1
R2

Vs
−

VUT is known as the upper threshold voltage of the Schmitt trigger.
If a reference voltage VREF is applied to the negative input [as shown in Figure

6.17(b)], the resulting characteristics are shifted and VLT can be made positive.
For this circuit it follows that

VLT = −
R1
R2

Vs
+ + VREFS1 +

R1
R2
D

and

VUT = −
R1
R2

Vs
− + VREFS1 +

R1
R2
D

A triangular-wave oscillator using the Schmitt trigger in Figure 6.17(a) is shown
in Figure 6.18. The oscillator in Figure 6.18 can be analyzed as follows. Assume
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Figure 6.18 A triangular-wave oscillator and the circuit waveform.

that at t = 0, vx is at the saturation value Vs
+ and vo = 0. Hence, the current into

the integrator is

I =
Vs

+

R

and the output voltage for 0 ≤ t ≤ ta is given by

vo (t) = −
1
C E

t

0

I dt = −
1

RC E
t

0

Vs
+ dt = −

Vs
+ t

RC
(6.12)

Equation (6.12) shows that the voltage decreases linearly. At t = ta , the output
voltage reaches the lower threshold value VLT . At t = t +

a , vx changes from Vs
+ to

Vs
− and the current into the integrator reverses direction. Its value is given by

I =
Vs

−

R
(6.13)

The current I, given by (6.13), has a negative value since Vs
− is negative.
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The output voltage for ta ≤ t ≤ tb is

vo (t) = vo (ta ) −
I
C

(t − ta ) (6.14)

= VLT −
Vs

−

RC
(t − ta )

Hence, the voltage increases linearly from its value of VLT at t = ta . At t = tb we
have vo (tb ) = VUT , and from (6.14),

VUT = VLT −
Vs

−

RC
(tb − ta )

or

tb − ta =
(VLT − VUT )RC

Vs
− = 2

R1
R2

RC (6.15)

For tb ≤ t ≤ tc , the current into the integrator is I = Vs
+ /R; therefore, vo (t) is

given by

vo (t) = vo (tb ) −
I
C

(t − tb ) (6.16)

= VUT −
Vs

+

RC
(t − tb )

which represents the linearly decreasing voltage for tb ≤ t ≤ tc .
From symmetry, tc − tb = tb − ta ; therefore, the frequency of oscillation is

f =
1
T

=
1

2(tb − ta )
=

R2
4R1RC

(6.17)

Since vx changes from Vs
+ to Vs

−, the slew rate of the comparator op amp
limits the maximum frequency of oscillation. Also, VUT and VLT depend on Vs

+

to Vs
−, which cannot be controlled exactly.

The output waveform of the oscillator in Figure 6.18(a) can be displaced with
respect to ground using a reference voltage in the comparator, as shown in Figure
6.17(b). Appropriate values of VREF can make VLT > 0, producing the triangular
waveform shown in Figure 6.19.

An oscillator that produces a triangular waveform with VLT = 0 is shown in
Figure 6.20(a). The comparator uses a diode in series with R2 such that when vx
goes to Vs

− the diode conducts and the resulting vo decreases linearly. When vx
goes to Vs

+, D is off and therefore VLT = 0. The comparator characteristics are
shown in Figure 6.20(b), and the output waveform of the oscillator in Figure
6.20(c).
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Figure 6.19 Triangular waveform displaced above ground.

Figure 6.20 (a) A triangular wave oscillator (with VLT = 0), (b) the comparator characteristics, and
(c) the oscillator waveform.

If the integrator circuit in Figure 6.18 is replaced by the integrator circuit
shown in Figure 6.21(a), the resulting waveform is shown in Figure 6.21(b) where
T1 ≠ T2 . For this circuit, D1 conducts (ideally) when vx > 0, charging the capacitor
through R11 . When vx < 0, D2 conducts and the capacitor gets charged through
R12 . Hence, the resulting waveform (with R11 ≠ R12) exhibit different T1 and T2 ,
where T = T1 + T2 .

A circuit that can be used to control the values of VUT and VLT in a triangular-
wave oscillator is shown in Figure 6.22(a), and the resulting waveforms in Figure
6.22(b). The resistor RA is used to provide the appropriate current to the Zener
diodes. When the comparator saturates, the resulting values of vx are vx = Vz + 0.7
and vx = −Vz − 0.7. Hence, the upper and lower threshold values in this oscillator
are given by

VUT =
R1
R2

(VZ + 0.7) (6.18)
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Figure 6.21 (a) An integrator circuit for the generation of an asymmetrical triangular wave and
(b) the output waveform.

and

VLT = −
R1
R2

(VZ + 0.7) (6.19)

The analysis of the oscillator in Figure 6.22(a) is similar to that in Figure
6.18(a). Let us begin the analysis at t = ta when vx is at the saturation value
vx = −Vz − 0.7 and vo = VLT . Then, the current into the integrator is

I =
−Vz − 0.7

R

and the output voltage for ta ≤ t ≤ tb is given by (6.14) with VLT given by (6.19)
and Vs

− replaced by −Vz − 0.7.
At t = tb , the voltage reaches the upper threshold value VUT . At this time, vx

changes from vx = −Vz − 0.7 to vx = Vz + 0.7, and the current into the integrator
reverses direction. Its value is given by

I =
Vz + 0.7

R

Hence, the output voltage for tb ≤ t ≤ tc is given by (6.16) with VUT given by
(6.18) and Vs

+ replaced by Vz + 0.7.
The frequency of oscillation is given by (6.17), namely,
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Figure 6.22 (a) A triangular-wave oscillator using Zener diodes to control VUT and VLT and
(b) the oscillator waveforms.

f =
R2

4R1RC
(6.20)

In the design of the triangular-wave oscillator in Figure 6.22, it is common to
make R1 and R2 variable resistors. Also, the peak of the triangular waveform must
be larger than the output offset voltage of the operational amplifier.

Example 6.3

The triangular waveform oscillator in Figure 6.22 is designed with R1 = R2 =
10 kV, R = 5 kV, and C = 0.1 mF. The Zener diodes are 1N4734 diodes, with
Vz = 5.6V. Two 741 op amps are used. Calculate the frequency of oscillation and
show the resulting waveform.
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Solution
Using (6.20), the frequency of oscillation is

f =
10 × 103

4(10 × 103)(5 × 103)(0.1 × 10−6)
= 500 Hz

The simulation of the oscillator and the resulting output waveform are shown
Figure 6.23.

A sawtooth waveform can be obtained with the oscillator in Figure 6.22 by
making the time tc − tb smaller than tb − ta . Also, removing one of the Zener

Figure 6.23 PSPICE simulation of the oscillator in Example 6.3.
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diodes, as shown in Figure 6.24, produces a sawtooth waveform with vx changing
between −0.7V and VZ , and vo changing between

VUT =
R1
R2

(0.7) (6.21)

and

VLT = −
R1
R2

VZ

For this oscillator the time intervals are given by

tb − ta =
(VUT − VLT )RC

0.7
(6.22)

and

tc − tb =
(VUT − VLT )RC

VZ
(6.23)

Figure 6.24 A sawtooth generator.
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where

VUT − VLT =
R1
R2

(VZ + 0.7)

Hence, the period is given by

T = tc − ta =
R1
R2

RC (VZ + 0.7)S 1
0.7

+
1

VZ
D (6.24)

Example 6.4

The sawtooth oscillator in Figure 6.24 is to be designed with a period of 15 ms
and a rise time of 14 ms.

Solution
With T = 15 ms and tb − ta = 14 ms, then tc − tb = 1 ms. From (6.22) and (6.23)
we have

tb − ta
tc − tb

=
14(10−3)

1(10−3)
=

Vz
0.7

Hence, the required Zener voltage is Vz = 9.8V.
From (6.21), with R1 = R2 (say, 10 kV) it follows that VUT = 0.7V and

VLT = −9.8V.
Finally, from (6.24)

15(10−3) = RC (9.8 + 0.7)S 1
0.7

+
1

9.8D ⇒ RC = 0.933 × 10−3

This relation can be satisfied with C = 50 nF and R = 18.67 kV. The output voltage
for this oscillator is shown in Figure 6.25, as well as the voltage vx .

A more sophisticated triangular-wave oscillator is shown in Figure 6.26. The
first op amp operates as a comparator. A 311 comparator can be used. The 311
has an open-collector output that changes from V + to ground (as suggested by the
simplified diagram of the comparator in Figure 6.26. The second op amp circuit
is an integrator. The MOSFET switch has a threshold value such that it closes
when vx = V +, and opens when vx = 0. The voltage VIN is a dc voltage generated
from V + (i.e., VIN < V + ), which will determine the oscillation frequency.

When vx = V +, the switch closes and, using superposition, the voltage v+ at
the comparator (denoted by v+(1) ) is

v+(1) = 23V +SRA
2 D

RA
2

+ RA4 =
2
3

V +
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Figure 6.25 Sawtooth signal for the design in Example 6.4.

With the switch closed, the capacitor charges and the voltage vo increases linearly
until it reaches 2V +/3. When vo reaches 2V +/3, the output of the comparator
changes to vx = 0 and the switch opens. With vx = 0, the v+(1) ) becomes

v+(1) =
V +SRA

2 D
RA
2

+ RA

=
V +

3
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Figure 6.26 A triangular wave generator.

When the switch opens the output voltage decreases linearly from 2V +/3 to
V +/3. Hence, the output voltage changes between V +/3 to 2V +/3 as vx switches
between 0 and V +.

The equivalent integrator circuit with the switch closed is shown in Figure
6.27(a). The voltage v+ of the integrator (denoted by v+(2) ) is

v+(2) =
VINRB

RB + RB
=

VIN
2

That is, the integrator has a reference voltage of VIN /2 at its positive input. This
is necessary for the switch to operate properly (i.e., v−(2) ) = v+(2) ) = VIN /2).

At the v−(2) node we can write

VIN −
VIN

2
R1

−

VIN
2

R2
= −C

dvo
dt

or

vo (t) = vo (ta ) +
1

ReqC E
t

ta

VIN dt =
V +

3
+

VIN
ReqC

(t − ta ) (6.25)

where

Req =
2R1R2

R1 − R2
(6.26)

The output voltage for ta ≤ t ≤ tb , as described by (6.25), is shown in
Figure 6.27(c).
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Figure 6.27 (a) Integrator circuit with the switch closed (i.e., with vx = V + ), (b) integrator circuit
with the switch open (i.e., with vx = 0), and (c) the output waveform and vx .

The equivalent integrator circuit with the switch open is shown in
Figure 6.27(b), and at the v−(2) node of the integrator we write

VIN −
VIN

2
R1

= −C
dvo
dt

or

vo (t) = vo (tb ) −
1

2R1C E
t

tb

VIN dt =
2V +

3
−

VIN
2R1C

(t − tb ) (6.27)



378 Nonsinusoidal Oscillators

The plot of (6.27) for tb ≤ t ≤ tc is shown in Figure 6.27(c). When vo reaches V +/3,
the output of the comparator changes to vx = V + and the process repeats.

Observe that (6.25) and (6.27) show that if Req = 2R1 (i.e., when R1 = 2R2)
the circuit provides the same current to the capacitor whether the switch is closed
or open.

From Figure 6.27(c), at t = ta the output voltage is V +/3, and at t = tb it is
2V +/3. Hence, from (6.25) it follows that

vo (tb ) =
2
3

V + =
V +

3
+

VIN
CReq

(tb − ta )

or

tb − ta = C
Req

3
V +

VIN

From symmetry (i.e., with R1 = 2R2) it follows that

tc − tb = C
Req

3
V +

VIN

Hence,

f =
1
T

=
1

tc − ta
=

1
2(tb − ta )

=
3VIN

2CReqV + (6.28)

Equation (6.28) shows that the frequency of oscillation is a linear function of
VIN . Furthermore, this oscillator can be used as a VCO if VIN is replaced by a
modulating signal vm (t).

Example 6.5

The triangular wave oscillator in Figure 6.26 is constructed with: RA = 50 kV,
RB = 25 kV, R1 = 50 kV, R2 = 25 kV (i.e., R1 = 2R2), and C = 0.01 mF.
(a) Determine the frequency of oscillation.
(b) Determine VIN for an oscillation frequency of 500 Hz.

Solution
(a) From (6.26),

Req =
2(50 × 103)25 × 103

50 × 103 − 25 × 103 = 100 kV

From (6.28), with C = 0.01 mF, we obtain
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f =
3VIN

2(0.01 × 10−6)100 × 103V + =
1,500VIN

V + (6.29)

Hence, for 0 < VIN < V + the frequency range of the oscillator is 0 < f < 1,500 Hz.
(b) From (6.29), for a 500-Hz triangular wave we obtain

VIN =
V +

3

A resistive divider from V + can be designed to satisfy this relation.
Another triangular wave generator that can be used as a VCO is shown in

Figure 6.28(a). The first op amp circuit operates as a Schmitt trigger. The CMOS
operates as a single-pole double-throw switch. The vm and −vm signals control the
switch. The second op amp operates as a unity gain buffer stage, and the third op
amp circuit is an integrator.

When vx = VZ + 0.7, T1 is off and T2 is on. Hence, −vm is applied to the
integrator producing a linearly increasing output waveform [i.e., vo (t) = va (t) +
vm /RC]. When the comparator output changes to vx = −VZ − 0.7, T1 is on and
T2 is off, resulting in vm being applied to the integrator and the output waveform
decreasing linearly [or vo (t) = vo (tb ) − vm /RC]. Hence, it follows that the frequency
of oscillation is given by

f =
R1 + R2
4R2CR

vm
(VZ + 0.7)

The oscillator waveform is shown in Figure 6.28(b).

6.4 Sawtooth Oscillators

A sawtooth oscillator is shown in Figure 6.24. There are other ways of generating
a sawtooth wave. An integrator produces a ramp waveform. Hence, an integrator
that is electronically controlled to discharge its capacitor (i.e., to place a switch
across the capacitor) can be used to produce a sawtooth wave. One such circuit
is shown in Figure 6.29(a).

With vx = Vs
−, the input voltage VIN to the integrator in Figure 6.29(a) produces

an output voltage of the form

vo (t) =
1

RC E
t

0

VIN dt =
VIN
RC

t (6.30)

The resulting ramp waveform is shown in Figure 6.29(b).
When vo reaches VREF , the comparator output vx changes from Vs

− to Vs
+.

When vx = Vs
+, D is forward biased and the BJT conducts (i.e., saturates). The

resistor RBB is needed to limit the base current of the BJT. The BJT acts like a
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Figure 6.28 (a) A triangular VCO, where the frequency of oscillation is a linear function of the
modulating voltage vm ; and (b) the circuit waveforms.

switch, discharging the capacitor and making vo go to zero and vx = Vs
−. Then,

the cycle repeats itself, as shown in Figure 6.29(b).
The frequency of oscillation is approximately given by (6.30) with vo (T ) =

VREF . That is,

f =
1

RC S VIN
VREF

D
6.5 Oscillators Using the 555 Timer

This versatile IC is used extensively in a variety of square-waves oscillators and
pulse-generator applications. The 8-pin DIP schematic and block diagram of the
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Figure 6.29 (a) A sawtooth oscillator and (b) the oscillator waveforms.

555 timer are shown in Figure 6.30. It consists of two comparators that control
the output of a flip-flop. The flip-flop output is coupled to the output pin (pin 3)
through an output driver stage (not shown). Also, the flip-flop output controls the
on and off state of transistor T. The transistor is also referred to as the discharge
transistor since it acts as a switch and controls the charging or discharging of an
external capacitor that is connected from pin 7 to ground. The three internal
resistors (usually R = 5 kV) produce a voltage divider that sets the positive input
terminal of comparator I at V +/3, and the negative input terminal of comparator
II at 2V +/3. These reference voltages determine the operation of the comparators.

An overall view of the pins operation is as follows:

• Pin 1 (Ground): The ground pin.
• Pin 2 (Trigger): When the input voltage at pin 2 falls below V +/3, the output

of comparator I changes state (goes from low to high), causing the flip-flop
to set (S = 1) and the Q output of the flip-flop to go high. This will produce
a high at the output pin 3.

• Pin 3 (Output): The output is normally low, and goes high when the trigger
signal drops bellow V +/3. The output driver (or power) stage can source or
sink a maximum current of 200 mA.
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Figure 6.30 (a) Eight-pin DIP schematic of the 555 timer and (b) block diagram of the 555 timer.

• Pin 4 (Reset): The timer can be triggered only when the reset pin voltage is
above 1V. If pin 4 is grounded, the trigger cycle will be interrupted. Under
normal operation pin 4 is usually connected to V +.

• Pin 5 (Control Voltage): An external voltage connected to pin 5 can be used
to change the comparators reference voltage. Under normal operation, the
2V +/3 reference voltage is used and pin 5 is left open, or a capacitor of
0.01 mF is connected from pin 5 to ground to filter any noise that can cause
false triggering.

• Pin 6 (Threshold): When the input voltage at pin 6 is greater than 2V +/3,
the output of comparator II changes state (goes from low to high). The flip-
flop is reset (i.e., R = 1) causing Q to go low, and the voltage at the output
pin 3 goes low. Since Q = 1, the transistor T is on, connecting pin 7 to
ground.

• Pin 7 (Discharge): The discharge pin is connected to the collector of transistor
T. The transistor is off when Q = 1 (i.e., output is high) and Q = 0, and
the transistor is on when Q = 0 (i.e., output is low) and Q = 1. This pin is
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normally used to control the charging or discharging of a capacitor, which
is connected between pin 7 and ground.

• Pin 8 (Supply Voltage): The supply voltage can range from about 4.5V to
18V. The 555 was originally designed for 5V operation to be compatible
with TTL devices.

The way that the 555 generates a pulse can be described by assuming a quiescent
state where the threshold voltage at pin 6 is low (i.e., approximately 0V) and the
trigger signal at pin 2 is high (i.e., at V + ). Thus, the output of comparator I is low
(i.e., ≈ 0V), making S = 0, Q = 0, and Q = 1 (i.e., high). The high at Q saturates
transistor T1 (i.e., turns-on T1), causing pin 7 to be connected to the ground pin
1. Also, with a low at Q the output pin 3 is low (i.e., ≈ 0V). A negative trigger
signal at pin 2, lower than V +/3, will produce a high at the output of comparator
I, making S = 1, Q = 1 and Q = 0. Hence, the output pin 3 will go high, the
transistor T is off, and pin 7 is open.

The flip-flop is reset when the threshold voltage (i.e., the voltage at pin 6)
exceeds 2V +/3 (so that R = 1) and the trigger pulse is not present (i.e., the voltage
at pin 2 greater than V +/3 so that S = 0). Then, the Q output goes low, Q = 1,
and the transistor T1 saturates, causing pin 7 to be connected to ground.

In some 555 timers, when operated with V + = 5V the low state has a maximum
value of 0.25V, and the high state has a typical value of 3.3V with a guaranteed
maximum value of 2.75V.

A Pulse Generator

The 555 timer connected as a pulse generator is shown in Figure 6.31(a). This
circuit is used to provide a timing pulse (i.e., a one shot) whose duration is controlled
by the external capacitor C.

Referring to Figures 6.31(a) and 6.30(b), it follows that with the trigger pin
at V +, the Q output of the internal flip-flop is low and, therefore, the output at
pin 3 is low (i.e., vo = 0). The internal transistor T is saturated since Q = 1 (i.e.,
T1 is on). Hence, the external capacitor C is shorted to ground because pin 7 is
shorted to pin 1. When a negative trigger pulse is applied to pin 2, [as shown in
Figure 6.31(a)], the output of the internal comparator I goes high, so S = 1,
Q = 1 and the output voltage at pin 3 goes high. The transistor goes off, thus
removing the short across C. The voltage across C [i.e., v6(t)] rises exponentially
towards V +, according to

v6(t) = V + X1 − e −t ′ /RC C (6.31)

where the charging time constant is controlled by the external RC components.
The capacitor is also connected to pin 6. Hence, when the voltage v6(t) reaches

2V +/3, comparator II will reset the flip-flop, and the transistor will turn on,
grounding pin 7. Hence, the capacitor will quickly discharge through the transistor,
and the output will go low.

The waveforms generated by the trigger signal are shown in Figure 6.31(a).
The voltage vo is high during the time interval that it takes for v6(t) to reach
2V +/3. This interval, denoted by tx , can be calculated from (6.31) as follows:
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Figure 6.31 (a) A monostable multivibrator using the 555 timer and (b) values of R and C for a
given pulse width tx .

2
3

V + = V + X1 − e −tx /RC C

which gives

tx = 1.1RC (6.32)

The relation (6.32) is plotted in Figure 6.31(b) to show the various combinations
of R and C that produces a given pulse width tx .

The triggering of the 555 occurs when the input trigger pulse falls below V +/3.
For proper operation the trigger signal voltage level should not remain below V +/3
for a time longer than tx . Typical triggering signals are usually those associated
with the high-to-low output transition of various digital circuits. Hence, certain
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periodic transitions can be used to trigger the 555, resulting in pulses whose width
is controlled by the time tx .

A Square-Wave Oscillator

The 555 timer connected as a square-wave oscillator is shown in Figure 6.32. In
Figure 6.32(a) the capacitor is connected to pins 2 and 6. The capacitor charges
towards V + through RA and RB . When the capacitor voltage (i.e., pin 6 voltage)
reaches 2V +/3, comparator II resets the flip-flop, the transistor T turns-on shorting
pin 7 to pin 1 (ground), and the capacitor discharges towards 0V through RB .
However, when the capacitor voltage drops to V +/3, the decaying voltage at pin
2 will set the internal flip flop (i.e., Q = 1 and Q = 0), making the transistor T
turn off. Hence, the capacitor begins to charge again towards V +. In summary,

Figure 6.32 (a) A square-wave oscillator using the 555 timer and (b) a design monograph for the
oscillator.
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the capacitor charges and discharges between V +/3 and 2V +/3, as shown in Figure
6.32(a).

The charge of the capacitor from an initial value of V +/3 towards V + is
described by

v6(t) =
V +

3
+

2V +

3
X1 − e −t /(RA + RB )C C 0 ≤ t ≤ tH (6.33)

Hence, the time that the output pulse is high (tH ) is obtained from (6.33) by setting
v6(tH ) = 2V +/3, namely,

tH = 0.693(RA + RB )C (6.34)

Similarly, the discharge time of the capacitor from an initial value of 2V +/3
towards 0 is described by

v6(t) =
2V +

3
e −(t − tH )/RBC 0 ≤ t ≤ tL (6.35)

Hence, the time that the output pulse is low (tL ), is obtained from (6.35) by setting
v6(tH + tL ) = V +/3. Thus, we obtain

tL = 0.693RBC (6.36)

The frequency of the square wave is

f =
1
T

=
1

tH + tL
=

1.44
(RA + 2RB )C

(6.37)

In general, the 555 timer can oscillate at frequencies up to 500 kHz. Some
versions of the 555 using CMOS technology can oscillate at frequencies up to
2 MHz. A monograph for (6.37) is shown in Figure 6.32(b).

The duty cycle D can be defined as the ratio of the time where the output is
high (tH ) to the total cycle time, or

D =
tH
T

=
RA + RB
RA + 2RB

(6.38)

Sometimes the duty cycle is defined as the ratio of tL to T.

Example 6.6

Design the square-wave oscillator in Figure 6.32 to oscillate at a frequency of
10 kHz with a duty cycle of 70%, and an output voltage of 5V.
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Solution
From (6.38), the duty cycle is given by

D =
tH
T

=
RA + RB
RA + 2RB

= 0.7 (6.39)

Hence, T = 1/f = 100 ms, tH = 70 ms, and tL = 30 ms.
From (6.37), selecting C = 0.01 mF, it follows that

RA + 2RB =
1.44
fC

=
1.44

(10 × 103)(0.01 × 10−6)
= 14.4 kV (6.40)

The simultaneous solution of (6.39) and (6.40) gives RA = 5.79 kV and RB =
4.34 kV.

Observe that (6.38) shows that a symmetrical square wave (i.e., D = 50%) can
be approximated by making RB much larger than RA . An oscillator that better
approximates a symmetrical square wave (D = 50%) is shown in Figure 6.33. In
this oscillator the capacitor charges through RA and the diode, and discharges
through RB . Hence, the period of oscillation is given approximately given by

T = 0.693(RA + RB )C

If RA = RB the duty cycle is 50%.

6.6 ICs Function Generators

Some monolithic ICs capable of producing sine, square, triangle, sawtooth, and
pulse waveforms are the Exar XR-2206, the Intersil ICL8038, the Maxim MAX038,
and the NTE864.

The block diagram of the XR-2206 is shown in Figure 6.34(a), and the pin
configuration in Figure 6.34(b). The XR-2206 consists of a VCO, an analog

Figure 6.33 A pulse oscillator with D = 50% when RA = RB .
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Figure 6.34 (a) Block diagram of the XR-2206 and (b) the pin configuration. (From:  Exar Corpora-
tion. Reproduced with the express authorization of Exar Corporation.)

multiplier with a sine wave shaper, a unity gain amplifier and a set of current
switches. The output frequency of the VCO is proportional to its input current.
The input current is controlled by the resistors connected between the timing pins
7 and 8 and ground. The FSKI input (pin 9) is the control pin for FSK signal
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modulation. The logic signal at pin 9 selects the timing resistor used. If pin 9 is
open or high (≥2V) the resistor at pin 7 is used, and if pin 9 is low (≤1V) the
resistor at pin 8 is used. The two timing resistors can produce two different output
frequencies.

A circuit for generating sine, triangular, and square waves is shown in Figure
6.35. The frequency of oscillation depends of the external timing capacitor C
connected across pins 5 and 6, and the timing resistor connected to pin 7, where
R = Ra + Rb . It is given by

fo =
1

RC
(6.41)

The frequency of oscillation can be varied from about 0.01 Hz to 1 MHz.
The XR-2206 can be operated with a split power supply by replacing the

ground connection with V −. Also, the harmonic content of the sinusoidal output
can be reduced by using RY to adjust the shape and RX to adjust the symmetry.
The resistor RX is used when minimum distortion is desired.

The dc level at the output pin 2 is approximately the same as the dc bias at
pin 3. In Figure 6.35, pin 3 is biased at VCC /2 to provide a dc level at pin 2 of
VCC /2.

Example 6.7

Design the circuit in Figure 6.35 to produce a sinusoidal, triangle, and square
waves in the 100-Hz to 100-kHz frequency range.

Figure 6.35 Circuit for sine, triangular, and square waves generation using the XR-2206.
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Solution
Letting C = 10 nF, it follows from (6.41) that the minimum and maximum values
of R are:

Rmin =
1

fo(max)C
=

1

(100 × 103)(10 × 10−9)
= 1 kV

and

Rmax =
1

fo(min)C
=

1

(100)(10 × 10−9)
= 1 MV

This range of resistances can be implemented in Figure 6.35 with Ra = 1 kV and
a variable potentiometer for Rb of 1 MV.

A circuit for pulse and sawtooth waveforms is shown in Figure 6.36. Observe
that the FSK control pin 9 is connected to the square-wave output. Hence, the
frequency shifts between two separate values as the square wave changes from low
to high and from high to low. The pulse width can be adjusted from 1% to 99%
by the timing resistors R1 and R2 . In fact, the frequency of oscillation is given by

fo =
2

(R1 + R2)C

and the duty cycle by

Figure 6.36 Circuit for pulse and sawtooth waves generation using the XR-2206.
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D =
tH
T

=
R1

R1 + R2

The block diagram of the ICL8038 is shown in Figure 6.37(a), and the pin
configuration in Figure 6.37(b). This IC consists of two comparators, a flip-flop,
buffer amplifiers, a sine converter, and two current sources. The current source I2
is shown as being twice the value of I1 . An external timing capacitor C is connected
to pin 10. This capacitor is charged and discharged by the current sources. The
source I2 switches on and off by the flip-flop, and I1 is always on.

The capacitor charges through I1 when I2 is off, and its voltage rises linearly
as a function of time. When the capacitor voltage reaches 2V +/3 the flip-flop closes
the switch and I2 connects to the capacitor. Hence, the capacitor discharges with
a net current of I2 − I1 , and its voltage decreases linearly with time. When the

Figure 6.37 (a) Block diagram of the ICL8038, (b) the pin configuration, and (c) circuit for generating sine,
triangular and square waves using the ICL8038. (From:  2001 Intersil Americas Inc. Reproduced
with permission.)
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capacitor voltage reaches V +/3, the flip-flop opens the switch, charging the capacitor
through I1 and the cycle is repeated.

A circuit diagram for the ICL8038 is shown in Figure 6.37(c), as well as the
output waveforms for a duty cycle of 50%. The resistor RA controls the current
I1 ; therefore, it controls the rising part of the output signal. The resistor RB together
with RA controls the falling portion of the output signal. In Figure 6.37(c) the
rising time of the triangular wave is given by

t1 =
CSV +

3 D
0.22

V +

RA

=
RAC
0.66

(6.42)

and the falling portion by

t2 =
CSV +

3 D
2(0.22)

V +

RB
− 0.22

V +

RA

=
RARBC

0.66(2RA − RB )
(6.43)

Equations (6.42) and (6.43) show that if RA = RB then I2 = 2I1 and t1 = t2 , or
the duty cycle is 50%. The frequency of oscillation in this case is given by

fo =
1

t1 + t2
=

0.33
RAC

(6.44)

If RA ≠ RB it follows that I2 ≠ 2I1 and the frequency oscillation is given by

fo =
1

RAC
0.66 S1 +

RB
2RA − RB

D
Best performances are obtained if the charging currents are between 10 mA to

1 mA. The device can be operated with dual supply voltages between ±5V to ±15V.
Also, a single supply voltage of 10V to 30V can be used. Pins 7 and 8 are used to
obtain an FM signal.

Example 6.8

Determine the frequency of oscillation in the circuit shown in Figure 6.37c.

Solution
Since RA = RB = 10 kV, it follows from (6.42) that

fo =
0.33

(10 × 103)(3,300 × 10−12)
= 10 kHz
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6.7 UJTs and PUTs

The operation of the unijunction transistor (UJT) and the programmable unijunc-
tion transistor (PUT) is quite similar. Because of the programmable feature of the
PUTs, they have replaced the UJTs. However, for a better understanding of the
PUTs, the construction and operation of the UJT is first discussed.

The UJT construction, symbols, and characteristics are shown in Figure 6.38.
The UJT has three terminals, called the emitter, base 1, and base 2 terminals. The
name of the device denotes that there is only one pn junction. That is, the junction
between the highly doped p-type emitter and the lightly doped bar of n-type
material. The arrow in the symbol points in the direction of the current flow. The
pn junction is closer to the base-2 contact than to the base-1 contact. In Figure
6.38(c), the vE − iE characteristics of the UJT are shown for a constant value of
the interbase voltage vBB , denoted by vBB = VBB .

The operation of the UJT can be explained using the equivalent circuit shown
in Figure 6.39. The bar of n-type silicon has a high resistivity, and its total resistance
is

rBB = rB1 + rB2

Figure 6.38 (a) UJT construction, (b) UJT symbol, and (c) UJT characteristics.

Figure 6.39 An equivalent circuit for the UJT.
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The emitter contact determines the voltage division between rB1 and rB2. The
resistor rB1 is shown as a variable resistor to indicate its variable nature. The
voltage across rB1 is given by hVBB , where

h =
rB1

rB1 + rB2

The parameter h is called the intrinsic standoff ratio. Typical values of h are
between 0.5 to 0.9, and values of rBB range from 5 to 10 kV. If vE is less than
hVBB , the pn junction is reversed biased, and the diode D that represents the
junction is open. Then, only a small reverse bias current IE0 flows in the emitter
[see Figure 6.38(c)]. The pn junction remains reverse biased (i.e., the diode is open)
until vE ≈ 0.7 + hVBB . At this value of vE the diode becomes forward biased.
When the diode starts to conduct, the device enters a negative-resistance region in
which the voltage vE decreases as iE increases. The explanation of this effect is
complex. A simple description of this effect is to observe that when the UJT begins
to conduct, the holes injected from the emitter into the region between the emitter
and base 1 behave like minority carriers in this region. Thus, the conductivity in
this region decreases because it depends on the total number of carriers. This
decrease in conductivity produces a decrease in rB1 as the current iE increases. A
variable resistor rB1 is used in Figure 6.39 to show the variable nature of the
conductivity between the emitter and base 1. The value of vE at which the negative-
resistance region begins is called the peak-point voltage Vp . At this point, vE is
given by

vE = Vp = 0.7 + hVBB (6.45)

The peak-point current Ip is the emitter current when vE = Vp .
The negative-resistance region extends until the valley point is reached, where

the voltage and current are defined by Vv and Iv, respectively. Beyond the valley
point the UJT behaves like a forward-biased diode and further increases in vE
produces an increase in iE . In this region, called the saturation region, rB1 is fairly
constant.

Figure 6.40 shows the effect of VBB on the characteristics of the UJT. The
voltage VBB affects the value of Vp since, according to (6.45), if VBB is increased
the voltage vE must also be increased in order for the UJT to enter the negative-
resistance region.

Figure 6.40 Effect of VBB on the UJT characteristics.
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The UJT can be used in a variety of applications, such as a voltage-controlled
switch, in pulse generator circuits, in timing circuits, etc. The UJT used in an
oscillator circuit is shown in Figure 6.41. This oscillator circuit is known as a UJT
relaxation oscillator. The operation of this circuit is as follows. When the switch
S is closed, the UJT is off and the voltage V1 charges the capacitor Cx with a
charging time constant of t c = RxCx . Thus, vx is given by

vx = V1 X1 − e −t/RxCx C

When vx reaches the value Vp , the UJT turns on and the capacitor discharges very
fast through R1 . The discharging time constant td is

td = (RL + rB1)Cx

The capacitor discharges until the voltage vx decreases to a value that reduces the
emitter current below Iv (i.e., vx ≈ Vv ). At this point, the UJT opens and the
capacitor begins to charge again.

When the UJT is off, since RL ! rB , then VBB ≈ V1 , and the peak-point voltage
is given by (6.45) with VBB ≈ V1 .

The oscillator waveforms are shown in Figure 6.41. The resulting pulses in
vRL

can be used for timing purposes.
At the time that the UJT turns on, the voltage across Rx is V1 − Vp . The resistor

Rx must be able to supply an emitter current greater or equal to Ip to guarantee
that the UJT will turn on. Hence, the maximum value of Rx is bounded by

Rx ,max <
V1 − Vp

Ip
(6.46)

Also, if Rx is very small, the emitter current will always exceed IV and the UJT
will not turn off. Thus, the minimum value of Rx is

Figure 6.41 A UJT relaxation oscillator.
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Rx ,min >
V1 − Vv

Iv
(6.47)

The UJT operates between Ip and IV with the proper selection of Rx .
From Figure 6.41 it is seen that the frequency of oscillation of the UJT relaxation

oscillator is given by

fo =
1

td + t c
≈

1
(RL + Rx )Cx

≈
1

RxCx
(6.48)

A more exact relation for the frequency of oscillation is

fo =
1

RxCx lnSV1 − Vv
V1 − Vp

D (6.49)

Example 6.9

Design the UJT relaxation oscillator shown in Figure 6.41 to oscillate at 5 kHz.
The supply voltage is V1 = 15V and the UJT has h = 0.65, rBB = 5 kV, Ip = 2 mA,
IV = 2 mA, and VV = 2.5V.

Solution
Selecting RL to be 27V, it follows that VBB ≈ V1 , and from (6.45) the value of Vp
is

Vp = 0.7 + hVBB = 0.7 + 0.65(15) = 10.45V

The value of Rx must satisfy (6.46) and (6.47). From (6.46),

Rx ,max <
V1 − Vp

Ip
=

15 − 10.45

2 × 10−6 = 2.27 MV

and from (6.47),

Rx ,min >
V1 − Vv

Iv
=

15 − 2.5

2 × 10−3 = 6.25 kV

Hence, it follows that 6.25 kV < Rx < 2.27 MV. The range of values for Rx is
fairly large since IV is much larger Ip .

From (6.48), letting Cx = 0.01 mF, the approximate value of Rx is

Rx ≈
1

foCx
=

1

5 × 103(0.01 × 10−6)
= 20 kV

which is between the allowable values for Rx .
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Using the exact relation in (6.49), the value of Rx

fo =
1

RxCx lnSV1 − Vv
V1 − Vp

D =
1

5 × 103(0.01 × 10−6) lnS 15 − 2.5
15 − 10.45D

= 19.8 kV

In practice, we can use a variable resistor for Rx to set the frequency exactly at
5 kHz.

Programmable Unijunction Transistors

The PUT is a four-layer device (i.e., a thyristor) whose characteristics are similar
to those of the UJT. The construction, symbol, and characteristics of PUTs are
shown in Figure 6.42.

Observe the location of the gate connection in Figure 6.42(a). Under normal
operation, the gate-to-cathode voltage is positive. If the anode is approximately
0.7V above the gate voltage, the anode-to-gate pn junction is forward biased and
the PUT switches on. In fact, the name ‘‘programmable’’ follows because the gate-
to-cathode bias determines the value of vAK that switches on the device. Once the
device turns on, the gate loses its control. The PUT can be turned off by lowering
iA below its value at the valley.

A comparison of similarly rated UJTs and PUTs shows that PUTs have a higher
interbase resistance than UJTs, and the peak and valley currents of PUTs are lower
than UJTs.

A typical PUT relaxation oscillator is shown in Figure 6.43. The gate voltage
is given by

VG = hV1

where

h =
R1

R1 + R2

Figure 6.42 (a) PUT construction, (b) PUT symbol, and (c) PUT characteristics.
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Figure 6.43 A PUT relaxation oscillator.

The peak-point voltage of vAK , at which the PUT switches on, is given by

Vp = 0.7 + VG = 0.7 + hV1

Although the previous equations are similar in form to those of the UJT, it is
observed that in the PUT the resistors R1 and R2 which determine h are external
resistors; while in the UJT the resistors rB1 and rB2 which determine h are internal
to the device. Hence, in the PUT the voltage Vp is programmable with R1 and R2 .

The operation of a PUT relaxation oscillator is similar to that of a UJT relax-
ation oscillator. Hence, the frequency of oscillation is given by (6.49). Also, the
resistor Rx is limited by Rx,min < Rx < Rx,max , where Rx,max and Rx,min are given
by (6.46) and (6.47), respectively.

Manufacturers usually list typical values of Ip and Iv for specific test conditions.
For example, for the 2N6027 PUT the manufacturer lists for a Thevenin’s voltage
at the gate of 10V, where

VTH =
V1R1

R1 + R2

and a Thevenin’s resistance of 10V, where

RTH =
R1R2

R1 + R2

a typical value of Ip of 4 mA and of Iv of 150 mA. Also, the measured valley
voltage is approximately Vv = 0.8V.

Example 6.10

Design the PUT relaxation oscillator in Figure 6.43 to oscillate at 100 Hz using
the 2N6027 PUT.
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Solution
Letting V1 = 20V and R1 = R2 = 20 kV produces a Thevenin’s voltage between
the gate and ground of 10V and RTH = 10 kV. Then, Vp = 10.7V, and with Ip of
4 mA and Iv of 150 mA we obtain from (6.46) and (6.47)

Rx,max <
V1 − Vp

Ip
=

20 − 10.7

4 × 10−6 = 2.33 MV

and

Rx,min >
V1 − Vv

Iv
=

20 − 0.8

150 × 10−3 = 128 kV

Hence, Rx is bounded by 128 kV < Rx < 2.33 MV.
From (6.49), letting C = 0.1 mF, the required value of Rx is

Rx ≈
1

foCx lnSV1 − Vv
V1 − Vp

D =
1

100(0.1 × 10−6) lnS 20 − 0.8
20 − 10.7D

= 144.3 kV

which is within the required bounds.
The value of RL can be selected between 20 and 80V.
A more linear sawtooth oscillator using a PUT is shown in Figure 6.44(a). The

PUT provides the voltage-controlled feature of the oscillator. Resistors Ra and Rb

Figure 6.44 (a) A voltage controlled sawtooth oscillator using a PUT and (b) the output waveform.
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set the value of VIN . The negative input voltage VIN gets integrated and produces
an increasing ramp signal at the output, as shown in Figure 6.44(b). When the
output voltage exceeds the gate voltage by approximately 0.7V, the PUT turns on,
and the capacitor discharges through the PUT [see Figure 6.44(b)]. The discharge
continues until the current in the PUT falls below its valley current value. At this
time the PUT turns off and the capacitor charges again, repeating the cycle.

During the charging of the capacitor, the output voltage is given by

vo (t) =
−1
RC E

t

0

vIN dt =
−VIN
RC

t + Vv

Hence, the time t = t1 in Figure 6.44(b) is given by

t1 =
RC (Vp − Vv )

−VIN
(6.50)

If the discharge time is neglected, the period and frequency can be approximated
by

f =
1
T

≈
−VIN

RC (Vp − Vv )

Example 6.11

Design the sawtooth oscillator in Figure 6.44(a) to oscillate at 600 Hz with an
amplitude of 5V.

Solution
Let the op amp supply voltages be V + = 12V and V − = −12V, and use a PUT with
Vv = 1V. For an amplitude of 5V and with Vv = 1V, it follows that Vp = 6V [see
Figure 6.44(b)]. Hence, VG = 5.3V, which can be obtained with Rc = 6.32 kV and
Rd = 5 kV.

Equation (6.50) gives the value of RC that produces the desired frequency of
oscillation for a give VIN . For example, with Ra = 50 kV and Rb = 10 kV the
value of VIN is −2V. Then, from (6.50) it follows that

RC =
2

600(6 − 1)
= 667 × 10−6

which can be satisfied with R = 100 kV and C = 6.67 nF.
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Conditions for a Stable Oscillation*

In this appendix the conditions for a stable oscillation are presented. Consider the
one-port network shown in Figure A.1. Over a narrowband range of frequencies
around the frequency of oscillation we assume that the input resistance RIN (A, v )
(where RIN (A, v ) < 0) and the input reactance XIN (A, v ) of the active device
are only a function of the amplitude of i(t). That is,

ZIN (A, v ) ≈ ZIN (A) = RIN (A) + jXIN (A)

where RIN (A) < 0.
The current i(t) can be written as

i(t) = A(t) cos[v t + u (t)] = ReFA(t)e j [v t + u (t)]G (A.1)

where the time-dependent amplitude A(t) and phase u (t) are slowly varying func-
tions of time. At steady state, A(t) and u (t) are constants and i(t) becomes a
sinusoidal signal with constant amplitude and phase.

Using (A.1) the voltage v(t) is given by

v(t) = ReFA(t)e j [v t + u (t)] ZIN (A)G (A.2)

= A(t)RIN (A) cos[v t + u (t)] − A(t)XIN (A) sin[v t + u (t)]

Figure A.1 One-port model of a negative-resistance oscillator.

* This appendix has been reproduced from Gonzalez, G., Microwave Transistor Amplifiers—Analysis and
Design, Second Edition, Upper Saddle River, NJ: Prentice-Hall, 1997. Reprinted by permission of Pearson
Education, Inc., NJ.
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The voltage v(t) can also be expressed in terms of ZL (v ). This is a little more
difficult to determine since i(t) is not an exact periodic function, and a question
arises as to the value of the frequency used to evaluate ZL (v ). This frequency
should be the instantaneous frequency of i(t), denoted by vi . Since A(t) and u (t)
are slowly varying functions of time, we can approximately express v(t) in terms
of ZL (vi ) as

v(t) ≈ −ReFA(t)e j [v t + u (t)]ZL (vi )G (A.3)

where vi is the instantaneous frequency of i(t).
To find the instantaneous frequency of i(t), we calculate

di(t)
dt

=
d
dt

HReFA(t)e j [v t + u (t)]GJ

= ReHF jSv +
du (t)

dt D +
1

A(t)
dA(t)

dt GA(t)e j [v t + u (t)]J (A.4)

= ReH jFv +
du (t)

dt
− j

1
A(t)

dA(t)
dt GA(t)e j [v t + u (t)]J

From (A.4) it follows that the instantaneous frequency vi is complex and given by

vi = v +
du (t)

dt
− j

1
A(t)

dA(t)
dt

The value of ZL (vi ) is given by

ZL (vi ) = ZLFv +
du (t)

dt
− j

1
A(t)

dA(t)
dt G (A.5)

= RLFv +
du (t)

dt
− j

1
A(t)

dA(t)
dt G + jXLFv +

du (t)
dt

− j
1

A(t)
dA(t)

dt G
Since A(t) and u (t) are slowly varying functions of time, we have

v @
du (t)

dt

and

v @
1

A(t)
dA(t)

dt

Hence, (A.5) can be approximated using the first two terms of its Taylor’s expansion
about v , namely,
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ZL (vi ) ≈ ZL (v ) +
dZL (v )

dv Fdu (t)
dt

− j
1

A(t)
dA(t)

dt G
= RL (v ) +

dRL (v )
dv Fdu (t)

dt
− j

1
A(t)

dA(t)
dt G

+ jXL (v ) + j
dXL (v )

dv Fdu (t)
dt

− j
1

A(t)
dA(t)

dt G (A.6)

= RL (v ) +
dRL (v )

dv
du (t)

dt
+

dXL (v )
dv

1
A(t)

dA(t)
dt

+ jFXL (v ) +
dXL (v )

dv
du (t)

dt
−

dRL (v )
dv

1
A(t)

dA(t)
dt G

Substituting (A.6) into (A.3) gives

v(t) = −FRL (v ) +
dRL (v )

dv
du (t)

dt
+

dXL (v )
dv

1
A(t)

dA(t)
dt GA(t) cos[vt + u (t)] (A.7)

+FXL (v ) +
dXL (v )

dv
du (t)

dt
−

dRL (v )
dv

1
A(t)

dA(t)
dt GA(t) sin[vt + u (t)]

Equating (A.2) to (A.7) produces the relation

RL (v ) +
dRL (v )

dv
du (t)

dt
+

dXL (v )
dv

1
A(t)

dA(t)
dt

= −RIN (A) (A.8)

and

XL (v ) +
dXL (v )

dv
du (t)

dt
−

dRL (v )
dv

1
A(t)

dA(t)
dt

= −XIN (A) (A.9)

These coupled equations can be solved for dA(t)/dt and du (t)/dt. Multiplying (A.8)
by dXL (v )/dv and (A.9) by −dRL (v )/dv , and adding the resulting equations gives

[RL (v ) + RIN (A)]
dXL (v )

dv
− [XL (v ) + XIN (A)]

dRL (v )
dv

+ |dZL (v )
dv |2 1

A(t)
dA(t)

dt
= 0

(A.10)

Similarly, multiplying (A.8) by dRL (v )/dv and (A.9) by dXL (v )/dv , and adding
the resulting equations gives

[RL (v ) + RIN (A)]
dRL (v )

dv
+ [XL (v ) + XIN (A)]

dXL (v )
dv

+ |dZL (v )
dv |2 du (t)

dt
= 0

(A.11)
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At steady state the oscillator voltage v(t) is such that dA(t)/dt = 0 and
du (t)/dt = 0. Hence, the steady-state solutions of (A.10) and (A.11), at which
A = Ao and v = vo , are obtained when

[RL (vo ) + RIN (Ao )]
dXL (v )

dv |
v = vo

+ [XL (vo ) + XIN (Ao )]
dRL (v )

dv |
v = vo

= 0

and

[RL (vo ) + RIN (Ao )]
dRL (v )

dv |
v = vo

+ [XL (vo ) + XIN (Ao )]
dXL (v )

dv |
v = vo

= 0

These equations show that at steady state the oscillator must satisfy the following
conditions:

RL (vo ) + RIN (Ao ) = 0 (A.12)

and

XL (vo ) + XIN (Ao ) = 0 (A.13)

or simply when

ZL (vo ) + ZIN (Ao ) = 0

or equivalently when

GIN (Ao )GL (vo ) = 1

The oscillations might not reach the steady-state conditions described by (A.12)
and (A.13) when a small variation in the amplitude produces an oscillation with
increasing amplitude. Let Ao be the steady-state value of A. A small variation DA
in the amplitude is given by A = Ao + DA. Then, a Taylor expansion of RIN (A)
and XIN (A) about Ao is

RIN (A) = RIN (Ao + DA) ≈ RIN (Ao ) +
∂RIN (A)

∂A | A = Ao

DA (A.14)

and

XIN (A) = XIN (Ao + DA) ≈ XIN (Ao ) +
∂XIN (A)

∂A | A = Ao

DA (A.15)

Substituting (A.12) and (A.13) into (A.14) and (A.15) gives
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RIN (A) = RIN (Ao + DA) ≈ −RL (vo ) +
∂RIN (A)

∂A | A = Ao

DA (A.16)

and

XIN (A) = XIN (Ao + DA) ≈ −XL (vo ) +
∂XIN (A)

∂A | A = Ao

DA (A.17)

Then, substituting (A.16) and (A.17) into (A.10) gives

DAF∂RIN (A)
∂A | A = Ao

dXL (v )
dv |

v = vo

−
∂XIN (A)

∂A | A = Ao

dRL (v )
dv |

v = vo
G

+ | dZL (v )
dv | 2 |

v = vo

1
Ao

d(DA)
dt

= 0

which can be conveniently written as

d(DA)
dt

+ b (DA) = 0 (A.18)

where

b =
Ao

| dZL (v )
dv | 2 |

v = vo

F∂RIN (A)
∂A | A = Ao

dXL (v )
dv |

v = vo

−
∂XIN (A)

∂A | A = Ao

dRL (v )
dv |

v = vo
G

The solution of (A.18) is of the form e −b t. This solution shows that the disturbance
DA decays with time when b > 0. Since Ao and

| dZL (v )
dv | 2 |

v = vo

are both positive quantities, it follows that a stable oscillation requires that

∂RIN (A)
∂A | A = Ao

dXL (v )
dv |

v = vo

−
∂XIN (A)

∂A | A = Ao

dRL (v )
dv |

v = vo

> 0 (A.19)

Equation (A.19) can be expressed in the form



406 Conditions for a Stable Oscillation

F∂ZIN
∂A G × F∂ZL

∂v G = F∂RIN
∂A GF∂XL

∂v G îz − F∂XIN
∂A GF∂RL

∂v G îz > 0

or

| ∂ZL
∂v | | ∂ZIN

∂A | sin g < 0 (A.20)

and therefore, it follows that

0 ≤ g ≤ 180°

In terms of reflection coefficients, (A.20) can be expressed in the form

| ∂GL
∂v | | ∂G

−1
IN

∂A | sin g > 0 (A.21)

Equation (A.21) has a simple interpretation, for a stable oscillation a plot of GL (v )
and G

−1
IN (A) in the Smith chart should intersect at one point where the angle going

counterclockwise from GL (v ) and G
−1
IN (A) is between 0° and 180°.



A P P E N D I X B

Analysis of the Series Feedback Circuit*

In this appendix a method that can be used to design the series-feedback network
is discussed. The method is based on the fact that the three-port S parameters of
the transistor can be used to calculate the two-port S parameters when a series-
feedback impedance is connected to port 3. The three- and two-port representations
of a transistor are shown in Figure B.1.

Letting [Ŝ] be the three-port scattering matrix and [S] be the two-port scattering
matrix, it follows that the relations between the Ŝ parameters and the S parameters
are [1]

Ŝ11 = S11 +
s11s12
4 − s

Ŝ12 = S12 +
s11s21
4 − s

Ŝ13 =
2s11
4 − s

Ŝ21 = S21 +
s22s12
4 − s

Ŝ22 = S22 +
s22s21
4 − s

Ŝ23 =
2s22
4 − s

(B.1)

Ŝ31 =
2s12
4 − s

Ŝ32 =
2s21
4 − s

Ŝ33 =
s

4 − s

Figure B.1 Two-port and three-port representations of a transistor. (From: [2]  1999 IEEE. Used
with permission.)

* This appendix has been adapted from Gonzalez and Sosa.
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where

s11 = 1 − S11 − S12

s12 = 1 − S11 − S21

s21 = 1 − S22 − S12

s22 = 1 − S22 − S21

s = S11 + S12 + S21 + S22

and

S11 = Ŝ11 −
Ŝ13 Ŝ31

1 + Ŝ33
S12 = Ŝ12 −

Ŝ13 Ŝ32

1 + Ŝ33
(B.2)

S21 = Ŝ21 −
Ŝ23 Ŝ31

1 + Ŝ33
S22 = Ŝ22 −

Ŝ23 Ŝ32

1 + Ŝ33

If the series-feedback impedance is used, as shown in Figure B.2, it follows
that a3 = Gf b3 and the resulting S parameters are those in (B.2) with 1 + Ŝ33
replaced by Ŝ33 − (1/Gf ). Hence, S11 and S22 in (B.2) can be expressed in the form

S11 =
D1Gf − Ŝ11

Ŝ33Gf − 1
(B.3)

and

S22 =
D2Gf − Ŝ22

Ŝ33Gf − 1
(B.4)

where

D1 = Ŝ11 Ŝ33 − Ŝ13 Ŝ31

D2 = Ŝ22 Ŝ33 − Ŝ23 Ŝ32

Figure B.2 Two-port network with series feedback. (From:  1999 IEEE. Used with permission.)
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Equations (B.3) and (B.4) are bilinear transformations and describe the mapping
of the Gf plane onto the S11 and S22 planes, respectively. The mapping of
|Gf | = 1 onto the S11 and S22 planes have centers and radii given by

C ′1 =
Ŝ11 − D1 Ŝ3*3

1 − | Ŝ33 |2
(B.5)

r ′1 =
| Ŝ13 Ŝ31 |

|1 − | Ŝ33 |2 |

and

C ′2 =
Ŝ22 − D2 Ŝ3*3

1 − | Ŝ33 |2
(B.6)

r ′2 =
| Ŝ23 Ŝ32 |

|1 − | Ŝ33 |2 |

for the S11 and S22 planes, respectively.
The maximum value of |S11 | occurs at a point where

S11(max) = X |C ′1 | + r ′1 C | C ′1 (B.7)

From (B.3) it follows that x1(max) is given by

zf = jx1(max) =
D1 + Ŝ11 − S11(max) (1 + Ŝ33)

D1 − Ŝ11 + S11(max) (1 − Ŝ33)
(B.8)

To properly orient the mapping, the zf = ∞ point maps onto the point

S11 =
D1 − Ŝ11

Ŝ33 − 1
(B.9)

and zf = 0 maps onto the point

S11 =
D1 + Ŝ11

Ŝ33 + 1
(B.10)

Similarly, we obtain

S22(max) = X |C ′2 | + r ′2 C | C ′2 (B.11)

and

zf = jx2(max) =
D2 + Ŝ22 − S22(max) (1 + Ŝ33)

D2 − Ŝ22 + S22(max) (1 − Ŝ33)
(B.12)
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Moreover, the zf = ∞ point maps onto

S22 =
D2 − Ŝ22

Ŝ33 − 1
(B.13)

and zf = 0 point maps onto

S22 =
D2 + Ŝ22

Ŝ33 + 1
(B.14)

The design procedure is as follows:

1. Convert the two-port S parameters of the transistor to its corresponding
three-port S parameters using (B.1).

2. Use (B.5) and (B.6) to calculate C ′1 , r ′1 , C ′2 , and r ′2 .
3. Use (B.7), (B.8), (B.11), and (B.12) to calculate S11(max) , x1(max) , S22(max) ,

and x2(max) .
4. Plot the mapping of the Gf plane onto the S11 and S22 planes.
5. Select the appropriate zf value.

Example B.1

The two-port S parameters of a transistor are

S11 = 0.386 | 142°

S12 = 0.147 | 81.3°

S21 = 1.380 | −45.4°

S22 = 1.110 | −28.5°

Using (B.1), the three-port Ŝ parameters are

Ŝ = 3
0.413 |78.5° 0.330 |61.67° 1.031 |−42.42°

0.919 |−61.71° 0.904 |−37.98° 1.374 |96.2°

0.629 |39.99° 0.296 |63.87° 0.774 |−59.97°
4

Then, from (B.5) to (B.12), we obtain

C ′1 = 1.65 |62.7° C ′2 = 1.07 |−84°

r ′1 = 1.62 r ′2 = 1.02

S11(max) = 3.27 |62.7° S22(max) = 2.08 |−84°

x1(max) = 1.71 x2(max) = 1.49
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The mappings of the feedback impedance onto the S11 and S22 planes are
shown in Figure B.3. In the S11 plane it is observed that using zf = j1.710
produces S11 = S11(max) = 3.27 |62.7° and the associated value of S22 is

S22 = 1.88 |−108.7° . To properly orient the mapping in Figure B.3(a), we use (B.9)

and (B.10) to obtain the values of S11 at points P2 and P3 , which corresponds to
the mapping of the points zf = ∞ and zf = 0, respectively. The mappings for
zf = 1 + jx and zf = r ± j1 are also shown. These circles help in the visualization
of the complete mapping. Similar details are provided for the mapping onto the
S22 plane in Figure B.3(b) where (B.13) and (B.14) were used to obtain values of
S22 at points P2′ and P3′.

Figure B.3 (a) Mapping of the Gf plane onto the S11 plane and (b) mapping of the Gf plane onto
the S22 plane. (From: [2]  1999 IEEE. Used with permission.)
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