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PREFACE

his book has evolved from lectures on engineering mathematics given regu-

larly over many years to students at all levels in the United States, England, and
elsewhere. It covers the more advanced aspects of engineering mathematics that
are common to all first engineering degrees, and it differs from texts with similar
names by the emphasis it places on certain topics, the systematic development
of the underlying theory before making applications, and the inclusion of new
material. Its special features are as follows.

— Prerequisites

he opening chapter, which reviews mathematical prerequisites, serves two

purposes. The first is to refresh ideas from previous courses and to provide
basic self-contained reference material. The second is to remove from the main
body of the text certain elementary material that by tradition is usually reviewed
when first used in the text, thereby allowing the development of more advanced
ideas to proceed without interruption.

M. Worked Examples

he numerous worked examples that follow the introduction of each new idea

serve in the earlier chapters to illustrate applications that require relatively little
background knowledge. The ability to formulate physical problems in mathemat-
ical terms is an essential part of all mathematics applications. Although this is not
a text on mathematical modeling, where more complicated physical applications
are considered, the essential background is first developed to the point at which
the physical nature of the problem becomes clear. Some examples, such as the
ones involving the determination of the forces acting in the struts of a framed
structure, the damping of vibrations caused by a generator and the vibrational
modes of clamped membranes, illustrate important mathematical ideas in the
context of practical applications. Other examples occur without specific applica-
tions and their purpose is to reinforce new mathematical ideas and techniques as
they arise.

A different type of example is the one that seeks to determine the height
of the tallest flagpole, where the height limitation is due to the phenomenon of
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buckling. Although the model used does not give an accurate answer, it provides a
typical example of how a mathematical model is constructed. It also illustrates the
reasoning used to select a physical solution from a scenario in which other purely
mathematical solutions are possible. In addition, the example demonstrates how
the choice of a unique physically meaningful solution from a set of mathematically
possible ones can sometimes depend on physical considerations that did not enter
into the formulation of the original problem.

B Exercise Sets

he need for engineering students to have a sound understanding of mathe-

matics is recognized by the systematic development of the underlying theory
and the provision of many carefully selected fully worked examples, coupled with
their reinforcement through the provision of large sets of exercises at the ends
of sections. These sets, to which answers to odd-numbered exercises are listed at
the end of the book, contain many routine exercises intended to provide practice
when dealing with the various special cases that can arise, and also more chal-
lenging exercises, each of which is starred, that extend the subject matter of the
text in different ways.

Although many of these exercises can be solved quickly by using standard
computer algebra packages, the author believes the fundamental mathematical
ideas involved are only properly understood once a significant number of exer-
cises have first been solved by hand. Computer algebra can then be used with
advantage to confirm the results, as is required in various exercise sets. Where
computer algebra is either required or can be used to advantage, the exercise
numbers are in blue. A comparison of computer-based solutions with those ob-
tained by hand not only confirms the correctness of hand calculations, but also
serves to illustrate how the method of solution often determines its form, and
that transforming one form of solution to another is sometimes difficult. It is
the author’s belief that only when fundamental ideas are fully understood is it
safe to make routine use of computer algebra, or to use a numerical package
to solve more complicated problems where the manipulation involved is pro-
hibitive, or where a numerical result may be the only form of solution that is
possible.

s New Material

ypical of some of the new material to be found in the book is the matrix

exponential and its application to the solution of linear systems of ordinary
differential equations, and the use of the Green'’s function. The introductory dis-
cussion of the development of discontinuous solutions of first order quasilinear
equations, which are essential in the study of supersonic gas flow and in vari-
ous other physical applications, is also new and is not to be found elsewhere.
The account of the Laplace transform contains more detail than usual. While
the Laplace transform is applied to standard engineering problems, including
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control theory, various nonstandard problems are also considered, such as the
solution of a boundary value problem for the equation that describes the bend-
ing of a beam and the derivation of the Laplace transform of a function from
its differential equation. The chapter on vector integral calculus first derives and
then applies two fundamental vector transport theorems that are not found in
similar texts, but which are of considerable importance in many branches of
engineering.

M Series Solutions of Differential Equations

nderstanding the derivation of series solutions of ordinary differential equa-

tions is often difficult for students. This is recognized by the provision of
detailed examples, followed by carefully chosen sets of exercises. The worked ex-
amples illustrate all of the special cases that can arise. The chapter then builds
on this by deriving the most important properties of Legendre polynomials and
Bessel functions, which are essential when solving partial differential equations
involving cylindrical and spherical polar coordinates.

— Complex Analysis

Because of its importance in so many different applications, the chapters on
complex analysis contain more topics than are found in similar texts. In partic-
ular, the inclusion of an account of the inversion integral for the Laplace transform
makes it possible to introduce transform methods for the solution of problems
involving ordinary and partial differential equations for which tables of transform
pairs are inadequate. To avoid unnecessary complication, and to restrict the mate-
rial to a reasonable length, some topics are not developed with full mathematical
rigor, though where this occurs the arguments used will suffice for all practical
purposes. If required, the account of complex analysis is sufficiently detailed for
it to serve as a basis for a single subject course.

M Conformal Mapping and Boundary
Value Problems

ufficient information is provided about conformal transformations for them to

be used to provide geometrical insight into the solution of some fundamen-
tal two-dimensional boundary value problems for the Laplace equation. Physi-
cal applications are made to steady-state temperature distributions, electrostatic
problems, and fluid mechanics. The conformal mapping chapter also provides
a quite different approach to the solution of certain two-dimensional boundary
value problems that in the subsequent chapter on partial differential equations
are solved by the very different method of separation of variables.
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sy Partial Differential Equations

An understanding of partial differential equations is essential in all branches of
engineering, but accounts in engineering mathematics texts often fall short of
what is required. This is because of their tendency to focus on the three standard
types of linear second order partial differential equations, and their solution by
means of separation of variables, to the virtual exclusion of first order equations
and the systems from which these fundamental linear second order equations are
derived. Often very little is said about the types of boundary and initial condi-
tions that are appropriate for the different types of partial differential equations.
Mention is seldom if ever made of the important part played by nonlinearity in
first order equations and the way it influences the properties of their solutions.
The account given here approaches these matters by starting with first order
linear and quasilinear equations, where the way initial and boundary conditions
and nonlinearity influence solutions is easily understood. The discussion of the
effects of nonlinearity is introduced at a comparatively early stage in the study
of partial differential equations because of its importance in subjects like fluid
mechanics and chemical engineering. The account of nonlinearity also includes
a brief discussion of shock wave solutions that are of fundamental importance in
both supersonic gas flow and elsewhere.

Linear and nonlinear wave propagation is examined in some detail because
of its considerable practical importance; in addition, the way integral transform
methods can be used to solve linear partial differential equations is described.
From a rigorous mathematical point of view, the solution of a partial differential
equation by the method of separation of variables only yields a formal solution,
which only becomes a rigorous solution once the completeness of any set of
eigenfunctions that arises has been established. To develop the subject in this
manner would take the text far beyond the level for which it is intended and
so the completeness of any set of eigenfunctions that occurs will always be as-
sumed. This assumption can be fully justified when applying separation of vari-
ables to the applications considered here and also in virtually all other practical
cases.

s Technology Projects

To encourage the use of technology and computer algebra and to broaden the
range of problems that can be considered, technology-based projects have
been added wherever appropriate; in addition, standard sets of exercises of a
theoretical nature have been included at the ends of sections. These projects are
not linked to a particular computer algebra package: Some projects illustrating
standard results are intended to make use of simple computer skills while others
provide insight into more advanced and physically important theoretical ques-
tions. Typical of the projects designed to introduce new ideas are those at the
end of the chapter on partial differential equations, which offer a brief introduc-
tion to the special nonlinear wave solutions called solitons.
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— Numerical Mathematics

Ithough an understanding of basic numerical mathematics is essential for all

engineering students, in a book such as this it is impossible to provide a sys-
tematic account of this important discipline. The aim of this chapter is to provide
a general idea of how to approach and deal with some of the most important
and frequently encountered numerical operations, using only basic numerical
techniques, and thereafter to encourage the use of standard numerical packages.
The routines available in numerical packages are sophisticated, highly optimized
and efficient, but the general ideas that are involved are easily understood once
the material in the chapter has been assimilated. The accounts that are given
here purposely avoid going into great detail as this can be found in the quoted
references. However, the chapter does indicate when it is best to use certain types
of routine and those circumstances where routines might be inappropriate.

The details of references to literature contained in square brackets at the ends
of sections are listed at the back of the book with suggestions for additional read-
ing. An instructor’s Solutions Manual that gives outline solutions for the techno-
logy projects is also available.
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CHAPTER

Review of Prerequisites

Every account of advanced engineering mathematics must rely on earlier mathematics
courses to provide the necessary background. The essentials are a first course in calculus
and some knowledge of elementary algebraic concepts and techniques. The purpose of
the present chapter is to review the most important of these ideas that have already been
encountered, and to provide for convenient reference results and techniques that can be
consulted later, thereby avoiding the need to interrupt the development of subsequent
chapters by the inclusion of review material prior to its use.

Some basic mathematical conventions are reviewed in Section 1.1, together with the
method of proof by mathematical induction that will be required in later chapters. The
essential algebraic operations involving complex numbers are summarized in Section 1.2,
the complex plane is introduced in Section 1.3, the modulus and argument representa-
tion of complex numbers is reviewed in Section 1.4, and roots of complex numbers are
considered in Section 1.5. Some of this material is required throughout the book, though
its main use will be in Part 5 when developing the theory of analytic functions.

The use of partial fractions is reviewed in Section 1.6 because of the part they play
in Chapter 7 in developing the Laplace transform. As the most basic properties of deter-
minants are often required, the expansion of determinants is summarized in Section 1.7,
though a somewhat fuller account of determinants is to be found later in Section 3.3 of
Chapter 3.

The related concepts of limit, continuity, and differentiability of functions of one or
more independent variables are fundamental to the calculus, and to the use that will
be made of them throughout the book, so these ideas are reviewed in Sections 1.8 and
1.9. Tangent line and tangent plane approximations are illustrated in Section 1.10, and
improper integrals that play an essential role in the Laplace and Fourier transforms, and
also in complex analysis, are discussed in Section 1.11.

The importance of Taylor series expansions of functions involving one or more in-
dependent variables is recognized by their inclusion in Section 1.12. A brief mention is
also made of the two most frequently used tests for the convergence of series, and of the
differentiation and integration of power series that is used in Chapter 8 when considering
series solutions of linear ordinary differential equations. These topics are considered again
in Part 5 when the theory of analytic functions is developed.

The solution of many problems involving partial differential equations can be simplified
by a convenient choice of coordinate system, so Section 1.13 reviews the theorem for the
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change of variable in partial differentiation, and describes the cylindrical polar and spherical
polar coordinate systems that are the two that occur most frequently in practical problems.

Because of its fundamental importance, the implicit function theorem is stated without
proof in Section 1.14, though it is not usually mentioned in first calculus courses.

1.1 Real Numbers, Mathematical Induction,
and Mathematical Conventions

absolute value

Numbers are fundamental to all mathematics, and real numbers are a subset
of complex numbers. A real number can be classified as being an integer, a
rational number, or an irrational number. From the set of positive and negative
integers, and zero, the set of positive integers 1,2, 3, ... is called the set of natural
numbers. The rational numbers are those that can be expressed in the form m/n,
where m and n are integers with n # 0. Irrational numbers such as 7, +/2, and sin 2
are numbers that cannot be expressed in rational form, so, for example, for no
integers m and n is it true that /2 is equal to m/n. Practical calculations can only
be performed using rational numbers, so all irrational numbers that arise must be
approximated arbitrarily closely by rational numbers.

Collectively, the sets of integers and rational and irrational numbers form what
is called the set of all real numbers, and this set is denoted by R. When it is necessary
to indicate that an arbitrary number a is a real number a shorthand notation is
adopted involving the symbol €, and we will write a € R. The symbol € is to be read
“belongs to” or, more formally, as “is an element of the set.” If a is not a member
of set R, the symbol € is negated by writing ¢, and we will write a ¢ R where, of
course, the symbol ¢ is to be read as “does not belong to,” or “is not an element
of the set.” As real numbers can be identified in a unique manner with points on a
line, the set of all real numbers R is often called the real line. The set of all complex
numbers C to which R belongs will be introduced later.

One of the most important properties of real numbers that distinguishes them
from other complex numbers is that they can be arranged in numerical order. This
fundamental property is expressed by saying that the real numbers possess the order
property. This simply means that if x, y € R, with x # y, then

eitherx <y or x>y,

where the symbol < is to be read “is less than” and the symbol > is to be read
“is greater than.” When the foregoing results are expressed differently, though
equivalently, if x, y € R, with x # y, then

eitherx —y <0 or x—y>0.

It is the order property that enables the graph of a real function f of a real
variable x to be constructed. This follows because once length scales have been
chosen for the axes together with a common origin, a real number can be made
to correspond to a unique point on an axis. The graph of f follows by plotting all
possible points (x, f(x)) in the plane, with x measured along one axis and f(x)
along the other axis.

The absolute value |x| of a real number x is defined by the formula

x| = x ifx>0
T=1-x ifx<o.
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This form of definition is in reality a concise way of expressing two separate state-
ments. One statement is obtained by reading |x| with the top condition on the right
and the other by reading it with the bottom condition on the right. The absolute
value of a real number provides a measure of its magnitude without regard to its
sign so, for example, |3| = 3, |—7.41| = 7.41, and |0] = 0.

Sometimes the form of a general mathematical result that only depends on an
arbitrary natural number z can be found by experiment or by conjecture, and then
the problem that remains is how to prove that the result is either true or false for
all n. A typical example is the proposition that the product

1—=1/4)1=1/9)(1 —1/16)...[1 = 1/(n+1)?]
=n+2)/2n+2), forn=1,2,....

This assertion is easily checked for any specific positive integer n, but this does not
amount to a proof that the result is true for all natural numbers.

A powerful method by which such propositions can often be shown to be either
true or false involves using a form of argument called mathematical induction. This
type of proof depends for its success on the order property of numbers and the fact
that if n is a natural number, then so also is 7 + 1. The steps involved in an inductive
proof can be summarized as follows.

Proof by Mathematical Induction
Let P(n) be a proposition depending on a positive integer n.

STEP 1 Show, if possible, that P(n) is true for some positive integer ry.

STEP 2 Show, if possible, that if P(n) is true for an arbitrary integer n = k > ny,
then the proposition P(k + 1) follows from proposition P(k).

STEP 3  If Step 2 is true, the fact that P(ny) is true implies that P(ng + 1) is true,
and then that P(ng + 2) is true, and hence that P(n) is true for all n > ny.

STEP 4  If no number n = ngy can be found for which Step 1 is true, or if in Step 2
it can be shown that P(k) does not imply P(k + 1), the proposition P(n)
is false.

The example that follows is typical of the situation where an inductive proof
is used. It arises when determining the nth term in the Maclaurin series for sin ax
that involves finding the nth derivative of sin ax. A result such as this may be found
intuitively by inspection of the first few derivatives, though this does not amount to
a formal proof that the result is true for all natural numbers 7.

Prove by mathematical induction that
d"/dx"[sinax] = a"sin(ax + nn/2), forn=1,2,....
Solution The proposition P(n) is that

d"/dx"[sinax] = a" sin(ax + nrw/2), forn=1,2,....

STEP 1 Differentiation gives

d/dx[sinax] = a cosax,
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binomial coefficient

but setting n = 1 in P(n) leads to the result
d/dx[sinax] = asin(ax + 7/2) = a cosax,
showing that proposition P(n) is true for n = 1 (so in this case ny = 1).
STEP 2  Assuming P(k) to be true for k > 1, differentiation gives
d/dx{d*/dx*[sin ax]} = d/dx[a" sin(ax + kr/2)],
SO
d*jdx*  [sin ax] = a**! cos(ax + kr /2).
However, replacing k by k + 1 in P(k) gives
A" dx* [sinax] = "' sin[ax + (k+ 1)7/2]
= a"sin[(ax + kr/2) + 7 /2]
= a**! cos(ax + kn/2),
showing, as required, that proposition P(k) implies proposition P(k + 1), so Step 2
is true.

STEP3  As P(n)istrue for n = 1, and P(k) implies P(k + 1), it follows that the
result is true for n = 1, 2, ... and the proof is complete. ]

The binomial theorem finds applications throughout mathematics at all levels,
so we quote it first when the exponent n is a positive integer, and then in its more
general form when the exponent « involved is any real number.

Binomial theorem when n is a positive integer

If a, b are real numbers and 7 is a positive integer, then

-1
(@a+b)" =a"+na"'b+ Mu"’zbz

2!
n nn—1)(n-2)

o an—3b3+'_.+bn,

or more concisely in terms of the binomial coefficient

()= wZom

we have

@+by =3 (’:)a"-'b’,

r=0

where m! is the factorial function definedasm! =1-2-3..-mwithm > 0 an
integer, and 0! is defined as 0! = 1. It follows at once that

(6)-C)-
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The binomial theorem involving the expression (a + b)¥, where a and b are real
numbers with |b/a| < 1 and « is an arbitrary real number takes the following form.

General form of the binomial theorem when « is an arbitrary
real number

If a and b are real numbers such that |b/a| < 1 and « is an arbitrary real
number, then

wror =i (18] = (142 () 12020 ()
PR ()

The series on the right only terminates after a finite number of terms if « is a
positive integer, in which case the result reduces to the one just given. If « is
a negative integer, or a nonintegral real number, the expression on the right
becomes an infinite series that diverges if |b/a| > 1.

Expand (3 + x)~!/? by the binomial theorem, stating for what values of x the series
converges.

Solution Setting b/a = %x in the general form of the binomial theorem gives
1\ " 1 11 5
3 —1/223—1/2 1 - = —(1=-Z2 -2 - .3 o)
(3+x) +3x 7 Xt T amt T

The series only converges if |%x| < 1, and so it is convergent provided |x| < 3. ™|

Some standard mathematical conventions
Use of combinations of the & and = signs

The occurrence of two or more of the symbols &+ and F in an expression is to be
taken to imply two separate results, the first obtained by taking the upper signs and
the second by taking the lower signs. Thus, the expression a + bsin F ccosf is an
abbreviation for the two separate expressions

a+bsing —ccos® and a — bsinf + ccoso.

Multi-statements

When a function is defined sectionally on n different intervals of the real line, instead
of formulating n separate definitions these are usually simplified by being combined
into what can be considered to be a single multi-statement. The following example
is typical of a multi-statement:

sinx, x <
flx) = 0, 7 <x<3m/2
-1, x>3n/2.
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polynomials

suffix notation for
partial derivatives

It is, in fact, three statements. The first is obtained by reading f(x) in conjunction
with the top line on the right, the second by reading it in conjunction with the second
line on the right, and the third by reading it in conjunction with the third line on
the right. An example of a multi-statement has already been encountered in the
definition of the absolute value |x| of a number x. Frequent use of multi-statements
will be made in Chapter 9 on Fourier series, and elsewhere.

Polynomials

A polynomial is an expression of the form P(x) = apx" + a1 x" '+ - - - + a,_1x + a,.
The integer n is called the degree of the polynomial, and the numbers g; are called
its coefficients. The fundamental theorem of algebra that is proved in Chapter 14
asserts that P(x) = 0 has n roots that may be either real or complex, though some
of them may be repeated. (ap # 0 is assumed.)

Notation for ordinary and partial derivatives

If f(x)is an n times differentiable function then f?(x) will, on occasion, be used
to signify d” f/dx", so that

dn
90 =21

If f(x, y)is a suitably differentiable function of x and y, a concise notation used to
signify partial differentiation involves using suffixes, so that

af d (of 2 f 2 f
a’fyxz(fy)x=a<5>_ fyy:—”-s

fe= © dydx’ ay?’

with similar results when f is a function of more than two independent variables.

Inverse trigonometric functions

The periodicity of the real variable trigonometric sine, cosine, and tangent functions
means that the corresponding general inverse trigonometric functions are many val-
ued. So, for example, if y = sin x and we ask for what values of x is y = 1/+/2, we
find this is true for x = 7 /4 + 2nm and x = 37 /4 £ 2nw forn =0, 1,2, .... To over-
come this ambiguity, we introduce the single valued inverses, denoted respectively
by x = Arcsin y, x = Arccos y, and x = Arctan y by restricting the domain and
range of the sine, cosine, and tangent functions to one where they are either strictly
increasing or strictly decreasing functions, because then one value of x corresponds
to one value of y and, conversely, one value of y corresponds to one value of x.

In the case of the function y = sin x, by restricting the argument x to the inter-
val —m/2 < x < 7/2 the function becomes a strictly increasing function of x. The
corresponding single valued inverse function is denoted by x = Arcsin y, where y is
anumber in the domain of definition [—1, 1] of the Arcsine function and x is a num-
berin its range [—m /2, 7 /2]. Similarly, when considering the function y = cos x, the
argumentis restricted to 0 < x < 7 to make cos x a strictly decreasing function of x.
The corresponding single valued inverse function is denoted by x = Arccos y, where
y is a number in the domain of definition [—1, 1] of the Arccosine function and x is
anumber in its range [0, 7 ]. Finally, in the case of the function y = tan x, restricting
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the argument to the interval —7 /2 < x < /2 makes the tangent function a strictly
increasing function of x. The corresponding single valued inverse function is de-
noted by x = Arctan y where y is a number in the domain of definition (—oo, co)
of the Arctangent function and x is a number in its range (—7x /2, 7/2).

As the inverse trigonometric functions are important in their own right, the
variables x and y in the preceding definitions are interchanged to allow considera-
tion of the inverse functions y = Arcsin x, y = Arccos x, and y = Arctan x, so that
now x is the independent variable and y is the dependent variable.

With this interchange of variables the expression y = arcsin x will be used to
refer to any single valued inverse function with the same domain of definition as
Arcsin x, but with a different range. Similar definitions apply to the functions y =
arccos x and y = arctan x.

Double summations

An expression involving a double summation like

o0 o0
E E Ay SINMX SIN ALY,

m=1 n=1
means sum the terms a,,, sin mx sin ny over all possible values of m and #, so that

o0 o0
E E Ay SINMX SIN MY = @11 Sinx sin y + ajp sinx sin2y
m=1 n=1

+ap; sin2xsin y + axp sin2xsin2y + - - -

A more concise notation also in use involves writing the double summation as

o0
E Ay SIN X SIN NX.
m=1,n=1

The signum function

The signum function, usually written sign(x), and sometimes sgn(x), is defined as

. )= 1 ifx>0
Sign(¥) =1 1 ity <0,
We have, for example, sign(cosx) =1 for 0 < x < 7/2, and sign(cosx) = —1 for

/2 < x < m or, equivalently,

1, 0<x<in

; _ 2
sign(cos x) =
gn( ) {—1, %n<x<n.

Products

Let {ux};_, be a sequence of numbers or functions uy, uy, .. .; then the product of
the n members of this sequence is denoted by [];_, ux, so that

n
l_[uk = Uy ---Uy.
k=1

When the sequence is infinite,

n 00
lim 1_[ Up = 1_[ Uj
n— 00

k=1 k=1
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the functions In

is called an infinite product involving the sequence {u}. Typical examples of infinite

products are
s 1 1 sin x
H<1_ﬁ)_§ and 1_[( k2n2>_ . .

k=2

More background information and examples can be found in the appropriate sec-
tions in any of references [1.1], [1.2], and [1.5].

Logarithmic functions

The notation In x is used to denote the natural logarithm of a real number x, that

and Log is, the logarithm of x to the base e, and in some books this is written log, x. In this
book logarithms to the base 10 are not used, and when working with functions of a
complex variable the notation Log z, with z = re’® means Log z = Inr + if.
1. Prove that if a>0,b>0, then a/vb-+b/Ja=> 7. Use the binomial theorem to expand (3 + 2x)*.
Va++/b. 8. Use the binomial theorem and multiplication to expand
Prove Exercises 2 through 6 by mathematical induction. (1—x*)(2+3x)°.
2. k—o(“ +kd) = (n/2)[2a + (n — 1)d] In Exercises 9 through 12 find the first four terms of the

(sum of an arithmetic series).

3Nk ==m/A=r) (r#1)

(sum of a geometric series). 9. 3+2x)2

binomial expansion of the function and state conditions for
the convergence of the series.

4. 30 K =(1/6)n(n+1)(2n+1) (sum of squares). 10. (2 — x2)13,
5. d"/dx"[cosax] = a" cos(ax + nw/2), with n a natural 11 (44 2x2) 12,

number.

12. (1 - 3x2)%4,

6. d"/dx"[In(1 4+ x)] = (=1)"*Y(n — 1)!/(1 + x)", with n a

natural number.

% Complex Numbers

discriminant of
a quadratic

Mathematical operations can lead to numbers that do not belong to the real number
system R introduced in Section 1.1. In the simplest case this occurs when finding
the roots of the quadratic equation

ax>+bx+c=0 witha,b,c e R,a #0

by means of the quadratic formula

_—b+ Vb2 —4dac
- 2a ’

The discriminant of the equation is b> — 4ac, and if b*> — 4ac < 0 the formula
involves the square root of a negative real number; so, if the formula is to have
meaning, numbers must be allowed that lie outside the real number system.

The inadequacy of the real number system when considering different math-
ematical operations can be illustrated in other ways by asking, for example, how
to find the three roots that are expected of a third degree algebraic equation as
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simple as x* — 1 = 0, where only the real root 1 can be found using y = x*> — 1, or
by seeking to give meaning to In(—1), both of which questions will arise later.

Difficulties such as these can all be overcome if the real number system is
extended by introducing the imaginary unit i defined as

so expressions like /(—k%?) where k a positive real number may be written
V(=1){/(k*) = +ik. Notice that as the real number k only scales the imaginary
unit 7, it is immaterial whether the result is written as ik or as ki.

The extension to the real number system that is required to resolve problems
of the type just illustrated involves the introduction of complex numbers, denoted
collectively by C, in which the general complex number, usually denoted by z, has
the form

z=oa+iB, with o, real numbers.

The real number « is called the real part of the complex number z, and the real
number f is called its imaginary part. When these need to be identified separately,
we write

Re{z} =a and Im{z} =8,

soif z =3 —7i, Re{z} =3 and Im{z} = —7.

If Im{z} = B =0 the complex number z reduces to a real number, and if
Re{z} =« =0 it becomes a purely imaginary number, so, for example, z = 5i is
a purely imaginary number. When a complex number z is considered as a variable
it is usual to write it as

z=x+1y,
where x and y are now real variables. If it is necessary to indicate that z is a general
complex number we write z € C.
When solving the quadratic equation az> + bz + ¢ = 0 with a, b, and ¢ real

numbers and a discriminant b*> — 4ac < 0, by setting 4ac — b> = k? in the quadratic
formula, with k£ > 0, the two roots z; and z, are given by the complex numbers

71 = —(b/2a) +i(k/2a) and z, = —(b/2a) —i(k/2a).

Algebraic rules for complex numbers
Let the complex numbers z; and z, be defined as
z71=a-+ib and z=c+id,

with a, b, ¢, and d arbitrary real numbers. Then the following rules govern the
arithmetic manipulation of complex numbers.

Equality of complex numbers

The complex numbers z; and z, are equal, written z; = 2z, if, and only if,
Re{z1} = Re{z} and Im{z;} = Im{z}. Soa +ib = ¢ + id if, and only if,
a=c and b=d.
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m (@) 3—9i =3+ bi if, and only if, b = —9.
(b) Ifu=-2+5,v=3+5i,w=a+ 5i, then
u = w if, and only if, a = —2 but u # v, and
v =w if, and only if, a = 3. [ |

Zero complex number

The zero complex number, also called the null complex number, is the number
0 + 0i that, for simplicity, is usually written as an ordinary zero 0.

PEOTTEY  Ifa+ib=0,thena =0and b =0. n

Addition and subtraction of complex numbers

The addition (sum) and subtraction (difference) of the complex numbers z;
and 2, is defined as

21 + 22 = Re{z1} + Re{z} + i[Im{z;} + Im{z,}]
and

71 — 22 = Re{z1} — Re{z} + i[Im{z;} — Im{z,}].

So,if z; =a +iband z = ¢ + id, then
2+ =(@+ib)+ (c+id)
=(a+c)+i(b+4d),
and
21— =(a+ib) —(c+id)
=(a—c)+i(b—4d).

PETTEE 1tz =3 +7i and 2, = 3 + 2i, then the sum
2+2=08+3)+7+2)i =6+9i,
and the difference

71—22=0B-3)+(7-2)i =5i. [ |

Multiplication of complex numbers

The multiplication (product) of the two complex numbers z; = a +ib and
22 = ¢ +id is defined by the rule

2122 = (@ +ib)(c + id) = (ac — bd) + i(ad + bc).

An immediate consequence of this definition is that if k is a real number, then
kz1 = k(a + ib) = ka + ikb. This operation involving multiplication of a complex
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number by a real number is called scaling a complex number. Thus, if z; =3 + 7i
and zp =3 4 2i, then 27y — 3z, = (6 + 14i) — (9 + 6i) = =3 + &i.

In particular, if z=a +ib, then —z = (—1)z = —a — ib. This is as would be
expected, because it leads to the result z — z = 0.

In practice, instead of using this formal definition of multiplication, it is more
convenient to perform multiplication of complex numbers by multiplying the brack-
eted quantities in the usual algebraic manner, replacing every producti? by —1, and
then combining separately the real and imaginary terms to arrive at the required
product.

(@) 5i(—4 +3i) = —15 — 20i.
(b) 3—=2i)(=1+4i)(1+i)=(-3+12i +2i —8*)(1+1i)
=[(=3+8)+ (12+2)i](1 +i) = (5 + 14i)(1 + i)
=5+ 140 +5i + 14i2 = (5 — 14) + (54 14)i = —9 + 19i. n

Complex conjugate

If z = a + ib, then the complex conjugate of z, usually denoted by 7 and read
“z bar,” is defined as 7 = a — ib. It follows directly that

(Tz):z and 7z = a?® + b2,

In words, the complex conjugate operation has the property that taking the complex
conjugate of a complex conjugate returns the original complex number, whereas
the product of a complex number and its complex conjugate always yields a real
number.

If z = a + ib, then adding and subtracting z and 7 gives the useful results

z+7Z=2Re{z} =2a and z-—7Z=2iIm{z}=2ib.

These can be written in the equivalent form

1 _ 1 ~
Re{z} =a = 5(“— Z) and Im{z}=b= Z(Z_ 7).

Quotient (division) of complex numbers

Let z;1 =a +ib and z, = ¢ 4+ id. Then the quotient z; /7, is defined as

21 _ (ac+bd) +i(bc — ad)
I 2+ d? ’

2 # 0.
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In practice, division of complex numbers is not carried out using this definition.
Instead, the quotient is written in the form

2 U2
2 2%
where the denominator is now seen to be a real number. The quotient is then found

by multiplying out and simplifying the numerator in the usual manner and dividing
the real and imaginary parts of the numerator by the real number z,7,.

PETTITEEA Find z1/2 given that z; = (3 +2i) and 2, = 1 + 3i.

Solution
3—|—2i_(3+2i)(1—3i)_3—9i+2i—6i2_2_£ -
143 (1+3i)(1 —3i) o 10 10 10°

Modulus of a complex number

The modulus of the complex number z = a + ib denoted by |z|, and also called
its magnitude, is defined as

1z] = (a® + B*)V? = (z2)V/2.

It follows directly from the definitions of the modulus and division that
2l = 12l = (a® + b)),
and

u/z2 = u/lnl

BT lfz=3+7ithen |z = 3+7i| = 3*+7)2 = V58. u

It is seen that the foregoing rules for the arithmetic manipulation of complex
numbers reduce to the ordinary arithmetic rules for the algebraic manipulation of
real numbers when all the complex numbers involved are real numbers. Complex
numbers are the most general numbers that need to be used in mathematics, and
they contain the real numbers as a special case. There is, however, a fundamental
difference between real and complex numbers to which attention will be drawn
after their common properties have been listed.

Properties shared by real and complex numbers

Let z, u, and w be arbitrary real or complex numbers. Then the following
properties are true:

1. z4+u=u+z  This means that the order in which complex num-
bers are added does not affect their sum.

2. zu=uz  This means that the order in which complex numbers are
multiplied does not affect their product.
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3. (+twt+w=z+(u+w). This means that the order in which
brackets are inserted into a sum of finitely many complex numbers does
not affect the sum.

4.  z(uw) = (zu)w.  This means that the terms in a product of complex
numbers may be grouped and multiplied in any order without affecting
the resulting product.

5. zlu+w)=zu+ zw. Thismeans thatthe product of zand a sum of
complex numbers equals the sum of the products of z and the individual
complex numbers involved in the sum.

6. z+0=0+z=1z  This result means that the addition of zero to
any complex number leaves it unchanged.

7. z-1=1.z=2z  Thisresult means that multiplication of any com-
plex number by unity leaves the complex number unchanged.

Despite the properties common to real and complex numbers just listed, there
remains a fundamental difference because, unlike real numbers, complex numbers
have no natural order. So if z; and z, are any complex numbers, a statement such
as 71 < zp has no meaning.

EXERCISES 1.2

Find the roots of the equations in Exercises 1 through 6. 9. Given u=4-2i,v=3—4i,w=-5i and a-+ib=

1. 2+z+1=0.

(u+iv)w, find a and b.

2 —
4. 377 +2z+1=0. 10. Givenu = —4 +3i,v =2 + 4, anda + ib = w2, finda

2. 222 +5z2+4=0. 5.327+3z+1=0. and b.
3. Z2+42+6=0. 6. 22 =2z +3 =0. 11. Givenu =2 +3i,v=1—2i,w = —3 — 6i, find |u + v,
7. Given that z =1 is a root, find the other two roots of u+2v,u—=3v+2w,uv, uvw, [u/vl,v/w.

22 -2 +3z-4=0.

12. Given u=1+3i,v=2—i,w = -3+4i, find uv/w,

8. Given that z = —2 is a root, find the other two roots of uw/v and |v|w/u.

422 +1122+10z+8=0.

1:3... The Complex Plane
I

cartesian
representation of z

Complex numbers can be represented geometrically either as points, or as directed
line segments (vectors), in the complex plane. The complex plane is also called the
z-plane because of the representation of complex numbers in the form z = x 4 iy.
Both of these representations are accomplished by using rectangular cartesian coor-
dinates and plotting the complex number z = a + ib as the point (a, b) in the plane,
so the x-coordinate of zis a = Re{z} and its y-coordinate is b = Im{z}. Because of
this geometrical representation, a complex number written in the form z =a +ib
is said to be expressed in cartesian form. To acknowledge the Swiss amateur math-
ematician Jean-Robert Argand, who introduced the concept of the complex plane
in 1806, and who by profession was a bookkeeper, this representation is also called
the Argand diagram.
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triangle and
parallelogram
laws

Imaginary Imaginary
axis axis

4~ 4+~

3¢ 2=3i 3L z=3i

2k 0ez7=2+72i 2+ z2=2+2i

1+ 1k

z=4 z=4
! ! ! L ! I I I I !

0 1 2 3 4 5 Real axis 0 1 2 3 4 5 Real axis
—-1F 1+
2k 0z=2-2i 2+ z=2-2

(a) (®)

FIGURE 1.1 (a) Complex numbers as points. (b) Complex numbers as vectors.

For obvious reasons, the x-axis is called the real axis and the y-axis the imaginary
axis. Purely real numbers are represented by points on the real axis and purely
imaginary ones by points on the imaginary axis. Examples of the representation
of typical points in the complex plane are given in Fig. 1.1a, where the numbers
4,3i,2 + 2i, and 2 — 2i are plotted as points. These same complex numbers are
shown again in Fig. 1.1b as directed line segments drawn from the origin (vectors).
The arrow shows the sense along the line, that is, the direction from the origin to the
tip of the vector representing the complex number. It can be seen from both figures
that, when represented in the complex plane, a complex number and its complex
conjugate (in this case 2 + 2i and 2 — 2i) lie symmetrically above and below the
real axis. Another way of expressing this result is by saying that a complex number
and its complex conjugate appear as reflections of each other in the real axis, which
acts like a mirror.

The addition and subtraction of two complex numbers have convenient geo-
metrical interpretations that follow from the definitions given in Section 1.2. When
complex numbers are added, their respective real and imaginary parts are added,
whereas when they are subtracted, their respective real and imaginary parts are
subtracted. This leads at once to the triangle law for addition illustrated in Fig. 1.2a,
in which the directed line segment (vector) representing z, is translated without
rotation or change of scale, to bring its base (the end opposite to the arrow) into co-
incidence with the tip of the directed line element representing z; (the end at which
the arrow is located). The sum z; + z, of the two complex numbers is then repre-
sented by the directed line segment from the base of the line segment representing
71 to the tip of the newly positioned line segment representing z,.

The name triangle law comes from the triangle that is constructed in the com-
plex plane during this geometrical process of addition. Notice that an immediate
consequence of this law is that addition is commutative, because both z; + z, and
2> + 71 are seen to lead to the same directed line segment in the complex plane. For
this reason the addition of complex numbers is also said to obey the parallelogram
law for addition, because the commutative property generates the parallelogram
shown in Fig. 1.2a.
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Imaginary Imaginary
axis axis
d J—
2 }
A \
- 0 | a-c /7%
T C T .
2, 4=z, i/ % Realaxis
! b—d __--""
| e
~—1-d
Real axis

(b)

FIGURE 1.2 Addition and subtraction of complex numbers using the triangle/parallelogram law.

The geometrical interpretation of the subtraction of z; from z; follows similarly
by adding to z; the directed line segment —z, that is obtained by reversing of the
sense (arrow) along z,, as shown in Fig. 1.2b.

It is an elementary fact from Euclidean geometry that the sum of the lengths
of the two sides |u| and |v| of the triangle in Fig. 1.3 is greater than or equal to the
length of the hypotenuse |u + v|, so from geometrical considerations we can write

lu+v| < |u| + |v].

This resultinvolving the moduli of the complex numbers « and v is called the triangle
inequality for complex numbers, and it has many applications.
An algebraic proof of the triangle inequality proceeds as follows:
u+vi?= W+ v)(u+v)=ui+ v+ uv +vv
= lul” + VI + (uv + w») < @] + V| + 2Juv|
= (lul + [v])*.
The required result now follows from taking the positive square root.

A similar argument, the proof of which is left as an exercise, can be used to
show that ||u| — |v|| < |u+ v|,so when combined with the triangle inequality we have

lul = VIl < lu+v] < |ul +|v].

Imaginary
axis

XQ\

Jue]

0 Real axis

FIGURE 1.3 The triangle inequality.
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EXERCISES 1.3

In Exercises 1 through 8 use the parallelogram law to form
the sum and difference of the given complex numbers and
then verify the results by direct addition and subtraction.

L u=2+3i,v=1-2i.
20 u=4+7i,v=-2-3i.
3. u=-3,v=-3-—4i.
4. u=4+3i,v=3+4i.

5. u=3+6i,v=—-4+2i.
6. u=-3+2i,v=0i.
7. u=—-4+2i,v=—-4-10i.

In Exercises 9 through 11 use the parallelogram law to ver-
ify the triangle inequality |u + v| < |u| + |v] for the given

complex numbers u and v.
9. u=—-4+4+2i,v=345i.
10. u=2+45i,v=3-2i.
1. u=-3+5i,v=2+06i.

8. u=4+7,v=-3+5i.

% Modulus and Argument Representation
of Complex Numbers

polar representation
of z

When representing z = x + iy in the complex plane by a point P with coordinates
(x,y), a natural alternative to the cartesian representation is to give the polar
coordinates (r, 0) of P. This polar representation of z is shown in Fig. 1.4, where

OP=r =zl =(x*+y)? and tan6 = y/x. (1)

The radial distance OP is the modulus of z,so r = |z|, and the angle 6 measured
counterclockwise from the positive real axis is called the argument of z. Because of
this, a complex number expressed in terms of the polar coordinates (r, ) is said to
be in modulus—-argument form. The argument 6 is indeterminate up to a multiple
of 27, because the polar coordinates (r, 0), and (r, 6 + 2k ), with k = +1, +2, ...,
identify the same point P. By convention, the the angle 6 is called the principal
value of the argument of z when it lies in the interval —7 < 6 < 7. To distinguish
the principal value of the argument from all of its other values, we write

Argz=0, when—7 <6 <. (2)

The values of the argument of z that differ from this value of 6 by a multiple of

27 are denoted by arg z, so that

argz =60 +2kn, withk= £1,42,.... 3)
Imaginary
axis
y=rsin@r—-——————————- ‘P(”’e)
AR |
} z
0 l
o Xx=rcos® Real axis

FIGURE 1.4 The complex plane and the (r, 9)
representation of z.
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The significance of the multivalued nature of arg z will become apparent later when
the roots of complex numbers are determined.

The connection between the cartesian coordinates (x, y) and the polar coordi-
nates (r, 0) of the point P corresponding to z = x + iy is easily seen to be given by

x =rcosf and y=rsind.

This leads immediately to the representation of z=x +iy in the alternative
modulus—argument form

z=r(cosf +isinbh). 4)

A routine calculation using elementary trigonometric identities shows that
(cosf +isin@)? = (cos26 + isin26).

An inductive argument using the above result as its first step then establishes the
following simple but important theorem.

De Moivre’s theorem

(cos@ +isinf)" = (cosnd +isinnd), for n anatural number. m

Use de Moivre’s theorem to express cos46 and sin46 in terms of powers of cosé
and sin 6.

Solution The result is obtained by first setting » = 4 in de Moivre’s theorem and
expanding (cos + i sin#)* to obtain

cos* 6 + 4i cos’ 0'sin @ — 6 cos® 6 sin® 6 — 4i cos 6 sin’ O + sin* 6 = cos 46 + i sin 46.
Equating the respective real and imaginary parts on either side of this identity gives
the required results

cos46 = cos* 6 — 6 .cos® O sin? @ + sin* 0
and

sin46 = 4cos> 6sin® — 4 cos 6 sin” 0. u

As the complex number z = cos 6 + i sin 6 has unit modulus, it follows that all
numbers of this form lie on the unit circle (a circle of radius 1) centered on the
origin, as shown in Fig. 1.5.

Using (5), we see that if z = r(cos 6 + i sin6), then

7" = r"(cosnb + i sinnd), for n a natural number. (5)
The relationship between ¢?, sin6, and cosf can be seen from the following
well-known series expansions of the functions
X n 2 93 94 95 96

0 %
f — =140+ -+
e ;On HOt gttt gt

92n+1 93 95 97
n —_ - - e
Smg_z( Vo= ats 7t

n92n 92 94 96
cos@-Z(—)(Z),= §+E—a+m
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Euler formula
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FIGURE 1.5 Point z = cosf + i sin6 on the
unit circle centered on the origin.

By making a formal power series expansion of the function ¢, simplifying powers

of i, grouping together the real and imaginary terms, and using the series represen-
tations for cos @ and sin @, we arrive at what is called the real variable form of the
Euler formula

¢’ = cosf +isin@, for any real 6. (6)

This immediately implies that if z = re'?, then
2% =% for any real «. (7)

When 6 is restricted to the interval —7 < 6 < 7, formula (6) leads to the useful
results

1= eiO i = ein/Z 1= ein —j = efir[/Z
and, in particular, to
1=¢e" fork=0+1,42,....
The Euler form for complex numbers makes their multiplication and division
very simple. To see this we set z; = r1e'® and z, = rpe'? and then use the results
212 =rre @ and 71/ =r/re @ P, (8)

These show that when complex numbers are multiplied, their moduli are multiplied
and their arguments are added, whereas when complex numbers are divided, their
moduli are divided and their arguments are subtracted.

Find uv, u/v, and u® given thatu = 1+i,v = /3 —i.

Solution u=1+i=+2e™* v=x+3—i=2e"7° souy=22e"" uy =
(1/«/§)ei5”/12 while u% = (ﬁem/zt)zs — (ﬁ)ZS(ein/ét)ZS — 4096ﬁ(ei(6+1/4)n) —
4096+/2(€'°7) (e!™/*) = 4096+/2(e'™/*) = 4096+/2(1 + 7). [

To find the principal value of the argument of a given complex number z,
namely Arg z, use should be made of the signs of x = Re{z}, and y = Im{z} together
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with the results listed below, all of which follow by inspection of Fig. 1.5.

Signs of x and y
x<0, y<0

x>0,y<0
x>0, y>0
x<0,y>0

of z.

Argz=10

T <0< —m/2
—n/2 <6 <0
0<6<m/2
/2 <6 <m

Find r = |z|, Arg z, arg z, and the modulus—argument form of the following values

(a) =23 -2 (b) —1+iv3 (c) 1+i (d) 2—i2V3.

Solution (a) r = {(—2v/3)? + (=2)*}'/2 = 4, Argz = 6 = —57/6 and

arg z= -5 /6 + 2k, k= £1,42,...

, 2=4(cos(—5m/6) + i sin(—57/6)).

®) r = {(-1)> + (V3)}'? =2, Arg z=0 =27/3 and arg z = 27/3 + 2k,

k==+1,£2,..

., 2="2(cos(2r/3) + i sin(27/3)).

© r={1)?4+1)}}2 =2, Argz=06=rn/4and arg z = 7/4 + 2k,

k=41,42,..

., 2= ~2(cos(m/4) + i sin(/4)).

@) r = {2+ (-2v3)*}'2 =4, Argz=0 = —n/3 and arg z = —1/3 + 2k,

k=41,42,...

, 2= 4(cos(—n/3) +isin(—m/3)).

EXERCISES 1.4

. Expand (cos6 + isinf)? and then use trigonometric
identities to show that

(cost + isin@)* = (cos26 + isin20).
. Give an inductive proof of de Moivre’s theorem

(cosf +isind)" = (cosnb +isinnd),

for n a natural number.

. Use de Moivre’s theorem to express cos 56 and sin 50
in terms of powers of cos & and sin 6.

. Use de Moivre’s theorem to express cos 60 and sin 60
in terms of powers of cos 6 and sin 6.

. Show by expanding (cos o + i sina)(cos B + i sin ) and
using trigonometric identities that

(cosa +isina)(cos B +isin B)
= cos(a + B) + i sin(a + B).

. Show by expanding (cosa +isinw)/(cosp +isinB)
and using trigonometric identities that

(cosa +isina)/(cos B +isin p)
= cos(a — B) + i sin(a — B).

7. If 7 =cos0 +isinf = ¢, show that when n is a natural

10.

11.

number,

1 1 1 1
cos(nf) = 3 (Z" + ?> and sin(nf) = % (z” - z_")

Use these results to express cos’ 6 sin’ 6 in terms of mul-
tiple angles of 6. Hint: z = 1/z.

. Use the method of Exercise 7 to express sin® § in terms

of multiple angles of 6.

. By expanding (z + 1/z)*, grouping terms, and using the

method of Exercise 7, show that
cos*0 = (1/8)(3 + 4¢cos20 4 cos 40).

By expanding (z — 1/z)°, grouping terms, and using the
method of Exercise 7, show that

sin’ 6 = (1/16)(sin 56 — 5sin 36 + 10sin 6).
Use the method of Exercise 7 to show that

cos® 0 +sin’ 6 = (1/4)(cos 36 + 3 cos O
— sin’ 0 4 3sin0).
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In Exercises 12 through 15 express the functions of u, v, and with z = ¢! = exp(if) to show that
w in modulus-argument form.
= exp(inf) — 1
12. uv,u/v,andv’, giventhatu =2 — 2i andv = 3 +i3+/3. Zexp(iké) = %.
13. uv,u/v, and u’, given that u = —1 — i/3, v = —4 + 4i. k=1
14. uv,u/v,and V¢, given that u =2 — 2i,v =2 — i2+/3, 19. Use the final result of Exercise 18 to show that
15. wvw, uw/v, and w3/u*, given that u=2—-2i, v= ., . )
3—-i3v/3andw =1+i. S exp(ikd) = expli(n +1/2)6] — exp(i6/2)
16. Express [(—8 +i8+/3)/(—1 —i)]? in modulus-argument =1 exp(i6/2) — exp(~i6/2)
form.
17. Find in  modulus-argument form [(1 +iv3)/ and then use the result to deduce the Lagrange identity
213
(—1+0)). 14 cosf + cos20 + - - - + cos nf
18. Use the f. izati
. Use the factorization ; 1/2)0
i , ) — 124 ST Y00 g 2 g <o,
A-2"Y=10-20+z4+2"+---+7") (z#1) 2sin(6/2)

& Roots of Complex Numbers

It is often necessary to find the n values of z'/" when n is a positive integer and z is
an arbitrary complex number. This process is called finding the nth roots of z. To
determine these roots we start by setting

w = z'/",  which is equivalent to w" = z.

Then, after defining w and z in modulus—argument form as

w=pe? and z=re"’, 9)

we substitute for w and z in w" = z to obtain
pneinqb — reiQ

Itis at this stage, in order to find all n roots, that use must be made of the many-
valued nature of the argument of a complex number by recognizing that 1 = e
for k=0,£1, 42, .... Using this result we now multiply the right-hand side of the
foregoing result by by ¢ (that is, by 1) to obtain
i0 g2k

i(0+2km)

pe"? = re =re

Equality of complex numbers in modulus—argument form means the equality of
their moduli and, correspondingly, the equality of their arguments, so applying this
to the last result we have

pt=r and n¢ =0+ 2km,

showing that
p=r"Y" and ¢ = (6 + 2kn)/n.
Here r!/" is simply the nth positive root of r: p = J/r.
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FIGURE 1.6 Location of the roots of z!/".

Finally, when we substitute these results into the expression for w, we see that
the n values of the roots denoted by wy, wy, ..., w,_; are given by

wy = r'/"{cos[(8 + 2km)/n] + i sin[(8 + 2km)/n]}, 10
fork=0,1,...,n—1. (10)

Notice that it is only necessary to allow k to run through the successive integers
0,1,...,n — 1,because the period of the sine and cosine functions is 27, so allowing
k to increase beyond the value n — 1 will simply repeat this same set of roots. An
identical argument shows that allowing k to run through successive negative integers
can again only generate the same 7 roots wg, wi, ..., W,_1.

Examination of the arguments of the roots shows them to be spaced uniformly
around a circle of radius 7!/ centered on the origin. The angle between the radial
lines drawn from the origin to each successive root is 27t/ n, with the radial line from
the origin to the first root wy making an angle 6/n to the positive real axis, as shown
in Fig. 1.6. This means that if the location on the circle of any one root is known,
then the locations of the others follow immediately.

Writing unity in the form 1 = ¢’” shows its modulus to be = 1 and the principal
value of its argument to be 6 = 0. Substitution in formula (10) then shows the n
roots of 117 called the nth roots of unity, to be

wo=1, wy=e€"" wy,=¢eZ" . w, =D/ (11)

By way of example, the fifth roots of unity are located around the unit circle as
shown in Fig. 1.7.
If we set w = wy, it follows that the nth roots of unity can be written in the form

oo, ... o "

Aso'=land 0" —1=(0—- 1)1 +o+w0*+ -+ 1) =0, as w; #1 we see
that the the nth roots of unity satisfy

l+o+o®+--+0"1=0. (12)
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FIGURE 1.7 The fifth roots of unity.

This result remains true if w is replaced by any one of the other nth roots of unity,
with the exception of 1 itself.

ECIUITEREM  Findw = 1+,

Solution Setting z =1+ i = +/2¢/™/* shows that r = |z| = +/2 and 6 = 7 /4. Sub-
stituting these results into formula (1) gives

wi = 2/%{cos[(1/12)(1 + 8k)x] + i sin[(1/12)(1 + 8k)x]}, fork=0,1,2. ®
The square root of a complex number ¢ = « + if is often required, so we now

derive a useful formula for its two roots in terms of |¢|, « and the sign of 8. To
obtain the result we consider the equation

=1t wherel =a+if,
and let Arg ¢ = 6. Then we may write
2 =gle”,

and taking the square root of this result we find the two square roots z_ and z; are
given by

2 = 2|26
= +|¢|"*{cos(6/2) + i sin(6/2)}.
Now cosf = «/|¢], but
cos?(0/2) = (1/2)(1 +cos6), and sin’(6/2) = (1/2)(1 — cos6),
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SO
cos’(0/2) = (1/2)(1 +a/I¢]), and sin’*(6/2) = (1/2)(1 — «/|¢]).

As —m < 6 < =, it follows that in this interval cos(6/2) is nonnegative, so taking
the square root of cos?(6/2) we obtain

ol + 12
cos(0/2) = ( §2|§|a>

However, the function sin(6/2) is negative in the interval —7 < 6 < 0 and positive
in the interval 0 < 6 < =, and so has the same sign as 8. Thus, the square root of
sin’(6/2) can be written in the form

SR
sin(6/2) = sign (,3)( §2|§|a> .

Using these expressions for cos(6/2) and sin(6/2) in the square roots z4 brings us
to the following useful rule.

Rule for finding the square root of a complex number

Let 7> = ¢, with ¢ = « + iB. Then the square roots z, and z_ of ¢ are given
by

Izl +a\'"? 2] —a\'"?
+—( . ) +lSIgn(ﬂ)< . )
¢

(1) (%)

Find the square roots of (a) { =1+iand (b) { =1 —1.

Solution (a)¢ =14iso|¢| =+/2, « =1andsign(8) = 1, so the square roots of

. =1+iare
172 1/2
e\ vz
4 ==+ > +1 5

(b)z =1—1i,50¢| =~/2, @ =1 and sign(8) = —1, from which it follows that the
square roots of ¢ =1 —1i are

(«/i+1>1/2 .(ﬁ—l)”
Z;l:::l: 2 —1 2 . m

The theorem that follows provides information about the roots of polynomials
with real coefficients that proves to be useful in a variety of ways.
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THEOREM 1.2

Roots of a polynomial with real coefficients Let
P(2)=2"+ a2 ' + @+ a1z +ay

be a polynomial of degree n in which all the coefficients aj, a, . . ., a, are real. Then
either all the n roots of P(z) = 0 are real, that is, the n zeros of P(z) are all real, or
any that are complex must occur in complex conjugate pairs.

Proof The proof uses the following simple properties of the complex conjugate
operation.

1. If a is real, then @ = a. This result follows directly from the definition of the
complex conjugate operation.

2. If b and c are any two complex numbers, then b + ¢ = b + ¢. This result also
follows directly from the definition of the complex conjugate operation.

3. If b and c are any two complex numbers, then bc = bc and b" = (b)".

We now proceed to the proof. Taking the complex conjugate of P(z) = 0 gives
" +a M Y+ a2+ a, =0,

butthe a, are allrealsoa, 7" = a,7"" = a,7*~" = a,(Z)""", allowing the preceding
equation to be rewritten as

@ +a@" " + @+ 4 a, 1T +a, =0.

This result is simply P(Z) = 0, showing that if z is a complex root of P(z), then so
also is z. Equivalently, z and 7 are both zeros of P(z).

If, however, z is a real root, then z = 7 and the result remains true, so the first
part of the theorem is proved. The second part follows from the fact thatif z=« +ip
is aroot, thenso alsois z = o« — i, and so (z — @ — i) and (z — « + iB) are factors
of P(z). The product of these factors must also be a factor of P(z), but

(z—a—if)(z—a+if) =7 —2az+a’ + f°,

and the expression on the right is a quadratic in z with real coefficients, so the final
result of the theorem is established. ]

Find the roots of z°> — z> — z — 2 = 0, given that z = 2 is a root.

Solution 1f z =2 is aroot of P(z) =0, then z — 2 is a factor of P(z), so dividing
P(z) by z — 2 we obtain z? + z + 1. The remaining two roots of P(z) = 0 are the
roots of 72 + z+1 = 0. Solving this quadratic equation we find that z = (-1 =+
i~/3)/2, so the three roots of the equation are 2, (—1 +i+/3)/2, and (=1 — i~/3)/2.

|

For more background information and examples on complex numbers, the complex
plane and roots of complex numbers, see Chapter 1 of reference [6.1], Sections 1.1
to 1.5 of reference [6.4], and Chapter 1 of reference [6.6].
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EXERCISES 1.5

In Exercises 1 through 8 find the square roots of the given
complex number by using result (10), and then confirm the
result by using the formula for finding the square root of a
complex mumber.

1L -1+, 5. 2-3i.
2. 3+2i. 6. —2—1i.
3. i 7. 4 —3i.
4. -1+ 4. 8 —5+1i.

In Exercises 9 through 14 find the roots of the given complex
number.

9. (1+iv3)13. 12. (=1 —i)'3.
10. iV4, 13. (—i)'7.
11 (=1)4, 14. (4 + 4i)'4.

15. Find the roots of 2> + z(i — 1) = 0.
16. Find the roots of z> +iz/(1 +i) = 0.

36— Partial Fractions
I

17.

18.

19.

20.

21.

Use result (12) to show that
1+ cos(2m/n) + cos(4n/n) + - - -
+cos[(2(n — 1)z /n)] =0
and
sin(2r/n) + sin(4xw/n) + - - - +sin[2(n — 1)z /n)] = 0.

Use Theorem 1.1 and the representation z = re? to
prove that if a and b are any two arbitrary complex
numbers, then ab = ab and (a’) = (a)".

Given z =1 is a zero of the polynomial P(z) = 2> —
572 + 17z — 13, find its other two zeros and verify that
they are complex conjugates.

Given that z = —2 is a zero of the polynomial P(z) =
2 +27* —4z— 8, find its other four zeros and verify
that they occur in complex conjugate pairs.

Find the two zeros of the quadratic P(z) = 22 — 1 +1,
and explain why they do not occur as a complex conju-
gate pair.

Let N(x) and D(x) be two polynomials. Then a rational function of x is any function
of the form N(x)/D(x). The method of partial fractions involves the decomposition
of rational functions into an equivalent sum of simpler terms of the type

P b

ax+b’ (ax + b2’

O1x + R Ox+ R

and

Ax2+Bx+C’(Ax2+Bx+C)2"

where the coefficients are all real together with, possibly, a polynomial in x.
The steps in the reduction of a rational function to its partial fraction represen-

tation are as follows:

STEP 1  Factorize D(x) into a product of linear factors and quadratic factors with
real coefficients with complex roots, called irreducible factors. This is the hardest
step, and real quadratic factors will only arise when D(x) = 0 has pairs of com-
plex conjugate roots (see Theorem 1.2). Use the result to express D(x) in the

form

D(x) = (aix+b1)" ... (amx + bm)rm(Alx2 + Bix + Cl)s1
e (Akx2 + Bix + Ck)sk,

where 7; is the number of times the linear factor (a;x + b;) occurs in the factoriza-
tion of D(x), called its multiplicity, and s; is the corresponding multiplicity of the
quadratic factor (A;x*> + Bjx + C;).
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partial fraction
undetermined
coefficients

STEP 2  Suppose first that the degree n of the numerator is /ess than the degree d
of the denominator. Then, to every different linear factor (ax + b) with multiplicity
r, include in the partial fraction expansion the terms

Py n P R P
(ax +b) = (ax + b)? (ax + by’

where the constant coefficients P are unknown at this stage, and so are called
undetermined coefficients.

STEP 3  To every quadratic factor (Ax? 4+ Bx + C)® with multiplicity s include in
the partial fraction expansion the terms

Q1X+R1 Q2x+R2 et st+Rs
(Ax2+ Bx+C) (Ax2+ Bx+ C)? (Ax2 + Bx + C)*’
where the Q; and R; for j = 1,2, ..., s are undetermined coefficients.

STEP 4  Take as the partial fraction representation of N(x)/D(x) the sum of all
the terms in Steps 2 and 3.

STEP5  Multiply the expression
N(x)/D(x) = Partial fraction representation in Step 4

by D(x), and determine the unknown coefficients by equating the coefficients of
corresponding powers of x on either side of this expression to make it an identity
(that is, true for all x).

STEP 6 Substitute the values of the coefficients determined in Step 5 into the
expression in Step 4 to obtain the required partial fraction representation.
STEP7 Ifn > d,use long division to divide the denominator into the numerator
to obtain the sum of a polynomial of degree n — d of the form

T+ Tix + Bx> + -+ T_ax" ™,
together with a remainder term in the form of a rational function R(x) of the type
just considered. Find the partial fraction representation of the rational function
R(x) using Steps 1 to 6. The required partial fraction representation is then the sum
of the polynomial found by long division and the partial fraction representation of
R(x).

Find the partial fraction representations of

x? 2x3 —4x? +3x +1
GrDG-ars W OFW=—TF"5

(a) F(x) =

Solution (a) All terms in the denominator are linear factors, so by Step 1 the
appropriate form of partial fraction representation is

x? A N B N Cc
(x+D(x-2)(x+3) x+1 x—-2 x+3

Cross multiplying, we obtain

x? = A(x —2)(x +3) + B(x + 1)(x +3) + C(x + 1)(x — 2).
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Setting x = —1 makes the terms in B and C vanish and gives A= —1/6. Setting
x =2 makes the terms in A and C vanish and gives B = 4/15, whereas setting
x = —3 makes the terms in Aand B vanish and gives C = 9/10, so

x? -1 4 9
GI DG -2 +3) 6(x+D)  15x-2) 10x+3)

(b) The degree of the numerator exceeds that of the denominator, so from Step 7
it is necessary to start by dividing the denominator into the numerator longhand to
obtain

2% —4x* +x+3 3—x

Go1p T aone

We now seek a partial fraction representation of (3 — x)/(x — 1)? by using Step 1
and writing
3-x A . B
(x—12 x—-1 (x—1)

When we multiply by (x — 1)?, this becomes
3—x=Ax-1)+ B.

Equating the constant terms gives 3 = — A+ B, whereas equating the coefficients
of x gives —1 = Aso that B = 2. Thus, the required partial fraction representation
is

20 —dx? +x+3 1 2

) R g o oL u

An examination of the way the undetermined coefficients were obtained in (a)
earlier, where the degree of the numerator is less than that of the denominator
and linear factors occur in the denominator, leads to a simple rule for finding the
undetermined coefficients called the “cover-up rule.”

The cover-up rule

Let a partial fraction decomposition be required for a rational function
N(x)/D(x) in which the degree of the numerator N(x) is less than that of
the denominator D(x) and, when factored, let D(x) contain some linear fac-
tors (factors of degree 1).

Let (x — ) be a linear factor of D(x). Then the unknown coefficient K in
the term K/(x — &) in the partial fraction decomposition of N(x)/D(x) is ob-
tained by “covering up” (ignoring) all of the other terms in the partial fraction
expansion, multiplying the remaining expression N(x)/D(x) = K/(x — «) by
(x — @), and then determining K by setting x = « in the result.

To illustrate the use of this rule we use it in case (a) given earlier to find Afrom
the representation
x? A B C
= + + .
x+Dx-2)(x+3) x+1 x—-2 x+3
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completing the square

We “cover up” (ignore) the terms involving B and C, multiply through by (x + 1),
and find A from the result

x2

(x —2)(x +3) =4

by setting x = —1, when we obtain A = —1/6. The undetermined coefficients B and
C follow in similar fashion.

Once a partial fraction representation of a function has been obtained, it is
often necessary to express any quadratic x> + px + ¢ that occurs in a denominator
in the form (x + A)?> + B, where Aand B may be either positive or negative real
numbers. This is called completing the square, and it is used, for example, when
integrating rational functions and when finding inverse Laplace transforms.

To find Aand B we set

x>+ px+qg=(x+A>+B
=x>4+2Ax+ A + B,

and to make this an identity we now equate the coefficients of corresponding
powers of x on either side of this expression:

(coefficients of x?) 1 =1 (this tells us nothing)
(coefficients of x) p=2A
(constant terms) g=A+B.

Consequently A= (1/2)pand B = q — (1/4) p?, and so the result obtained by com-
pleting the square is

X+ px+q=[x+(1/2)p] +q - (1/4)p>

If the more general quadratic ax? + bx + ¢ occurs, all that is necessary to re-
duce it to this same form is to write it as

ax® + bx 4+ ¢ = a[x* + (b/a)x + c/a),

and then to complete the square using p = b/a and g = c/a.

Complete the square in the following expressions:

(a) x> +x+1.

(b) x>+ 4x.

(¢) 3x24+2x+1.
Solution (a) p=1,q=1,s0 A=1/2, B=3/4, and hence

x4 x+1=(x+1/2)> +3/4
(b) p=4, g=0,s0 A=2, B= —4, and hence
X2 4dx=(x+2)* -4

(¢) 3x2 +2x + 1 =3[x> + (2/3)x + 1/3]andso p = 2/3, ¢ = 1/3, from which it fol-
lows that A=1/3 and B=2/9, so

3x% +2x + 1 =3{(x +1/3)> +2/9}.

Further information and examples of partial fractions can be found in any one of
references [1.1] to [1.7]. [ |



Section 1.7 Fundamentals of Determinants 31

EXERCISES 1.6

Express the rational functions in Exercises 1 through 8 in 6. (> =1)/(x*+x+1).
terms of partial fractions using the method of Section 1.6, 7o (P + 2+ x4+ D)/ {(x +2)2(x + 1))
and verify the results by using computer algebra to deter- 8. (2 +4)/( + 322 +3x + 1),

mine the partial fractions.

Complete the square in Exercises 9 through 14.
1. (3x +4)/(2x* +5x +2). P q &

2. (2 +3x+3)/(2x2 + 5x + 3). 9. x? +4x+5. 12. 4x> —4x — 3.
3. 3x —7)/(2x% 4 9x + 10). 10. x* +6x + 7. 13. 2 — 2x + 912
4. (x2 +3x +2)/(x* +2x = 3). 11. 2x% +3x — 6. 14. 2 +2x — x%
5. (3 +x2+x+1)/[(x +2)2 (2 + 1))

1.7 Fundamentals of Determinants
e

A determinant of order n is a single number associated with an array A of n?
numbers arranged in n rows and n columns. If the number in the ith row and
jth column of a determinant is a;;, the determinant of A, denoted by det A and
sometimes by |A[, is written

ann aipp ... aip
a a coe (@

detA = A| = [T 72 | (13)
anl A2 ... Qup

It is customary to refer to the entries a;; in a determinant as its elements. Notice the
use of vertical bars enclosing the array A in the notation |A| for the determinant
of A, as opposed to the use of the square brackets in [A] that will be used later to
denote the matrix associated with an array A of quantities in which the number of
rows need not be equal to the number of columns.

The value of a first order determinant det A with the single element ay; is
defined as ay; so that det[a;1] = a; or, in terms of the alternative notation for a
determinant, |aj;| = aq1. This use of the notation |.| to signify a determinant should
not be confused with the notation used to signify the absolute value of a number.

The second order determinant associated with an array of elements containing
two rows and two columns is defined as

apg @y
ary

det A =

2 = ayay — anay, (14)

so, for example, using the alternative notation for a determinant we have
‘ 9 3

- _4‘ — 9(—4) — (=7)3 = —15.

Notice that interchanging two rows or columns of a determinant changes its sign.
We now introduce the terms minor and cofactor that are used in connection with
determinants of all orders, and to do so we consider the third order determinant

apin dpp  ais
detA = |ay; ax»n ax|. (15)
asy  dasy ass



32

Chapter 1 Review of Prerequisites

minors and cofactors

EXAMPLE 1.17

The minor M;; associated with a;;, the element in the ith row and jth column of
det A, is defined as the second order determinant obtained from det A by deleting
the elements (numbers) inits ithrow and jth column. The cofactor C;; of an element
in the ith row and jth column of the det A in (15) is defined as the signed minor
using the rule

Cj = (=) M;. (16)

With these ideas in mind, the determinant det A in (15) is defined as

det A =

3
{llj(—l)1+j det Mlj

j=1
= an My — apxMip + aizMys.

If we introduce the cofactors C;;, this last result can be written
detA = a1 Cy + a12C2 + a13C3, 17)
and more concisely as
3
detA = "a1;Cyj. (18)
j=1

Result (18), or equivalently (17), will be taken as the definition of a third order
determinant.

Evaluate the determinant

NN =
—_ =
S

Solution
The minor My; =|; 7| =(1)(1) — (0)(1) =1, so the cofactor
Cii=(-D"DMy =1
The minor M, = | 5 || = (2)(1) — (0)(—2) = 2, so the cofactor
Cip = (=) My, = 2.
The minor M3 = | 2 || = (2)(1) — (1)(=2) = 4, so the cofactor
Cis = (=) M5 = 4.
Using (17) we have
1 3 -3
21 0=MCnu+B)Ci+(=3)C3=0)1)+3)(-2)+(-3)(4) = —17.
-2 1 1
|

When expanded, (17) becomes

detA = 11022033 — 411032023 — 412021033 + A12031023 + 413021032 — A13d31022,
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and after regrouping these terms in the form
det A = —ax1a12a33 + a21a32013 + a0 a11a33 — A22a031013 — 23011432 + A23031412,
we find that
det A = a;1Co + anCr + a3 Crs.

Proceeding in this manner, we can easily show that det A may be obtained by
forming the sum of the products of the elements of A and their cofactors in any
row or column of det A. These results can be expressed symbolically as follows.

Expanding in terms of the elements of the ith row:

3
detA = a;1Cj1 + ai2Cin + a;3Ci3 = Zaijcij- (19)
=

Laplace expansion

e Expanding in terms of the elements of the jth column:

3
detA:alelj+a2]-C2]-+a3,-C3,~:ZaijCij. (20)
i=1

Results (19) and (20) are the form taken by the Laplace expansion theorem when
applied to a third order determinant. The extension of the theorem to determinants

of any order will be made later in Chapter 3, Section 3.3.

PETTITERIM Expand the following determinant (a) in terms of elements of its first row, and (b) in
terms of elements of its third column:

|Al =

—_ =
DO N
_ N A~

Solution (a) Expanding in terms of the elements of the first row requires the
three cofactors Cy1 = My, Cio = —M,,, and Cj3 = M3, where

1 2
11

1 0

1 2

My = ’2 1

’ =—4, My=

’=—1, M13=‘ ’=2,

so Ciy = (1) (=4) = -4, Cp=(-1D)I(-1) =1, C53=(-1)1(2) =2,
and so

|Al=M)(=4) +(2)(1) + ()(2) =6.

(b) Expanding in terms of the elements of the third column requires the three
cofactors Ci3 = M3, Co3 = — Mys, and Csz = Mss, where

10 1 2

M”:‘l 2 12

=2, Mst‘ '20, M33=' ‘2—2,

10
so Cj3 = (—1)(1+3)(2) =2,C3=0,C53= (—1)(3+3)(—2) = —2 and so
Al =(#H2) +2)(0) + (1)(=2) = 6. =
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Two especially simple third order determinants are of the form

ailr ap an ap 0 O
detA=|0 axpn axy and detA =|ay a»n O
0 0 as az 4y as:

The first of these determinants has only zero elements below the diagonal line drawn
from its top left element to its bottom right one, and the second determinant has
only zero elements above this line. This diagonal line in every determinant is called
the leading diagonal. The value of each of the preceding determinants is easily seen
to be given by the product ay1a;a33 of the terms on its leading diagonal.

Simpler still in form is the third order determinant

al 0 0
detA=|0 axn 0 |=aaxras;,
0 0 ass

whose value aj1axa33 is again the product of the elements on the leading diagonal.
For another approach to the elementary properties of determinants, see
Appendix A16 of reference [1.2], and Chapter 2 of reference [2.1].

EXERCISES 1.7

Evaluate the determinants in Exercises 1 through 6 (a) in
terms of elements of the first row and (b) in terms of ele-
ments of the second column.

column. .., and its last row is written as its last column.
If the determinant is |A[, the determinant of AT, the
transpose matrix A, is denoted by |AT|. Write out the

. On occasion the elements of a matrix may be func-
tions, in which case the determinant may be a function.
Evaluate the functional determinant

expansion of |A| using (17) and reorder the terms to

1 57 -1 36 show that

1 -1 1]. 4. | 2 1 4].

1 21 -1 3 1 Al = |AT].

2 1 -1 1 0 -6 . . .

> 6 -1l s o1 3| 10. Use elimination to solve the system of linear equations
5 1 -1 4 3 21 anx; + apx, = by

5 2 4 1 5 -1 a)xi +anx; =b,

1 2 14. 6. | 2 1 —-3].

3 1 5 -4 1 1 for x; and x,, in which not both b; and b, are zero, and

show that the solution can be written in the form
x1 = Di/|A| and x, = D,/|A|, provided |A] # 0,

where |A|is the determinant of the matrix of coefficients

1 0 0 of the system
0 sinx —cosx|.
; an a b a an b
0 cosx sin x A= 1 d12 , D = 1 dn , and D, = 1 01 .
axy axp b, axn ay b

. Determine the values of A that make the following
determinant vanish:
3—A 2 2
2 2—x 0 |.
2 0 4-2

Hint: This is a polynomial in X of degree 3.

. A matrix is said to be transposed if its first row is written
as its first column, its second row is written as its second

Notice that D, is obtained from |A| by replacing its
first column by b; and b,, whereas D, is obtained from
|A| by replacing its second column by b; and b,. This is
Cramer’s rule for a system of two simultaneous equa-
tions. Use this method to find the solution of

X1 +5% =3
Tx1 —3x, = —1.



11. Repeat the calculation in Exercise 10 using the system

of equations

anx, + apx; +apxs = by
axxy + anx; + axx; = by

az Xy + anx; + anxs = bs,

in which not all of by, b,, and b5 are zero, and show that
provided |A| # 0,

xi1 = Di/IAl, x;=Dy/|A|, and x; = Ds/|A],
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where |A| is the determinant of the matrix of coeffi-
cients and D, is the determinant obtained from |A| by
replacing its ith column by by, b,, and b; fori = 1,2, 3.
This is Cramer’s rule for a system of three simultaneous
equations, and the method generalizes to a system of n
linear equations in n unknowns. Use this method to find
the solution of

X1 +2X2 — X3 = 2
X1—3XQ—2.X'3 -1
2)61 +X2 +2)C3 = 1

1:8... Continuity in One or More Variables
I

continuity from
the right

continuity from
the left

continuity at x = ¢

continuous function

If the function y = f(x) is defined in the interval a < x < b, the interval is called
the domain of definition of the function. The function f is said to have a limit at a
point cina < x < b, written lim,_,. f(x) = L, if for every arbitrarily small number
¢ > 0 there exists a number § > 0 such that

|f(x)— L] <& when|x—c| <. (21)

This technical definition means that as x either increases toward ¢ and becomes
arbitrarily close to it, or decreases toward ¢ and becomes arbitrarily close to it, so
f(x) approaches arbitrarily close to the value L. Notice that it is not necessary for
f(x) to be defined at x = ¢, or, if it is, that f(c) assumes the value L. If f(x) has a
limit L as x — ¢ and in addition f(c) = L, so that

lim f(x) = f(c) = L. (22)

then the function f is said to be continuous at c. It must be emphasized that in this
definition of continuity the limiting operation x — ¢ must be true as x tends to ¢
from both the left and right. It is convenient to say that x approaches c from the /eft
when it increases toward ¢ and, correspondingly, to say that x approaches ¢ from
the right when it decreases toward it.

The function f is continuous from the right at x = c if

lim £(x) = £(0) 23)

where the notation x — ¢ means that x decreases toward ¢, causing x to tend to
¢ from the right. Similarly, f is continuous from the left at x = c if

lim () = f(c), (24)

where now x — ¢~ means that x increases toward c, causing x to tend to ¢ from the
left. The relationship among definitions (22), (23), and (24) is that f is continuous
at the point c if

lim f(x) = lim f(x) = f(c). (25)

When expressed in words, this says that f is continuous at x = ¢ if the limits
of f as x tends to ¢ from both the left and right exist and, furthermore, the limits
equal the functional value f(c).

A function f thatis continuous at all points of @ < x < b is said to be a contin-
uous function on that interval. Graphically, a continuous functionona < x < bisa
function whose graph is unbroken but not necessarily smooth. A function f is said
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smooth function

continuous and
piecewise smooth
function

discontinuous
function

piecewise continuity

fle) e

y Discontinuous Continuous y ) )
atx=q  iromthe left Discontinuous

atx =c¢
kyb-————————-— ft/

2 S 7
|
/ y=10)

Continuous

Continuous
from the right
|

[

[

[

[

[ [

!

! !
0 a c d
(a) (b)

FIGURE 1.8 (a) A continuous function for a < x < b. (b) A discontinuous function.

to be smooth over an interval if at each point of the graph the tangent lines to the
left and right of the point are the same. Figure 1.8a shows the graph of a continuous
function that is smooth over the intervalsa < x < cand ¢ < x < b but has different
tangent lines to the immediate left and right of x = ¢ where the function is not
smooth. A function such as this is said to be continuous and piecewise smooth over
the intervala < x < b.

A function f is said to be discontinuous at a point c if it is not continuous there.
For a jump discontinuity we have

lim f(x) =k and lim+ f(x) =k, butk #k. (26)

A function f is said to have a removable discontinuity at a point ¢ if k; = k; in (26),
but f(c) # ki, as at the point ¢, in Fig. 1.9.

An example of a discontinuous function is shown in Fig. 1.8b where a jump
discontinuity occurs at x = c.

A function f is said to be piecewise continuous on an interval a < x < b if it
is continuous on a finite number of adjacent subintervals, but discontinuous at the
end points of the subintervals, as shown in Fig. 1.9.

The notion of continuity of a function of several variables is best illustrated
by considering a function f(x, y) of the two independent variables x and y. The
function f defined in some region of the (x, y)-plane D, say, is said to be continuous

y
Discontinuous Discontinuous
at ¢ at ¢z \
A r |
T~ |
[ | [ ¥ [
} ! [ |
= \ ! } |
\
| | : Loy
| } Discontinuous } }
\ | atc, ! \
[ \
| w ! \ |
[ } | } \
[ \
| | ‘ | l
0 a cq c c3 b X

FIGURE 1.9 A piecewise continuous function.



continuity of f(x, y)

discontinuity of f(x, y)
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at the point (a, b) in D if

X

lim | fGry) = fGa.b), @7)

and to be discontinuous otherwise.

In this definition of continuity, it is important to recognize that a general point P
at (x, y) is allowed to tend to the point (a, b) in D along any path in the (x, y)-plane
that lies in D. Expressed differently, f will only be continuous at (a, b) if the limit
in (27) is independent of the way in which the point (x, y) approaches the point
(a, b). When this is true for all points in D, the function f is said to be continuous
in D.

The function f is, for instance, discontinuous at (a, b) if

lim f(x,y) =k, but f(a,b) # k.
x—a,y—b
Sufficient for showing that a function f is discontinuous at a point (a, b) is by
demonstrating that two different limiting values of f are obtained if the point P
at (x, y) is allowed to tend to (a, b) along two different straight-line paths. This
approach can be used to show that the function

Xy
flx,y) = m
has no limit at the origin. If we allow the point P at (x, y) to tend to the origin along
the straight line y = kx, with k an arbitrary constant, the function f becomes

k
kx) = ———
o ko) = e

and it is seen from this that f is constant along each such line. However, the value
of f on each line, and hence at the origin, depends on k, so f has no limit at the
origin and so is discontinuous at that point, though f is defined and continuous at
all other points of the (x, y)-plane.

An example of a function f(x, y) thatis continuous everywhere except at points
along a curve I in the (x, y)-plane is shown in Fig. 1.10.

sz(xvy)

FIGURE 1.10 A function f(x, y) continuous everywhere except
at points on I'.
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The extension of these definitions to functions of » variables is immediate and
so will not be discussed.

Discussions on continuity and its consequences can be found in any one of
references [1.1] to [1.7].

1.9 Differentiability of Functions
_ of One or More Variables

differentiability of f(x)

left- and right-hand
derivatives of f(x)

first order partial
derivatives of

f(x, y)

The function f(x)definedina < x < bissaid to be differentiable with the derivative
f'(c) at a point ¢ inside the interval if the following limit exists:

. fleth) = flo) _
lim SEELZRO e, (28)
Here, as in the definition of continuity, for f to be differentiable at point ¢ the
limit must remain unchanged as /4 tends to zero through both positive and negative
values. The function f is said to be differentiable in the interval a < x < b if itis
differentiable at every point in the interval. When f is differentiable at a point ¢ with
derivative f’(c), the number f’(c) is the gradient, or slope, of the tangent line to
the graph at the point (¢, f(¢)). A function with a continuous derivative throughout
an interval is said to be a smooth function over the interval. The function f will be
said to be nondifferentiable at any point ¢ where the limit in (28) does not exist.

Even when a function f is nondifferentiable at a point, it is possible that a
special form of derivative can still be defined to the left and right of the point if
the requirement that the limit in (28) exists as 4 — 0 through both positive and
negative values is relaxed. The function f has a right-hand derivative at a if the
limit

i Tt h) = 1@

h—0t h (29)
exists, and a left-hand derivative at b if the limit
b+h)— f(b
lim L&+ = fO) (30)

h—0~ h

exists.

When c is a specific point, f'(c) is a number, but when x is a variable, f'(x) be-
comes a function. Left- and right-hand derivatives are illustrated in Fig. 1.11. An im-
portant consequence of differentiability is that differentiability implies continuity,
but the converse is not true.

The first order partial derivative with respect to x of the function f(x, y) of the
two independent variables x and y at the point (a, b) is the number defined by

h,b) — ,b
}111_1;% fla+ I/)l f(a )7 (31)




second order partial
derivatives of f(x, y)

mixed partial
derivatives

THEOREM 1.3
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y left-hand
derivative equal to
slope of line

S ==
fle)

right-hand
derivative equal to
slope of line

right-hand
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derivative equal to
slope of line
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FIGURE 1.11 Left- and right-hand derivatives as tangent lines.

provided the limit exists. The value of this partial derivative is denoted either by
df/dx at (a, b), or by f,(a,b). The corresponding partial derivative at a general
point (x, y) is the function f,(x, y).

Similarly, the first order partial derivative with respect to y of the function
f(x, y) at the point (a, b) is the number defined by the limit

lim fla,b+k)— f(a, b)’

k—0 k (32)

provided the limit exists. The value of this partial derivative is denoted either by
df/dy at (a, b), or by f,(a,b). At a general point (x, y) this partial derivative be-
comes the function f,(x, y). Higher order partial derivatives are defined in a similar
fashion leading, for example, to the second order partial derivatives

9 f/9x* = 8/3x(df/dx), 8 f/dy* = 8/3y(df/3y),
02 f/oxdy = d/dy(df/dx), and 92 f/dydx = d/dx(df/dy).

A more compact notation for these same derivatives is

fexs fyys fry, and fi,, so that, for example f,, = 3% f/3ydx and fyy = 3% f/ay*.

The derivatives fy, and f,, are called mixed partial derivatives, and their relation-
ship forms the statement of the next theorem, the proof of which can be found in
any one of references [1.1] to [1.7].

Equality of mixed partial derivatives Let f, f;, f,, and f,, all be defined and
continuous at a point (a, b) in a region. Then

fxy(a’ b) = fyx(a7 b) [



40 Chapter1 Review of Prerequisites

total differential

This result, given conditions for the equality of mixed partial derivatives, is an
important one, and use will be made of it on numerous occasions as, for example,
in Chapter 18 when second order partial differential equations are considered.

If z= f(x, y), the total differential dz of f is defined as

dz = (3f/3x) dx + (3f/dy) dy, (33)

where dz, dx, and dy are differentials. Here, a differential means a small quantity,
and the differential dz is determined by (33) when the differentials dx and dy are
specified. When df/dx and df/dy are evaluated at a specific point (a, b), result (33)
provides a linear approximation to f(x, y) near to the point (a, b). Although finite,
the limits of the quotients of the differentials dz = dx and dy =+ dx as the differential
dx — 0 are such that they become the values of the derivatives dz/dx and dy/dx,
respectively, at a point (x, y) where 9 f/dx and df/dy are evaluated.

& Tangent Line and Tangent Plane
Approximations to Functions

tangent line
approximation

tangent plane
approximation

Let y = f(x) be defined in the interval a < x < b and be differentiable throughout
it. Then a tangent line (linear) approximation to f near a point xy in the interval is
given by

yr = f(x0) + (x — x0) f'(x0)- (34)

This linear expression approximates the function f close to xj by the tangent to the
graph of y = f(x) at the point (xo, f(xo)).

This simple approximation has many uses; one will be in the Euler and modified
Euler methods for solving initial value problems for ordinary differential equations
developed in Chapter 19.

Find a tangent line approximation to y = 1 + x? + sin x near the point x = a.

Solution Setting xo = « and substituting into (34) gives

ya 14 a?+sina + (x — a)(2a + cos ) for x close to . [ |

Let the function z = f(x, y) bedefinedinaregion D of the (x, y)-plane where it
possesses continuous first order partial derivatives d f/dx and d f/dy. Then a tangent
plane (linear) approximation to f near any point (x, yp) in D is given by

zr = f(x0, Yo) + (x — x0) fx(x0, yo) + (¥ — yo) fy(x0, Y0)- (35)

This linear expression approximates the function f close to the point (x, yy) by a
plane that is tangent to the surface z = f(x, y) at the point (xo, vo, f(x0, y0))- The
tangent plane approximation in (35) is an immediate extension to functions of two
variables of the tangent line approximation in (34), to which it simplifies when only
one independent variable is involved.
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Both of these approximations are derived from the appropriate Taylor series
expansions of functions discussed in Section 1.12 by retaining only the linear terms.

Find the tangent plane approximation to the function z = x> — 3y? near the point
(1,2).

Solution Setting xo = 1, yp = 2 and substituting into (35) gives
7z~ —=1142(x — 1) — 12(y — 2) for (x, y) close to (1, 2). u

1.11.. Integrals

indefinite and
definite integrals

THEOREM 1.4

A differentiable function F(x) is called an antiderivative of the function f(x)
on some interval if at each point of the interval dF/dx = f(x). If F(x) is any
antiderivative of f(x), the indefinite integral of f(x), written [ f(x)dx, is

ff(x)dx = F(x)+c,

where c is an arbitrary constant called the constant of integration. The function f(x)
is called the integrand of the integral. Thus, an indefinite integral is a function, and
an antiderivative and an indefinite integral can only differ by an arbitrary additive
constant.

The expression fab f(x)dx, called a definite integral, is a number and may be
interpreted geometrically as the area between the graph of f(x) and the lines x = a
andx = b, forb > a,with areas above the x-axis counted as positive and those below
it as negative.

The relationship between definite integrals that are numbers and indefinite
integrals that are functions is given in the next theorem, included in which is also
the mean value theorem for integrals. See the references at the end of the chapter
for proofs and further information.

Fundamental theorem of integral calculus and the mean value theorem for integrals
If F/(x) is continuous in the interval a < x < b, throughout which F’(x) = f(x),
then

/bf(x)dx = F(b) — F(a).
Another result is
b
[ 1wax=@-are.

if f is differentiable, where the number &, although unknown, lies in the interval
a < & < b. In this form the result is called the mean value theorem for integrals.
|
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convergence and
divergence of
improper integrals

Cauchy principal value

An improper integral is a definite integral in which one or more of the following
cases arises: (a) the integrand becomes infinite inside or at the end of the interval
of integration, or (b) one (or both) of the limits of integration is infinite.

Types of Improper Integrals
Case (a)

If the integrand of an integral becomes infinite at a point ¢ inside the interval of
integration a < x < b as shown in Fig. 1.12a, the improper integral is said to exist
if the limits in (36) exist. When the improper integral exists it is said to converge to
the (finite) value of the following limit:

b c—h b
/a Fx)dx = lim / £ dx + lim f S (36)

In this definition 2 > 0 and k > 0 are allowed to tend to zero independently of
each other. If, when the limit is taken, the integral is either infinite or indeterminate,
the integral is said to diverge.

Some integrals of this type diverge when & and k are allowed to tend to zero
independently of each other, but converge when the limit is taken with & = k, in
which case the result of the limit is called the Cauchy principal value of the integral.
Integrals of this type arise frequently when certain types of definite integral are
evaluated in the complex plane by means of contour integration (see Chapter 15,
Section 15.5).

Case (b)

If a limit of integration in a definite integral is infinite, say the upper limit as shown
in Fig. 1.12b, then, when it exists, the improper integral is said to converge to the
value of the limit

00 R
/a f(x)dx:lgi_r)rolo/a f(x)dx, (37)

y=fx)

o |y

|
a

(a) (b)
FIGURE 1.12 (a) f(x) is infinite inside the interval of integration. (b) The
interval of integration is infinite in length.

[ S —
L
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and the integral is divergent if the limit is either infinite or indeterminate. If both
limits are infinite, the improper integral is said to converge to the value of the limit

[’} R
/_oo f(x)dx = R->£H§l—>oo /;s f(x)dx (38)

when it exists, and the integral is said to be divergent if the limit is either infinite or
indeterminate.

In (38) R and S are allowed to tend to infinity independently of each other.
Integrals of this type also have Cauchy principal values if the foregoing process
leads to divergence, but the integrals are convergent when the limit is taken with
R = S. Integrals of this type also occur when certain real integrals are evaluated by
means of contour integration (see Chapter 15, Section 15.5).

Elementary examples of convergent improper integrals of the types shown in
(36) to (38) are

Typ _x—»p 1
/ udx:——ncotpn, (p* <1,
o x—1 P

dx
14 x2

=T.

/ exp(—x)sinxdx =1/2 and /
0 —00

Differentiation under the integral sign — Leibniz’rule If&(¢), n(¢), d&/dt, dn/dt,
f(x,t),and df/dt are continuous for #y < ¢ < #; and for x in the interval of integra-
tion, then

d (" M af(x, 1) dn d
dar - flx,t)dx = fg(t) = dx + f(n(t),t)E - f(s(t)’t)ﬁ' .

This theorem is used, for example, in Chapter 18 when discussing discontinuous
solutions of a class of partial differential equations called conservation laws. Exten-
sions of the theorem to functions of more variables are developed in Chapter 12,
Section 12.3, where certain vector integral theorems are developed, and applica-
tions of the results of that section to fluid mechanics are to be found in Chapter 12,
Section 12.4.

An application of Theorem 1.5 that is easily checked by direct calculation is

d ("

[2
— (x2+t)dx:/ dx+ (t*+1) -2t — (4% +1) -2 =26 — 5> — 4t
dt Jy 2

A proof of Leibniz’ rule can be found, for example, in Chapter 12 of reference [1.6].

112 Taylor and Maclaurin Theorems
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THEOREM 1.6

Taylor’s theorem for a function of one variable Let a function f(x) have deriva-
tives of all orders in the interval a < x < b. Then for each positive integer n and
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Taylor polynomial

Maclaurin’s theorem

mean value theorem

each xg in the interval

(x — x0)

2
f(x) = f(xo) + (x — x0) fP(x0) + o fO(x0) + -

n (x —'xo)

n! - £ (x0) + Rura(x),

where f)(x) = d’ f/dx", and the remainder term R, (x) is given by

(x _ xo)n+1

EE RO

Ri1(x) =

for some & between xy and x. [ |

Taylor’s theorem becomes the Taylor series for f(x) when n is allowed to
become infinite, and if the remainder term is neglected in Taylor’s theorem the
result is called the Taylor polynomial approximation to f(x) of degree n. The Taylor
polynomial of degree 1 is simply the tangent line approximation to f at xp given
in (34).

Taylor’s theorem reduces to Maclaurin’s theorem if x; = 0, and if we allow n to
become infinite in Maclaurin’s theorem, it becomes the Maclaurin series for f(x).

A special case of Theorem 1.6 arises when Taylor’s theorem is terminated with
the term R (x), corresponding to n = 0, because the result can be written

f) - fxo) _ 4
= , 39
—— f®) (39)
with & between xj and x, and in this form it is called the mean value theorem for
derivatives (see the last result of Theorem 1.4).
A Taylor series is an example of an infinite series called a power series, the
general form of which is

ian(x—xo)” =a0+a1(x—xo)+a2(x—x0)2+-~-. (40)

n=0

In (40) the quantity x is a variable, the numbers g; are the coefficients of the power
series, the constant xj is called the center of the series, or the point about which the
series is expanded, and unless otherwise stated, x, xo, and the g; are real numbers,
so the power series is a function of x.

A power series is said to converge for a given value of x if the sum of the infinite
series for this value of x is finite. If the sum is infinite, or is not defined, the power
series will be said to diverge for that value of x. Power series converge in an interval
Xp — R < x < xo + R, where the number R is called the radius of convergence of
the series. Expressions for R are derived in Section 15.1.

The interval xo — R < x < xp + R is called the interval of convergence of the
power series. A power series converges for all x inside the interval of convergence
and diverges for all x outside it, and the series may, or may not, converge at the
end points of the interval. The convergence properties of power series are shown
diagramatically in Fig. 1.13, and results (40) and combining expressions for R with
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Interval of

. Convergence .
Divergence A Divergence
{r AL
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Xo— R Xq Xg+ R

FIGURE 1.13 Interval of convergence of a power series with center xp.

(40) gives the following theorem (see the references at the end of the chapter for
real variable proofs of the following results and for more information).

Ratio test and nth root test for the convergence of power series The power series

o0
Zan(x —x0)" = ao+ a1(x — xo) + ax(x — Xo)2 +oee

n=0

converges in the interval of convergence xo — R < x < xp + R, where the radius of
convergence R is determined by either of the formulas

(a) R=1/ lim |a,y1/a,| or (b) R=1/ lim |a,|'/".
n—o00 n—0o

The power series will diverge outside the interval of convergence, and its behavior
at the ends of the interval of convergence must be determined separately. ]

A simple result on the convergence of a series that is often useful is the alter-
nating series test. An alternating series is so named because the signs of successive
terms of the series alternate in sign.

The alternating series test for convergence The alternating series Y oo (—1)"1a,
converges if a, > 0 and a,4+1 < a, for all n and lim,,_, , a, = 0. [ |

The following theorem on the differentiation and integration of power series
is often needed, and it is a real variable form of a result proved later in Chapter 15
when complex power series are studied.

Differentiation and integration of power series Let a power series have an interval
of convergence xp — R < x < xo + R. Then the series may be differentiated and
integrated term by term, and in each case the resulting series will have the same
interval of convergence as the original series. In addition, within an interval of
convergence common to any two power series, the series may be scaled by a constant
and added or subtracted term by term and the resulting power series will have the
same common interval of convergence. [ |

The simplest form of Taylor’s theorem for a function of two variables that finds
many applications is given in the next theorem.

Taylor’s theorem for a function of two variables Let f(x, y) be defined for a <
x < b and ¢ < y < d and have continuous partial derivatives up to and including
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those of order 2. Then for xy and yp any points such thata < xy < band ¢ < yp <d,

f(x,y) = f(x0, yo) + (x = x0) fr(x0, yo) + (¥ — ¥0) fy(x0, Y0)
o= 30 e+ €. 0+ 1) + 205 — x0)(y = 30)
X fey(x0 + & 30+ (¥ = 0)* fry (X0 + &, yo + )],

where the numbers & and n are unknown, but & lies between xy and x and 7 lies
between yy and y. ]

The group of second order partial derivatives in Theorem 1.10 forms the re-
mainder term, and when these derivatives are ignored, the result reduces to the
tangent plane approximation to f(x, y) at the point (xy, yo) given in (35).

More information on Taylor’s theorem and series can be found, for example,
in reference [1.2].

ﬁ Cylindrical and Spherical Polar
Coordinates and Change of Variables
in Partial Differentiation

THEOREM 1.11

Mathematical problems formulated using a particular coordinate system, such as
cartesian coordinates, often need to be reexpressed in terms of a different co-
ordinate system in order to simplify the task of finding a solution. When partial
derivatives occur in the formulation of problems, it becomes necessary to know
how they transform when a different coordinate system is used. The fundamental
theorem governing the transformation of partial derivatives under a change of vari-
ables takes the following form (see the references at the end of the chapter for the
proof of Theorem 1.11 and for more examples of its use).

Change of variables in partial differentiation Let f(xi, xs,...,x,) be a differ-
entiable function with respect to the n independent variables xi, xa, ..., X,, and
let the n new independent variables uy, uy, ..., u, be determined in terms of
X1, X, ..., X, by
xlz)(l(ulelz’"'vun)r xzz)(z(ulyl'th-"vun)a"-v xn=Xn(u1su21~-~aun)v
where Xj, X3, ..., X, are differentiable functions of their arguments. Then, if as a
result of the change of variables the function f(x1, x2, ..., x,) becomes the function
F(Xi, X5, ..., X,), and using chain rules we have

oF  df 94X af 0.Xxo af 0.X,

ouy - 0xy duq dxy duy 0x,, ouq

oF af a.X af 0.Xo af 0.X,

_— = 4+ — Z 4.+ 7

ouy 0x1 ouy dxy duyp 0x,, duy (41)

oF of 0.X of 0.X of 0.X,
- _f_1+_f_2++_f_"
ouy, 0x1 ouy, dx; duy, 0x, ouy,
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To find higher order partial derivatives it is necessary to express the relationships
between the operations of differentiation in the two coordinate systems, rather than
between the actual derivatives themseves. This can be accomplished by rewriting
the results of Theorem 1.11 in the form of partial differential operators as follows:

0 dXp 0 X, 0 0X, 0

dui  owj 0x,  dup dxp  duy 0xy

g dXp 0 0X; 0 0X, 0

dur o x| ow dxy T oup oxy (42)
X% 00X 0 0X, 0

du,  Ou, X1 | du, dxa | duy, 9%,

When expressed in this form the relationships between the partial differentia-
tion operations d/dxy, 3/9xy, ..., d/9x, and 9/duy, d/duy, ..., d/du, become clear.
This interpretation is needed when finding higher order partial derivatives such as
82 F/durduy, because

PF 0 OF\ _(dXxi 0 9% 9 93X 9\ (0F
durduy  dup \dup ) \ 0wy 9x;  Ouy 9xy ouy 9x, dup )
Animportant combination of partial derivatives that occurs throughout physics

and engineering is called the Laplacian of a function. When a twice differentiable

function f(x, y, z) of the cartesian coordinates x, y, and zis involved, the Laplacian
of f,denoted by A f and sometimes by V? f, read “del squared f,” takes the form

Af:VZfzaz_f_'_azf 82](‘

G 43
0x2 = 9y? 97 “3)

Cylindrical Polar Coordinates (r, 0, z)
The cylindrical polar coordinate system (r, 0, z) is illustrated in Fig. 1.14, and its

relationship to cartesian coordinates is given by

x=rcosf, y=rsinf, z=z Wwith0<6 <27 andr > 0. (44)

Spherical Polar Coordinates (r, ¢, 0)

The spherical polar coordinate system (7, ¢, ) shown in Fig. 1.15 is related to carte-
sian coordinates by

x =rsinfcos¢p, y=rsinfsing, z=rcosb, (45)
with 0 <0 <7, 0<¢ <2m.

The derivation of the formulas for the change of variables in functions of several
variables can be found in any one of references [1.1] to [1.7], where cylindrical and
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>z/ P(r, 0, Z)

P(r.0.6)

1,

' y
FIGURE 1.14 Cylindrical polar
coordinates (r, 6, z). FIGURE 1.15 Spherical polar coordinates (r, ¢, 0).
spherical polar coordinates are also discussed. Information on general orthogonal
coordinate systems can be found in references [G.3] and [2.3].
1. By making the change of variables x =rcosf,y = becomes F(r, ¢, 0), show that in spherical polar coordi-
rsin@, z = z, in the function f(x, y, z), when it becomes nates
the 'function F(r, 0, z), show that in cylindrical polar co- OF . of Caf af
ordinates — = sinf cos ¢ — + sin ¢ sin — + cos ¢ —
9F af af ar x ay 0z
— =cosf— +sinf—, 0 af . of . of
ar ax ay 8—=rcos¢cos98— +rcos¢sm03——rsm¢a—
OF _af of  OF  of ¢ x y z
— = —rsinf— +rcosh—, — =—". 9 . . of . af
060 ox ay 0z 0z 7 :—rsmq’)sm@a— +rsm¢cos€a—.
z X
2. Use the results of Exercise 1 to show that in cylindrical Y
polar coordinates the Laplacian 4. Use the results of Exercise 3 to show that in spherical
2f 0f 0°f polar coordinates the Laplacian
Af = — + — 4+ —> becomes
ax2 9y 32 Ff L vf S
ap_ PF LOF 1PF 0F M=t Tz
T2 roar r2ae? a2’ b
and hence that an equivalent form of A F is ceomes
Ap_ L[2(JOF\ 10 (0F\ 0 (OF AF_13<,2E>+ ! (82_F>
=—|—|r— -\ — — \r— . - :
rLor Uor ) oo \oe ) oz "oz rtar \ ar) " rsin’o \ 99
3. By making the change of variable x = rsinf cos¢, y = +2;. 9 (sineg) .
rsinf sin ¢, z = r cos @ in the function f(x, y, z), when it resing 90 90
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1:14 — Inverse Functions and the Inverse
WSS Function Theorem

THEOREM 1.12

In mathematics and its applications it is often necessary to find the inverse of a
function y = f(x) so x can be expressed in the form x = g(y), and when this can be
done the function g is called the inverse of f and is such that y = f(g(y)). When
f is an arbitrary function its inverse is often denoted by f~!, and this superscript
notation is also used to denote the inverse of trigonometric functions so if, for
example, y = sinx, the inverse sine function is written sin”!, so that x =sin"! y.
However, the notation y = arcsin y is also used with the understanding that the
notations arcsin and sin~! are equivalent.

A trivial example of a function whose inverse can be found unambiguously
is y = ax + b, because provided a # 0 we can write x = (y — b)/a for all x and y.
This is not the case, however, when trigonometric functions are involved, because
the function y = sinx will give a unique value of y for any given x, but given y
there are infinitely many values of x for which y = sin x. This and similar inverse
trigonometric functions are considered in elementary calculus courses. There the
multivalued nature of the inverse sine function is resolved by restricting it to make
y lie in a specific interval chosen so that one y corresponds to one x and, conversely,
one x corresponds to one y. This situation is described by saying that the relationship
between x and y is one-to-one. Specifically, in the case of the sine function, this is
accomplished by requiring that if x = sin y, the inverse function y = Arcsin x is
restricted so its principal value lies in the interval —m/2 < Arcsinx < 7/2, where
the domain of definition of the inverse functionis —1 < x < 1.

A different possibility that arises frequently is when x and y are related by an
equation of the form f(x, y) = 0 from which it is impossible to extract either x
as a function of y, or y as a function of x in terms of known functions. A typical
example of this type is f(x, y) = x> — 2y? — sin xy. To make matters precise, if x
and y are related by an equation f(x,y) =0, then if a function y = g(x) exists
such that f(x, g(x)) = 0, the function y = g(x) is said to be defined implicitly by
f(x,y) =0.

Although it is often not possible to find the function g(x), it is still necessary
to know when, in a neighborhood of a point (xg, yp), given a value of x, a unique
value of y can be found, sometimes only numerically. The implicit function the-
orem that follows is seldom mentioned in first calculus courses because its proof
involves certain technicalities, but it is quoted here in the simplest possible form
because of its fundamental importance and the fact that is it frequently used by
implication.

The implicit function theorem Let f(x, y) and f,(x, y) be continuous in a region
D of the (x, y)-plane and let (x, yo) be a point inside D, where f(xo, yp) = 0 and
£,(x0. o) # 0. Then

(i) There is a rectangle R inside D containing (x, yo) at all points of which there
can be found a unique y such that f(x, y) = 0.

(i) If the value of y is denoted by g(x), then yp = g(xp), with f(x, g(x)) =0, and
g(x) is continuous inside R.
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(iii) If, in addition, f,(x, y)is continuous in D then g(x) is differentiable in R and

£ = -t :

In general terms, the implicit function theorem gives conditions that ensure the
existence of an inverse function that is continuous and smooth enough to be differ-
entiable. The theorem has a more general form involving functions f(x1, x2, ..., X,)
of n variables, though this will not be given here. The interested reader can find ac-
counts of the implicit function theorem and some of its generalizations in references
[1.4], [1.6], and [5.1].



CHAPTER 1
TECHNOLOGY PROJECTS

Project 1

Linear Difference Equations and
the Fibonacci Sequence

In Italy in 1202, Leonardo of Pisa, also known as Fi-
bonacci, posed the following question. Let a newly
born pair of rabbits produce two offspring each
month, with breeding starting when they are 2 months
old. Assuming that the pair of offspring start breed-
ing in the same fashion when 2 months old, and that
the process continues thereafter in a similar manner
with no deaths, how many pairs of rabbits will there
be after » months?

If u,, is the number of pairs of rabbits after n
months, the production of rabbits can be represented
by the linear difference equation, or recurrence
relation,

Upt2 = Upt1 + Uy,

where the sequence of numbers u, withr =1,2, ...
is generated by setting ©; = 1 and u, = 1, since this
represents the initial pair of rabbits that began the
breeding process. A simple calculation using this dif-
ference equation shows that the sequence of numbers
generated in this manner that represents the number
of pairs of rabbits present each month is

1,1,2,3,5.8, ...,

and this is called the Fibonacci sequence. This se-

quence is found to occur in the study of regular solids,

in numerical analysis, and elsewhere in mathematics.
A linear difference equation of the form

Upip = Alyyy + buy,

with a and b real numbers, can be solved by substitut-
ing u, = A\" into the difference equation and find-
ing the two roots Ay and A, of the resulting quadratic
equation in . When A; # A,, the general solution is
u, = A1} + AVJ,andwhen Ay = A, = A, say, the gen-
eral solutionis u, = (A + nA;)". The arbitrary con-
stants A; and A, are found by requiring u,, to satisfy
some given conditions of the form u; = ¢ and u, = 8,

where the numbers o and g specify the way the se-
quence starts (the initial conditions).

Use this method to show that the solution u,, for
the Fibonacci sequence is

-l (%) - (57

forn=1,2,....

Make use of computer algebra to generate the first
30 terms of the Fibonacci sequence directly from the
difference equation, and verify that the results are in
agreement with the preceding formula.

Use computer algebra to show that
lim,,_, oo (4 /1) = %(\/5 + 1). This number is called
the golden mean, and in art and architecture it rep-
resents the ratio of the sides of a rectangle that is
considered to have the most pleasing appearance.

Project 2

Erratic Behavior of a Sequence Generated
by a Difference Equation

1. Not all difference equations generate sequences
of numbers that evolve steadily as happens with
the Fibonacci sequence. Use computer algebra
to generate the first 20 terms of the sequence
produced by the difference equation

Upsio = 2Upy — Su, withuy =1, u, = -3,

and observe its erratic behavior. Use the method
of Project 1 to determine the analytical solution,
and by means of computer algebra confirm that
the two results are in agreement. Examine the
analytical solution and explain why the behavior
of the sequence of terms is so erratic.

2. Construct a difference equation of your own in
which the roots A; and A, are equal. Find the an-
alytical solution and use computer algebra to de-
termine the first 20 terms of the sequence. Verify
that these terms are in agreement with the ones
generated directly from the difference equation.

51



PART TWO

VECTORS AND

MATRICES

Chapter 2

Chapter 3

Chapter 4

Vectors and Vector Spaces

Matrices and System of Linear
Equations

Eigenvalues, Eigenvectors, and
Diagonalization

53



CHAPTER

Vectors and Vector Spaces

ngineers, scientists, and physicists need to work with systems involving physical quan-

tities that, unlike the density of a solid, cannot be characterized by a single number.
This chapter is about the algebra of important and useful quantities called vectors that
arise naturally when studying physical systems, and are defined by an ordered group of
three numbers (a, b, c). Vectors are of fundamental importance and they play an essen-
tial role when the laws governing engineering and physics are expressed in mathematical
terms.

A scalar quantity is one that is completely described when its magnitude is known,
such as pressure, temperature, and area. A vector is a quantity that is completely specified
when both its magnitude and direction are given, such as force, velocity, and momentum.
A vector can be described geometrically as a directed straight line segment, with its length
proportional to the magnitude of the vector, the line representing the vector parallel to
the line of action of the vector, and an arrow on the line showing the direction along the
line, or the sense, in which the vector acts.

This geometrical interpretation of a vector is valuable in many ways, as it can be used
to add and subtract vectors and to multiply them by a scalar, since this merely involves
changing their magnitude and sense, while leaving the line to which they are parallel
unchanged. However, to perform more general algebraic operations on vectors some other
form of representation is required. The one that is used most frequently involves describing
a vector in terms of what are called its components along a set of three mutually orthogonal
axes, which are usually taken to be the axes O{x, y, z} in the cartesian coordinate system.
Here, by the component of a vector along a given line /, we mean the length of the
perpendicular projection of the vector onto the line /.

We will see later that this cartesian representation of a vector identifies it completely
in terms of three components and enables algebraic operations to be performed on it. In
particular, it allows the introduction of the scalar product, or dot product, of two vectors
that results in a scalar, and a vector product, or cross product, of two vectors that leads to
a vector.

Finally, vectors and their algebra will be generalized to n space dimensions, leading
to the concept of a vector space and to some related ideas.
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scalar

vector

directed straight
line segment

translation

Many quantities are completely described once their magnitude is known. A
typical example of a physical quantity of this type is provided by the tempera-
ture at a given point in a room that is determined by the number specifying its value
measured on a temperature scale, such as degrees F or degrees C. A quantity such
as this is called a scalar quantity, and different examples of mathematical and phys-
ical scalar quantities are real numbers, length, area, volume, mass, speed, pressure,
chemical concentration, electrical resistance, electric potential, and energy.

Other physical quantities are only fully specified when both their magnitude
and direction are given. Quantities like this are called vector quantities, and a typical
example of a vector quantity arises when specifying the instantaneous motion of a
fluid particle in a river. In this case both the particle speed and its direction must be
given if the description of its motion is to be complete. Speed in a given direction
is called velocity, and velocity is a vector quantity. Some other examples of vector
quantities are force, acceleration, momentum, the heat flow vector at a point in a
block of metal, the earth’s magnetic field at a given location, and a mathematical
quantity called the gradient of a scalar function of position that will be defined
later. By definition, the magnitude of a vector quantity is a nonnegative number
(a scalar) that measures its size without regard to its direction, so, for example, the
magnitude of a velocity is a speed.

A convenient geometrical representation of a vector is provided by a straight
line segment drawn in space parallel to the required direction, with an arrowhead
indicating the sense in which the vector acts along the line segment, and the length
of the line segment proportional to the magnitude of the vector. This is called a
directed straight line segment, and by definition all directed straight line segments
that are parallel to one another and have the same sense and length are regarded
as equal. Expressed differently, moving a directed straight line segment parallel
to itself so that its length remains the same and its arrow still points in the same
direction leaves the vector it represents unchanged. A shift of a directed straight line
segment of this type is called a translation of the vector it represents. For this reason
the terms directed straight line segment and vector can be used interchangeably. Some
examples of vectors that are equal through translation are shown in Fig. 2.1.

It must be emphasized that geometrical representations of vectors as directed
straight line segments in space are defined without reference to a specific coordinate
system. This purely geometrical interpretation of vectors finds many applications,
though a different form of representation is necessary if an effective vector algebra
is to be developed for use with the calculus. An analytical representation of vectors
that allows a vector algebra to be constructed with this purpose in mind can be based
on a general coordinate system. However, throughout this chapter only rectangular
cartesian coordinates will be used because they provide a simple and natural way
of representing vectors.

FIGURE 2.1 Equal geometrical vectors.
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FIGURE 2.2 A right-handed
rectangular cartesian coordinate system.

In rectangular cartesian coordinates the x-, y-, and z-axes are all mutually
orthogonal (perpendicular), and the positive sense along the axes is taken to be in
the direction of increasing x, y, and z. The orientation of the axes will always be
such that the positive direction along the z-axis is the one in which a right-handed
screw (such as a corkscrew) aligned with the z-axis will advance when rotated from
the positive x-axis to the positive y-axis, as shown in Fig. 2.2. A system of axes with
this property is called a right-handed system.

The end of a vector toward which the arrow points will be called the tip of the
vector, and the other end its base. Because a vector is invariant under a translation,
there is no loss of generality in taking its base to be located at the origin O of the
coordinate system, and its tip at a point P with the coordinates (a1, a2, as), say, as
shown in Fig. 2.3. An application of the Pythagoras theorem to the triangle OPP’

FIGURE 2.3 The vector from O to P and its components ay, az, and a3
in the x-, y-, z-coordinate system.
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shows the length of the line from O to P to be (a} + a3 + a3)"/?. This length is
proportional to the magnitude of the vector it represents, and as the base of the
vector is at O, the sense of the vector is from O to P. For convenience, the constant
of proportionality will be taken to be 1, so a directed straight line segment of unit
length will represent a vector of magnitude 1 and so will be called a unit vector.
Using this convention, the vector represented by the line from O to P in Fig. 2.3 has
magnitude (a? + a3 + a3)"/?. The three numbers ay, a,, and as, in this order, that
define the vector from O to P are called its components in the x, y, and z directions,
respectively.

A set of three numbers a1, a;, and a3 in a given order, written (ay, a;, asz), is
called an ordered number triple. As the coordinates (a1, a2, a3) of point P in Fig. 2.3
completely define the vector from O to P, this ordered number triple may be taken
as the definition of the vector itself. In general, changing the order of the numbers
in an ordered number triple changes the vector it defines.

Sometimes it is necessary to consider a vector whose base does not coincide with
the origin. Suppose that when this occurs the base C is at the point (cy, ¢z, ¢3) and the
tip D is at the point (d;, d», d3). Then Fig. 2.4 shows the components of this vector
in the x, y, and z directions to be d; — c1, d, — ¢2, and d3 — c3. These components
determine both the magnitude and direction of the vector. The vector is described
by the ordered number triple (d; — c1, d» — ¢2, d5 — ¢3), and the length of CD that
is equal to the magnitude of the vector is [(d; — ¢1)? + (d> — ¢2)* + (d5 — ¢3)?]"/%.

For convenience, it is usual to represent a vector by a single boldface character
such as a, and its magnitude (length) by ||a||, called the norm of a. It is necessary to
say here that in applications of vectors to mechanics, and in some purely geometrical
applications of vectors, the norm of vector r is often called its modulus and written
[r|. When this convention is used, because [r| is a scalar it is usual to denote it by
the corresponding ordinary italic letter r, so that r = |r|.

If the base and tip of a vector need to be identified by letters, a vector such as
the one from C to D in Fig. 2.4 is written CD, with underlining used to indicate that
a vector is involved, and the ordering of the letters is such that the first shows the

Z
So
\\
~
N
\\\ D
c |
3 |
N I
A \
\
I
C I
0 | (&) | d2
f Z7 f
N | / | 7 y
N 7 I ,
\\\/ | /
c /
T C'k T— }//
d, 77777777777777;}D/D'

FIGURE 2.4 Vector directed from point C at
(Cl, o, C3) to point D at (dl, dy, d3).
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base and the second the tip of the vector. Thus, CD and DC are vectors of equal
magnitude but opposite sense, and when these vectors are represented by arrows,
the arrows are parallel and of equal length, but point in opposite directions.

PEDTITFEM If in Fig. 2.4, C is the point (=3, 4, 9) and D the point (2, 5, 7), the vector
CD has components 2 —(-=3)=5,5-4=1, and 7—9 = -2, and so is rep-
resented by the ordered number triple (5, 1, —2), whereas vector DC has
components —5, —1, and 2 and is represented by the ordered number triple
(-5,-1,2). [ |

Having illustrated the concepts of scalars and vectors using some familiar ex-
amples, we now develop the algebra of vectors in rather more general terms.

Vectors

A vector quantity a is an ordered number triple (a1, a», az) in which ay, as,
and a3 are real numbers, and we shall write a = (a1, a;, a3). The numbers a;,
ay, and a3, in this order, are called the first, second, and third components of
vector a or, equivalently, its x-, y-, and z-components.

Null vector

The null (zero) vector, written 0, has neither magnitude nor direction and is
the ordered number triple 0 = (0, 0, 0).

Equality of vectors

Two vectors a = (a1, ay, az) and b = (b1, by, b3) are equal, written a = b, if,
and only if, a; = by, a; = by, and a3 = bs.

If a=(a1,-5,6),b=(3,by,b3) and ¢ = (3, -5,1), thena=b if a; =3, b = -5
and b3 = 6,and b = cif b, = —5 and b3 = 1, but a # ¢ for any choice of a; because
6 #1. [ ]

Norm of a vector

The norm of vector a = (ay, az, az), denoted by ||a|, is the non-negative real
number
1/2
lall = (a} + a3 +a3)"”,
and in geometrical terms ||a|| is the length of vector a. The norm of the null
vector 0 is ||0|| = 0. For example, if a is in m/sec, “length” of a is in m/sec.

Ifa = (1,-3,2), then ||a] = [12 + (=3)? + 2%]"/? = V14, as illustrated in Fig. 2.5.
|
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FIGURE 2.5 Vector a and its norm | a||.

The sum of two vectors

Ifa = (a1, a2, a3) and b = (b1, by, b3) have the same dimensions, say, both are
m/sec, their sum, written a + b, is defined as the ordered number triple (vector)
obtained by adding corresponding components of a and b to give

a+b=(a;+by,a+ by, a3 + b3).

Ifa=(1,2,-5)and b = (-2, 2, 4), then
a+b=>1+(-2).2+2,-5+4)=(-1.4,-1). n

Multiplying a vector by a scalar

Leta = (a1, az, a3) and A be an arbitrary real number. Then the product 1a is
defined as the vector

ra = (Aay, Aap, Aas).

Let a=(2,-3,5), b=(-1,2,4). Then 2a = (4, -6, 10), 4b = (—4,8,16), and
2a+4b = (4+(—4), -6+ 8,10+ 16) = (0, 2, 26). [ |

This definition of the product of a vector and a scalar, called scaling a vector,
shows that when vector a is multiplied by a scalar A, the norm of a is multiplied by
|1], because

1/2

[ral = (A2af 4+ A%a3 + A%a3) " = |A| - ||a.

It also follows from the definition that the sense of vector a is reversed when it is
multiplied by —1, though its norm is left unaltered. The definition of the difference
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FIGURE 2.6 The vector sum a + b.

of two vectors is seen to be contained in the definition of their sum, becausea — b =
a + (—b). In particular, when a = b, we find that that a — a = 0, showing that —a is
the additive inverse of a.

The geometrical interpretations of the sum a + b, the difference a — b, and the
scaled vector Aain terms of their components are shown in Figs. 2.6 to 2.8, though to
simplify the diagrams only the two-dimensional cases are illustrated. This involves
no loss of generality, because it is always possible to choose the (x, y)-plane to
coincide with the plane containing the vectors a and b.

Vector Addition by the Triangle Rule

Consideration of Fig. 2.6 shows that the addition of vector b to vector a is obtained
geometrically by translating vector b until its base is located at the tip of vector a,
and then the vector representing the sum a + b has its base at the base of vector a
and its tip at the tip of the repositioned vector b. Because of the triangle involving
vectors a, b, and a + b, this geometrical interpretation of a vector sum is called the
triangle rule for vector addition. The triangle rule also applies to the difference
of two vectors, as may be seen by considering Fig. 2.7, because after obtaining —b
from b by reversing its sense, the difference a — b can be written as the vector sum
a + (—b), where —b is added to vector a by means of the triangle rule.

The algebraic results discussed so far concerning the addition and scaling of vec-
tors, together with some of their consequences, are combined to form the following
theorem.
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FIGURE 2.7 The vector difference a — b.
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FIGURE 2.8 The vector ka for different values of k.

Addition and scaling of vectors Let P, Q, and R be arbitrary vectors and let & and
B be arbitrary real numbers. Then:

1. P+Q=Q+P (vector addition is commutative);
2 P+0=0+P=P (0 is the identity element in vector addition);
3. P+Q+R=P+(Q+R) (vector addition is associative);
4 a(P+Q)=aP+aQ (multiplication by a scalar is distributive

over vector addition);

5. (aB)P = a(BP) = B(«P) (multiplication of a vector by a product
of scalars is associative);

6. (x+p)P=aP+pP (multiplication of a vector by a sum of scalars
is distributive);

7. P = || - ||P]| (scaling P by « scales the norm of P by |«]).

Proof The results of this theorem are all immediate consequences of the above
definitions so as the proofs of results 1 to 6 are all very similar, and result 7 has
already been established, we only prove result 4.

Let P = (pi1, p2, p3) and Q = (g1, ¢2, g3); then
a(P+Q) =a(p1 +q1, p2+q. p3 +q3)
= a[(p1, p2, p3) + (@1, ©2. 43)]
= a(p1, p2, p3) +@(q1, 42, ¢3)
=aP + «Q,

as was to be shown. [ |

The Representation of Vectors in Terms
of the Unit Vectors i, j, and k

The components of a vector, together with vector addition, can be used to describe
vectors in a very convenient way. The idea is simple, and it involves using the
standard convention that i, j, and k are vectors of unit length that point in the
positive sense along the x-, y-, and z-axes, respectively. Vectors such as i, j, and k
that have a unit norm (length) are called unit vectors, so |i|| = ||j|| = ||k = 1.
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FIGURE 2.9 Vector a in terms of the unit vectors i, j, and k.

An arbitrary vector a can be represented by an “arrow,” with its base at the
origin and its tip at the point A with cartesian coordinates (ay, ay, as) where, of
course, a1, a, and as are also the components of a. Consequently, scaling the unit
vectors i, j, and k by the respective x, y, and z components a;, a, and asz of a,
followed by vector addition of these three vectors, shows that a can be written

a=uai+ {lzj + a3k, (1)
as can be seen from Fig. 2.9. The representation of vector a in terms of the unit
vectors i, j, and k in (1), and the ordered triple notation, are equivalent, so

a=aji+ aj+ ak = (a1, a2, a3). (2)

In some applications a vector defines a point in space, so vectors of this type
are called position vectors. The symbol r is normally used for a position vector, so
if point P with coordinates (x, y, z) is a general point in space, as in Fig. 2.10, its
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FIGURE 2.10 Position vector of a general point P in space.
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position vector relative to the origin is
r = xi+ yj + zk, (3)
and its norm (length) is

el = (% + y* + )2 (4)

(a) Find the distance of point P from the origin given that its position vector is r =
2i 4+ 4j — 3k. (b) If a general point P in space has position vector r = xi + yj + zk,
describe the surface defined by ||r| = 3 and find its cartesian equation.

Solution (a) Asris the position vector of P relative to the origin, the distance of
point P from the origin is ||r|| = [22 + 4% + (=3)?]'/? = V29.

(b) As|r| = 3 (constant), it follows that the required surface is one for which every
point lies at a distance 3 from the origin, so the surface must be a sphere of radius
3 centered on the origin. As r = xi+ yj + zk is the general position vector of a
point on this sphere, the result [r| = 3 is equivalent to (x> + y*> + z?)!/? = 3, so the
cartesian equation of the sphere is x?> + y> + 7> = 9. ]

Because of the equivalence of the ordered number triple notation and the
representation of vectors in terms of the unit vectors i, j, and k given in (2), both
systems obey the same rules governing the addition and scaling of vectors in terms
of their components. Thus, the following rules apply to the combination of any two
vectors a = aji + azj + ask,b = bii + byj + bsk expressed in terms of i, j, and k, and
an arbitrary real number .

The sum a + b is given by
a+b=(a+b)i+ (a2 + b)j+ (as + b3)k. (5)
The product A a is given by
ra=2Aiaii+ raj+ razk. (6)
The norm of scaled vector A a is given by
[Aall =] |all

= [Al(af + a3 + a%)l/z. (7)

Ifa=5i+j—3k and b=2i—2j— 7k, find (a) a+b, (b) a—b, (c) 2a+b, and
(d) |-2al.

Solution

(a) a+b=(5i+j—3k)+ (2i — 2j — 7k)
=(5+2)ji+0-2)j+(-3-7)k
=7i—j— 10k

(b) a—b = (5i+j—3k) — (2i — 2j — 7k)

=0-2)i+(1-(-2))j+(-3-(-7)k
— 3i+ 3j + 4k.
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(©) 2a+b = 2(5i+j — 3k) + (2i — 2j — 7K)
= (10i + 2j — 6k) + (2i — 2j — 7K)
= (10+2)i+ 2+ (-2))j+ (=6 + (-7)k

= 12i — 13k.
(d) |—2a| = [(—10)% + (—2)? + 62] > = 24/35
or, equivalently,

|—2a] = |-2| - [la]| = 2|la|l = 2[5* + 12 + (=3)*]'/? = 2V/35. n

Finding a Unit Vector in the Direction

of an Arbitrary Vector

It is often necessary to find a unit vector in the direction of an arbitrary vector
a = a;i + ayj + azk. This is accomplished by dividing a by its norm ||a||, because the
vector a/||a|| has the same sense as aand itsnorm s 1. It is convenient to use a symbol

related to an arbitrary vector a to indicate the unit vector in its direction, so from
now on such a vector will be denoted by 4, read “a hat.” So if a = ai + a»j + azk,

A o Q 1/2
a = a/la]l = (a1i + aj + a3k)/(a? + a2 + a2)"/

N wre o ®
= (a1/a)i+ (az2/a)j + (az/a)k, witha = (af +ai +a3)"".

As the symbols i, j, and k are used exclusively for the unit vectors in the x-, y-, and
z-directions, it is not necessary to write 1, j, and k.
The relationship between a, 4, and | a|| can be put in the useful form

a=|ala, )

showing that a general vector a can always be written as the unit vector a scaled by
[la]l. Unless otherwise stated, a # 0.

Find a unit vector in the direction of a = 3i + 2j + 5k.
Solution As || = (3% + 22 + 5%)1/? = /38, it follows that

a=a/|all = (3/v38)i+ (2/+/38)j + (5/v/38)k. m

It is known from experiments in mechanics that forces are vector quantities and so
combine according to the laws of vector algebra. Use this fact to find the sum and
difference of a force of 9 units in the direction of 2i + j — 2k and a force of 10 units
in the direction of 4i — 3j, and determine the magnitudes of these forces.

Solution We will use the convention that a unit vector represents a force of 1 unit.
Let F be the force of 9 units. Then as ||2i + j — 2k|| = [2% + 1% 4+ (=2)?]"/? = 3, the
unit vector in the direction of F is

F=(1/3)2i+j —2k) = (2/3)i + (1/3)j - (2/3)k,
so F = 9F = 6i + 3j — 6k units.
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Similarly, let G be the force of 10 units. Then as ||4i — 3j|| = 5, the unit vector
in the direction of G is

G = (1/5)(4i — 3j) = (4/5)i — (3/5)i,

s0 G = 10G = 8i — 6j units.

Combining these results shows that F 4+ G = 14i — 3j — 6k units,and F — G =
—2i + 9j — 6k units, from which it follows that the magnitudes of the forces are
given by

IF + G|| = v/241 units and ||F — G|| = 11 units. |

Equality of vectors expressed in terms of unit vectors

As the difference of two equal and opposite vectors is the null vector 0, this
shows that if a = b, where a = a;i + ayj + a3k, and b = b;i + b,j + b3k, then
the respective components of vectors a and b must be equal, leading to the
result that

a =bif, and only if, &y = by, a, = by, and a3 = bs. (10)

Simple Geometrical Applications of Vectors

Although our use of vectors will be mainly in connection with the calculus, the
following simple geometrical applications are helpful because they illustrate basic
vector arguments and properties.

Although we have seen how an arbitrary vector can be expressed in terms of unit
vectors associated with a cartesian coordinate system, it must be remembered that
the fundamental concept of a vector and its algebra is independent of a coordinate
system. Because of this, it is often possible to use the rules governing elementary
vector algebra given in Theorem 2.1 to establish equations in a purely vectorial
manner, without the need to appeal to any coordinate system. Once a general
vector equation has been established, the representation of the vectors involved in
terms of their components and the unit vectors i, j, and k can be used to convert
the vector equation into the equivalent cartesian equations.

The purely vectorial approach to geometrical problems is well illustrated by
finding the vector AB in terms of the position vectors of points Aand B, and then
using the result to find the position vector of the mid-point of AB. After this, the
purely vectorial derivation of a geometrical result followed by its interpretation in
cartesian form will be illustrated by finding the equation of a straight line in three
space dimensions.

Vector AB in terms of the position vectors of A and B

Let a and b be the position vectors of points A and B relative to an origin O, as
shown in Fig. 2.11.
An application of the triangle rule for the addition of vectors gives

OA+ AB = 0B,
but OA = aand OB = b, so
a+AB=b,
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FIGURE 2.11 Vectors a, b, and AB.
giving
AB=b—a. (11)

When expressed in words, this simple but useful result asserts that vector AB is
obtained by subtracting the position vector a of point A from the position vector b
of point B.

Find the position vector of the mid-point of AB if point A has position vector a and
point B has position vector b relative to an origin O.

Solution Let point C, with position vector ¢ relative to origin O, be the mid-point
of AB, as shown in Fig. 2.12.
By the triangle rule,

0OA +AC = 0C,
but OA = a, and from (11) AC = (1/2)(b — a), so
OC=a+(1/2)(b - a),

so the required result is

¢c=0C=(1/2)(b + a). [ |

o
FIGURE 2.12 Cis the mid-point of AB.
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FIGURE 2.13 The straight line L.

The vector and cartesian equations
of a straight line

Let line L be a straight line through point A with position vector a relative to an
origin O, and let the line be parallel to a vector b. If P is an arbitrary point on line
L with position vector r relative to O, an application of the triangle rule for vector
addition to the vectors shown in Fig. 2.13 gives

r=0A+AP.

But OA = a, and as AP is parallel to b, a number A can always be found such that
AP = Ab, so the vector equation of line L becomes

r=a+ Ab. (12)

Notice that result (12) determines all points P on Lif A is taken to be a number in
the interval —oo < A < oo.

The cartesian equations of line L follow by setting a = aji + ayj + azk, b =
bii + byj + bsk, and r = xi + yj + zk in result (12), and then using the definition of
equality of vectors given in (10) to obtain the corresponding three scalar cartesian
equations. Proceeding in this way we find that

xi+ yj + zk = a1i + azj + azk + A(bii + byj + bsk),
so equating corresponding components of i, j, and k on each side of this equation
brings us to the required cartesian equations for L in the form

X1 =ai+ibi, xp=a+ by, x3=a3+ Abs. (13)

An equivalent form of these equations is obtained by solving each equation for
A and equating the results to get

X —ay y—a Z—as
= = =A. 14
by by b3 (14)
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This is the standard form (also called the canonical form) of the cartesian equa-
tions of a straight line. It is important to notice that when written in standard form
the coefficients of x, y, and z are all unity. Once the equation of a straight line is
written in standard form, equating each numerator to zero determines the compo-
nents (ay, ay, a3) of a position vector of a point on the line, while the denominators
in the order (b1, by, b3) determine the components of a vector parallel to the line.

A straight line L is given in the form
2x—-3 3—-y z+1
4 2 37

Find the position vector of a point on L and a vector parallel to L.

Solution When the equation is written in standard form it becomes

x=3/2 _y-3 _z+l_.
2~ 2 3 "

Comparing these equations with (14) shows that (a1, ay, a3) = (3/2,3, —1) and b =
(b1, b2, b3) = (2, =2, 3). So the position vector of a point on the line is a = (3/2)i +
3j — k, and a vector parallel to the line is b = 2i — 2j + 3k.

Neither of these results is unique, because ub is also parallel to the line for
any scalar i # 0, and any other point on L would suffice. For example, the vector
14i — 14j + 21k is also parallel to the line, while setting A = 2 leads to the result
(a1, a2, a3) = (11/2, —1, 5), corresponding to a different point on the same line, this
time with position vector a = (11/2)i — j + 5k. [ |

This section has introduced vectors both as geometrical quantities that can be represented
by directed line segments and, using a right-handed system of cartesian axes, as ordered
number triples. Definitions of the scaling, addition, and subtraction of vectors have been
given, and a general vector has been defined in terms of the set of three unit vectors i,
j, and k that lie along the orthogonal cartesian axes O{x, y, z}. Finally, the vector and
cartesian equations of a straight line in space have been derived, and the standard form of
the cartesian equations has been introduced from which a vector parallel to the line may
be found by inspection.

EXERCISES 2.1

. Prove Results 1, 3, and 6 of Theorem 2.1.

. Given that a = 2i + 3j — k, b =1 — j + 2k, and
¢=23i+4j + k, find (a) a + 2b — ¢, (b) a vector d
such thata + b + ¢+ d =0, and (c) a vector d such that
a—b+c+3d=0.

. Givena =i+ 2j + 3k, b =2i — 2j + k, find (a) a vector
csuch that 2a + b + 2¢ =i + k, (b) a vector ¢ such that
3a—-2b+c=i+j—2k

. Given that a = 3i + 2j — 3k, b = 2i — j + 5k, and
¢ =2i + 5j + 2Kk, find (a) 2a + 3b — 3¢, (b) a vector d
such that a 4+ 3b — 2¢ + 3d = 0, and (c) a vector d such
that 2a — 3d = b + 4c.

5. Given that Aand B have the respective position vectors

2i + 3j — k and i + 2j + 4k, find the vector AB and a
unit vector in the direction of AB.

. Given that A and B have the respective position vec-

tors 3i—j+4k and 2i+j+k, find the vector AB
and the position vector ¢ of the mid-point of AB.

. Given that Aand B have the respective position vectors

a and b, find the position vector of a point P on the line
AB located between A and B such that

(length AP)/(length PB) =m/n, where m,n >0

are any two real numbers.
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11.

12.
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. Find the position vector r of a point P on the straight

line joining point Aat (1,2, 1) and point B at (3, —1, 2)
and between A and B such that

(length AP)/(length PB) = 3/2.

. Itis known from Euclidean geometry that the medians

of a triangle (lines drawn from a vertex to the mid-point
of the opposite side) all meet at a single point P, and
that P is two-thirds of the distance along each median
from the vertex through which it passes. If the vertices
A, B, and C of a triangle have the respective position
vectors a, b, and ¢, show that the position vector of P is
(1/3)(a+b+c).

Forces of 1, 2, and 3 units act through the origin along,
and in the positive directions of, the respective x-, y-,
and z-axes. Find the vector sum S of these forces, the
magnitude [|S|| of the sum of the vectors, and a unit
vector in the direction of S.

Forces of 2, 1, and 4 units act through the origin along,
and in the positive directions of, the respective x-, y-,
and z-axes. Find the vector sum S of these forces, the
magnitude ||S|| of the sum of the vectors, and a unit
vector in the direction of S.

A straight line L is given in the form

3x-1 2y+3 2-3z
4 2 71

Find the position vectors of two different points on L
and a unit vector parallel to L.

13.

14.

15.

16.

17.

18.

A straight line Lis given in the form
2x+1  3y+2 2-4z
3 4

Find position vectors of two different points on L and
a unit vector parallel to L.

Given that a straight line L, passes through the points
(—2,3,1) and (1, 4, 6), find (a) the position vector of
a point on the line and a vector parallel to it, and (b)
a straight line L, parallel to L, that passes through the
point (1, 2, 1).

Given that a straight line L, passes through the points
(3,2, 4) and (2, 1, 6), find (a) the position vector of a
point on the line and a vector parallel to it, and (b) a
straight line L, parallel to L, that passes through the
point (-2, 1, 2).

A straight line has the vector equation r =a+ 1b,
where a = 3j + 2k, and b = 2i + j + 2k. Find the carte-
sian equations of the line and the coordinates of three
points that lie on it.

A straight line passes through the point (3, 2, —3) par-
allel to the vector 2i + 3j — 3k. Find the cartesian equa-
tions of the line and the coordinates of three points that
lie on it.

In mechanics, if a point A moves with velocity v, and
point B moves with velocity vg, the velocity vg of A rel-
ative to B (the relative velocity of A with respect to B)
is defined as vg = v, — vg. Power boat A moves north-
east at 20 knots and power boat B moves southeast at
30 knots. Find the velocity of boat Arelative to boat B,
and a unit vector in the direction of the relative velocity.

& The Dot Product (Scalar Product)

dot or scalar product

A product of two vectors a and b can be formed in such a way that the result
is a scalar. The result is written a - b and called the dot product of a and b. The
names scalar product and inner product are also used in place of the term dot
product.

Dot Product

Let a and b be any two vectors that after a translation to bring their bases into
coincidence are inclined to one another at an angle 6, as shown in Fig. 2.14, where
0 <60 < m. Then the dot product of a and b is defined as the number

a-b=|a] - [[bllcosf.

This geometrical definition of the dot product has many uses, but when working
with vectors a and b that are expressed in terms of their components in the i, j, and
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b

FIGURE 2.14 Vectorsaandb
inclined at an angle 6.

k directions, a more convenient form is needed. An equivalent definition that is
easier to use is given later in (23).

tc (]
properties Properties of the dot product

product The following results, in which a and b are any two vectors and A and p are any two

scalars, are all immediate consequences of the definition of the dot product.

The dot product is commutative
a-b=b-a and Xra-ub=pa-Ab=2iua-b (15)
The dot product is distributive and linear

a-(b+c)=a-b+a-¢c and a-(Ab+puc)=21a-b+ pua-c. (16)

The angle between two vectors

The angle 6 between vectors a and b is given by

a-b
0= ——, with0 <6 <. 17
lall - bl an
Parallel vectors (0 = 0)
If vectors a and b are parallel, then
a-b=|a| - |b| and, in particular, a-a= ||’ (18)

Orthogonal vectors (6 = 7/2)

If vectors a and b are orthogonal, then

a-b=0. (19)
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dot product in terms
of components

projecting a vector
onto a line

Product of unit vectors

If 4 and b are unit vectors, then

a-b=cosf, with0<6 <. (20)

An immediate consequence of properties (15), (19), and (20) is that
i-i=j-j=k-k=1, (21)
and
ij=ji=ik=k-i=j k=k-j=0. (22)

We now use results (21) and (22) to arrive at a simple expression for the dot
product in terms of the components of a and b. To arrive at the result we set
a = ai + aj + a3k, b = bii + byj + bsk and form the dot product

a-b = (a1i + axj + azk) - (bii + by j + bsk).

Expanding this product using (15) and (16) and making use of results (21) and (22)
brings us to the following alternative definition of the dot product expressed in terms
of the components of a and b:

a-b=a b +ab, + azbs. (23)
Using (23) in (17) produces the following useful expression that can be used to find

the angle 6 between a and b:

b b
cosf = a1by + a2bp + asbs where 0 <0 < 7. (24)

(@t + i +a) P+ 3+ )

Find a - b and the angle between the vectors a and b, given that a = i + 2j + 3k and
b =2i—j-2k

Solution |a|| =+/14,|b| =3,anda-b=1-2+2-(-1)+3-(-2) = —6. Using
these results in (24) gives

cosf = —6/(3v14) = —2/V/14,

soas 0 <6 < we see that & = 2.1347 radians, or § = 122.3°. [ |

The projection of a vector onto the line of another vector

The projection of vector a onto the line of vector b is a scalar, and it is the
signed length of the geometrical projection of vector a onto a line parallel to
b, with the sign positive for 0 < 6§ < /2 and negative for /2 < 6 < . This
is illustrated in Fig. 2.15, from which it is seen that the signed length of the
projection of a onto the line of vector b is ON, where ON = | a|| cos 6.
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FIGURE 2.15 The projection of vector a onto the line of vector b.

If b is the unit vector alongb,thenasa = a||al|,anda - b = cos6, the projection
ON = ||a| cos 6 can be written as the dot product

a-b
I (25)

ON = |ala-b=a-b

Find the strength of the magnetic field vector H = 5i + 3j + 7k in the direction of
2i — j + 2k, where a unit vector represents one unit of magnetic flux.

Solution We are required to find the projection of vector H in the direction of
the vector 2i — j + 2k. Setting b = 2i — j + 2k, ||b|| =3, so b = (1/3)(2i — j + 2k),
so the strength of the vector H in the direction of b is

H-b=(1/3)5i+3j+7k) - 2i —j+2k) =7. |

Direction cosines and direction ratios

If a = ayi + a, j + ask is an arbitrary vector, the unit vector a in the direction
of ais

a=(ai+arj+ak)/|al
= (a1i+ arj + ask)/(a} + a3 +a3)'">. (26)
Taking the dot product of a with i, j, and k, and setting [ =a;/
(@2 + a3 + a?)?, m=ay/(a} + a3 + a3)'?, and n = az/(a} + a3 + a3)'/?
gives
[=i-4, m=j-4, and n=k-a,

SO we may write
a =li+ mj + nk. (27)

The dot product a-a=1[1>+m?+n®=(a} + a3 +a3)/|al’> but |a]*=
a]2 + a% + a%, SO

Pyn?+n=1. (28)

The number / is the cosine of the angle B between a and the x-axis, the
number m is the cosine of the angle B, between a and the y-axis, and the
number 7 is the cosine of the angle B3 between a and the z-axis, as shown in
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FIGURE 2.16 The angles 81, B2, and f3.
direction cosines Fig. 2.16. The numbers (I, m, n) are called the direction cosines of a, because

they determine the direction of the unit vector a that is parallel to a.
Notice that when any two of the three direction cosines /, m, and n of a
vector a are given, the third is related to them by

P4nm+n*=1.
Because of result (27) it is always possible to write

a = [la||(/i + mj + nk), (29)
where [, m, and n are the direction cosines of a.

As the components ay, a,, and a3 of a are proportional to the direction
direction ratios cosines, they are called the direction ratios of a.

PETTITFEYIN Find the direction cosines and direction ratios of a = 3i + j — 2k.

Solution As |a| = +/14, the direction cosines are [ = 3/+/14, m = 1/+/14, and

n = —2/+/14. The direction ratios of a are 3, 1, and —2, or any nonnegative multiple
of these three numbers such as 15/+/14, 5/+/14, and —10/+/14. [ ]

The triangle inequality

The following result will be needed in the proof of the triangle inequality that
is to follow. The absolute value of a - b = ||a|| - ||b] cosf is

|a-b| = [la] - [[b][|cos 6],

but|cos | < 1,so using this in the above result we obtain the Cauchy-Schwarz
inequality,

la-b| < [a] - [[b]]. (30)
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The triangle inequality If a and b are any two vectors, then
lla+ bl < [la]l + [[b].

Proof From (18) we have

la+b|>=(a+b)-(at+b)=a-a+2a-b+b-b
— |la||> +2a-b + |b|?,

buta-b < |a-b|, so from the Cauchy-Schwarz inequality (30)
la+b[* < flall*+ 2|jall-[[b]| + [b]?

= (lall + Ib]})*.
Taking the positive square root of this last result, we obtain the triangle inequality
lla+ bl < [lall + [b]. u

The triangle inequality will be generalized in Section 2.5, but in its present form
it is the vector equivalent of the Euclidean theorem that “the sum of the lengths of
any two sides of a triangle is greater than or equal to the length of the third side,”
and it is from this theorem that the inequality derives its name.

Equation of a Plane

When working with the vector calculus it is sometimes necessary to consider a plane
that is locally tangent to a point on a surface in space so it will be useful to derive
the general equation of a plane in both its vector and cartesian forms.

A plane IT can be defined by specifying a fixed point belonging to the plane and a
vector n that is perpendicular to the plane. This follows because if n is perpendicular
at a point on the plane, it must be perpendicular at every point on the plane. Any
vector n that is perpendicular to a plane is called a normal to the plane. Clearly a
normal to a plane is not unique, because a plane has two sides, so if a normal n is
directed away from one side of the plane, the vector —n is a normal directed away
from the other side. Both n and —n can be scaled by any nonzero number and still
remain normals; consequently, if n is a normal to a plane, so also are all vectors of
the form An, with A # 0 any real number.

Let a fixed point Aon plane IT with normal n have position vector a relative to
an origin O, and let P be a general point on plane IT with position vector r relative
to O. Then, as may be seen from Fig. 2.17, the vector r — a lies in the plane, and so
is perpendicular (normal) to n. Forming the dot product of n and r — a, and using
(19), shows that the vector equation of plane IT is

n-(r—a)=0, (31)
or, equivalently,
n-r=n-a. (32)

The cartesian form of this equation follows by considering a general point
with coordinates (x, y, z) on plane IT, setting r = xi + yj + zk, a = a1i + azj + azk,
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FIGURE 2.17 Plane IT with normal n passing
through point A.

and n = mi + npj + ns3k, and then substituting into (32) to get
(mi+ nyj + n3k) - (xi+ yj + zk) = (mi+ naj + n3k) - (a1i + azj + azk).
Taking the dot products and using results (21) and (22) show the cartesian equation
of plane IT to be
nix + nyy + n3z = nia; + npap + n3az = d, a constant. (33)

Find the cartesian equation of the plane through the point (2, 5, 3) with normal
3i+2j—7k.

Solution Heren, =3,n, =2,n3;=-7and a; =2, a, =5, and a3 = 3, so substi-
tuting into (33) shows the plane has the equation
3x+2y—"7z=-5. ]

This section has introduced the dot or scalar product of two vectors in geometrical terms
and, more conveniently for calculations, in terms of the components of the two vectors
involved. The applications given include the important operation of projecting a vector
onto the line of another vector and the derivation of the vector equation and cartesian
equation of a plane.

EXERCISES 2.2

1. Find the dot products of the following pairs of vectors:

© 2i+j+ki+j—k
() i+j—3k2i+j+k

(a) i—j+3k 2i+3j+k
(b) 2i —j+ 4k, —i +2j + 2k.
(© i+j—3k2i+j+k

2. Find the dot products of the following pairs of vectors:

(@) i—2j+4k,i+2j+ 3k

(b) 3i+j+2k, 4i—3j+k.

(¢) 5i—3j+3k,2i—3j+ k.

. Find which of the following pairs of vectors are
orthogonal:

(a) 3i+2j— 6k, —9i — 6j + 18k.

() 3i—j+7k,3i+2j+k

. Find which, if any, of the following pairs of vectors are

orthogonal:

(@) 2i+j+k, 8i+2j+2k.

(b) i+2j+3k,2i—2j—3k.
(¢) i+2j+4k,2i+j+ 3k

(d) i+j,2j+ 3k

. Giventhata =2i+3j—2k,b=i+3j+ kande =3i+

j—k, find (a) (a+b)-c. (b) 2b—3¢c)-a. (c) a-a.
(d) c- (a—2b).



10.

11.

12.

13.
14.

15.
16.
17.
18.

19.

2.3

. Giventhata = 3i+2j—3k,b=2i+j+2k,and¢c = 5i +

2j—2k, find(a)b- (b+(a-c)c).(b) (a+2b)- (2b — 3c¢).
(c)(c-c)b—(a-a)c.

. Find the angle between the following pairs of vectors:

(@ i+j+k2i+j—k
(b) 2i—j+3k,2i+j+3k
(© 3i—j+ki—2j+3k

(d) i—2j+Kk, 4i— 8j + 16k.

. Given a=2i—3j—3k, b=i+j+2k, and ¢=3i—

2j —k, find the angles between the following pairs of
vectors:

(a) a+b, b—2¢c. (b) 2a—¢c, a+b—c. (c) b+ 3¢,
a—2c

. Find the component of the force F = 4i + 3j + 2k in the

direction of the vectori+ j + k.

Find the component of the force F = 2i 4 5j — 3k in the
direction of the vector 2i + j — 2k.

Given that a=1i+2j+2k and b =2i—3j+k, find
(a) the projection of a onto the line of b, and (b) the
projection of b onto the line of a.

Given that a=3i4+6j+9k and b=i+2j+3k,
(a) find the projection of a onto the line of b and
(b) compare the magnitude of a with the result found
in (a) and comment on the result.

Find the direction cosines and corresponding angles for
the following vectors:

(a)i+j+k (b)i—2j+2k. (c)4i—2j+3k.

Find the direction cosines and corresponding angles for
the following vectors:

(a)i—j—k.(b)2i+2j— 5k (c) —4j — k.

Verify the triangle inequality for vectorsa =i + 2j + 3k
and b =2i+j+ 7k.

Verify the triangle inequality for vectorsa = 2i — j — 2k
and 3i +2j + 3k.

Find the equation of the plane with normal 2i — 3j + k
that contains the point (1, 0, 1).

Find the equation of the plane with normal i — 2j + 2k
that contains the point (2, —3, 4).

Given that a plane passes through the point (2, 3, —5),
and the vector 2i + k is normal to the plane, find the
cartesian form of its equation.

The Cross Product

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
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The equation of a plane is 3x 4+ 2y — 5z = 4. Find a vec-
tor that is normal to the plane, and the position vector
of a point on the plane.

Explain why if the vector equation of plane IT in (32) is
divided by ||n|| to bring it into the formr-n=a - n, the
number |a - n| is the perpendicular distance of origin O
from the plane. Explain also why if a- n > 0 the plane
lies to the side of O toward which n is directed, as in
Fig. 2.15, but that if a - n < 0 it lies on the opposite side
of O toward which —n is directed.

Use the result of Exercise 21 to find the perpendicular
distance of the plane 2x — 4y — 5z = 5 from the origin.

The angle between two planes is defined as the angle
between their normals. Find the angle between the two
planes x +3y+2z=4and 2x — Sy +z=2.

Find the angle between the two planes3x + 2y — 2z =4
and2x + y+2z=1.

Letaandb be two arbitrary skew (nonparallel) vectors,
and set a = a, + a,, where ay, is parallel to b and a, is
perpendicular to b and lies in the plane of a and b. Find
a, and a, in terms of a and b.

The law of cosines for a triangle with sides of length a,
b, and c, in which the angle opposite the side of length
cis C, takes the form

¢ =a’>+b>—2abcos C.

Prove this by taking vectors a, b, and ¢ such that ¢ =
a — b and considering the dot product ¢-¢=(a—b) -
(a—Db).

The work units W done by a constant force F when
moving its point of application along a straight line
L parallel to a vector a are defined as the product of
the component of F in the direction of a and the dis-
tance d moved along line L. Express W in terms of F, a,
and d.

If a and b are arbitrary vectors and A and p are any two
scalars, prove that

[xa+ ub|> < A%(|all* + 2Aua - b+ u?|b].

Verify the result of Exercise 28 by setting A = 2, u = —3,
a=23i+j—4k,and b =2i+3j + k.

A product of two vectors a and b can be defined in such a way that the result is a
vector. The result is written a x b and called the cross product of a and b. The name
vector product is also used in place of the term cross product.

Before defining the cross product we first formulate what is called the right-hand
rule. Given any two skew vectors a and b, the right-hand rule is used to determine
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right-hand rule

geometrical definition
of a cross product

the sense of a third vector ¢ that is required to be normal to the plane containing
vectors a and b.

The Right-Hand Rule

Let a and b be two arbitrary skew vectors with the same base point, with ¢ a vector
normal to the plane containing them. If the fingers of the right hand are curled in
such a way that they point from vector a to vector b through the angle 6 between
them, with 0 < 6 < 7, then when the thumb is extended away from the palm it will
point in the direction of vector c.

When applying the right-hand rule, the order of the vectors is important. If
vectors a, b, and ¢ obey the right-hand rule, they will always be written in the order
a, b, ¢, with the understanding that ¢ is normal to the plane of a and b, with its sense
determined by the right-hand rule. Figure 2.18 illustrates the right-hand rule.

An important special case of the right-hand rule has already been encountered
in connection with the unit vectors i, j, and k that obey the rule, and because the
vectors are mutually orthogonal the vectors j, k, i and k, 1, j also obey the right-hand
rule.

The cross product (a geometrical interpretation)

Letaandb be two arbitrary vectors, with fi a unit vector normal to the plane of
aand b chosen so that a, b, and i, in this order, obey the right-hand rule. Then
the cross product of vectors a and b, written a x b, is defined as the vector

a x b = ||a||.||b|| sin &i. (34)

This geometrical definition of the cross product is useful in many situations,
but when the vectors a and b are specified in terms of their cartesian components
a different form of the definition will be needed.

The cross product can be interpreted as a vector area, in the sense that it can
be writtena x b = Sfi, where S = OA- BN = | a|| - ||b|| sin 0 is the geometrical area

FIGURE 2.18 The right-hand rule.
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FIGURE 2.19 The cross product
interpreted as the vector area of a
parallelogram.
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of the parallelogram in Fig. 2.19, and the unit vector fi is normal to the area. This
shows that the geometrical area § of the vector parallelogram with sides a and b is
simply the modulus of the cross producta x b,so S = |ja x b||.

Properties of the cross product

The following results are consequences of the definition of the cross product.

The cross product is anticommutative

axb=-bxa

The cross product is associative

ax(b+c)=axbtaxec.

Parallel vectors (6 = 0)

If vectors a and b are parallel, then
axb=0.

Orthogonal vectors (60 = w/2)

If vectors a and b are orthogonal, then
axb = al.|[blh.

Product of unit vectors

If a and b are unit vectors, then

a x b = sin 0n.

An immediate consequence of properties (34), (35), and (37) is that

ixi=jxj=kxk=0,

(35)

(36)

(37)

(38)

(39)

(40)
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cross product
in terms of
components

practical definition of
a cross product using
a determinant

and
ixj=k, jxi=-k jxk=i, kxj=-i, kxi=j, ixk=—j.
(41)

Only results (35) and (36) require some comment, as the other results are
obvious. The change of sign in (35) that makes the cross product anticommutative
occurs because when the vectors a and b are interchanged, the right-hand rule
causes the direction of ii to be reversed. Result (36) can be proved in several ways,
but we shall postpone its proof until a different expression for the cross product
has been derived.

To obtain a more convenient expression for the cross product that can be used
when a and b are known in terms of their components, we proceed as follows.
Let a =aji+ axj + ask and b = bji + byj + bsk, and consider the cross product
a x b = (aji + a2j + a3k) x (bii + byj + bsk). Expanding this expression term by
term is justified because of the associative property given in (36), and it leads to the
result

axb=abixi+abixj+abiixk+abjxi+arbrjxj
+ arb3j x k+ azbik x i+ asbk x j+ asbsk x k.

Results (40) cause three terms on the right-hand side to vanish, and results (41)
allow the remaining six terms to be collected into three groups as follows to give

axb = (axbs —azh)i — (a1bs — a3b1)j + (a1by — axb1)k. (42)

This alternative expression for the cross product in terms of the cartesian com-
ponents of vectors a and b can be further simplified by making formal use of the
third-order determinant,

i j k
axb=|ay a a3,
by by, b3

because a formal expansion in terms of elements of the first row generates result
(42). We take this result as an alternative but equivalent definition of the cross
product.

The cross product (cartesian component form)

Leta=ai+ ayj+ askand b = bji + byj + bsk. Then

i j kK
axb=|ag a as|, (43)
by b, b;

When expressing a x b as the determinant in (43), purely formal use was made
of the method of expansion of a determinant in terms of the elements of its first
row, because (43) is not a determinant in the ordinary sense as its elements are a
mixture of vectors and numbers.



Section 2.3 The Cross Product 81

Giventhata =3i — 2j — kandb =i + 4j + 2k, find a x b and a unit vector fi normal
to the plane containing a and b such thata, b, and n, in this order, obey the right-hand
rule.

Solution Substitution into expression (43) gives

i j k
axb=|3 -2 -1
1 4 2
=[(-2)-2—4-(-D]i-3-2—-1-(-D]j+[3-4-1-(-2)]k
= —7j + 14k.

The required unit vector i is simply the unit vector in the direction of a x b, so
A= (axb)/axb| = (=7j+ 14k)/(7V/5).
= (=1/¥/3)j + (2/V5)k. n
We now return to the proof of the associative property stated in (35) and establish
it by means of result (43).
Setting a = aji+ a2j + azk, b = bii + byj + b3k, and ¢ = cii + c2j + 3k, we
have
i j k
ax(b+c)= ay a, as .
(bi+c1) (ba+c) (bs+cs)
Expanding the determinant in terms of elements of its first row and grouping terms
gives
a x (b+c¢) = (a2b3 — a3by)i — (a1b3 — azby)j + (a1b2 — axby )k
+ (a2c3 — a3¢2)i — (a1c3 — azcr)j + (a1co — axcr )k
=axb+axe,

and the result is proved.

Sum IMary  Thissection firstintroduced the vector or cross product of two vectors in geometrical terms
and then used the result to show that the vector product is anticommutative, in the sense
that a x b = —b x a. Important results involving the vector product are given in terms
of the components of the two vectors that are involved. Finally, the vector product was
expressed in a form that is most convenient for calculations by writing it in determinantal
form, the rows of which contain the unit vectors i, j, and k and the components of the
respective vectors.

In Exercises 1 through 6 use (43) to find a x b. 6. Fora=3i—2j+6k,b=2i+j+ 3k
1. Fora=2i—j— 4k b=3i—j—k. .Infxerciietsh 7 through lg Vetri.fy(tgj)equciv(zzg)ncge %ftktle d.ef—
o S initions of the cross product in an y first using
2. Fora = .31 +2j+ 4kj b=2i+j—2k (43) to calculate a x b, and hence ||a x b|| and @i, and then
3. Fora=7i+6k,b=3j+k calculating ||la]| and |/b|| directly, using result (17) to find
4. Fora=3i+7j+2k,b=i-j+k cos 0 and hence sin6, and using the results to find a x b
5. Fora=2i+j+kb=2i—j+k from (34).
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7.
8.
9.
10.

Chapter 2 Vectors and Vector Spaces

Fora=i+j+3kandb =3i+2j+k.
Fora=i+j+kandb =4i+2j+2k.
Fora =2i+j—3kandb = 5i — 2k.
Fora= -2i—3j+kandb =3i+j+ 2k

In Exercises 11 through 14, verify by direct calculation that
(b+c¢)xa=—-ax(b+ec).

11.

a=3j+2k,b=i—-4j+k, and c =5i—2j + 3k.

21.
22.
23.
24.

(1,3,2),(2,0,—4), and (1, 6, 11).

(1,4,3),(2,0,1), and (3, 4, —6).

(1,2,3),(2,—4,1), and (3, 6, —1).

(1,0,1),(2,5,7), and (2, 3,9).

Three points with position vectors a, b, and ¢ will be
collinear (lie on a line) if the parallelogram with adja-
cent sides a —b and a — ¢ has zero geometrical area.
Use this result in Exercises 25 through 28 to determine

12. a= —i+5j+2k,b =4i+k, and ¢ = —2i — 4j + 3k. which sets of points are collinear.
13.a=i+kb=3i—j—2k ande=3i+j+k 25. (2,2,3),(6,1,5),(—2,4,3).
14. a=5i+j+k b=2i—j—k, and ¢ = 4i + 2j + 3k. 26. (1,2,4),(7,0,8),(-8,5,-2).

In Exercises 15 through 18 find a unit vector normal to a
plane containing the given vectors.

27.
28.

(2,3,3),(3.7,5), (0, =5, —1).
(1,3,2),(4,2,1),(1,0,2).

L. . . 29. A vector N normal to the plane containing the skew
15. 3i+j+kandi+2j+k. vectors a and b can be found as follows. N is normal to
16. 2i —j + 2k and 2i + 3j + k. aandb,soa-N=0andb-N = 0. If a component of N
17. i+ j+kand2i+3j — k. is assigned an arbitrary nonzero value c, say, the other

18.
19.

20.

2i+2j—kand3i+j+4k.

Find a unit vector normal to a plane containing vec-
tors a+b and a+ ¢, given that a=i+2j+k, b=
2i+j— 2k, and ¢ = 3i + 2j + 4k.

Given thata=3i+j+k,b=2i—j+2k, ande=i+
j +k, find (a) a vector normal to the plane containing
the vectors a + (a - b)b and ¢ and, (b) explain why the
normal to a plane containing the vectors a and b and
the normal to a plane containing the vectors (a - b)a
and (b - ¢)b are parallel.

In Exercises 21 through 24, find the cartesian equation of
the plane that passes through the given points.

-

two components can be found from these two equa-
tions as multiples of ¢, and N will then be determined
as a multiple of c. A suitable choice of ¢ will make N a
unit normal N. Apply this method to vectors a and b in
Exercise 7 to find a vector N. Compare the result with
the unit vector

ii = (a x b)/[la x b]|

found from (43). Explain why although both & and N
are normal to the plane containing a and b they may
have opposite senses.

Linear Dependence and Independence
of Vectors and Triple Products

The dot and cross products can be combined to provide a simple test that determines
whether or not an arbitrary set of three vectors possesses a property of fundamental
importance to the algebra of vectors. First, however, some introductory remarks
are necessary.

Given a set of n vectors aj, ay, ..
sum

., a,, and a set of n constants ¢y, ¢y, ..., ¢,, the

ci1a; + cay + - -+ ca,

is called a linear combination of the vectors. Linear combinations of the vectors i,
j, and k were used in Section 2.1 to express every vector in three-dimensional space
as a linear combination of these three vectors. A triad of vectors such as i, j, and
k with the property that all vectors in three-dimensional space can be represented
as linear combinations of these three vectors is said to form a basis for the space.

linear combination
of vectors

basis
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a3

a
a; 2 Y

X

FIGURE 2.20 Nonorthogonal triad
forming a basis in three-dimensional
space.

It is a fundamental property of three-dimensional space that a basis for the space
comprises a set of three vectors aj, a;, and a3, with the property that the linear
combination

c1a; + ca; + c3a3 = 0 (44)

is only true when ¢; = ¢; = ¢3 = 0. Vectors aj, a,, and aj satisfying this condition
are said to be linearly independent vectors, and a vector d of the form

d = cja; + ca; + csas,

where not all of ¢y, ¢, and c3 are zero, is said to be linearly dependent on the vectors
aj, ap, and a3. The vectors i, j, and k that form a basis for three-dimensional space
are linearly independent vectors, but the position vector r = 2i — 3j + Sk is linearly
dependent on vectors i, j, and k.

Clearly, vectors i, j, and k do not form the only basis for three-dimensional
space, because any triad of linearly independent vectors aj, a,, and a3 will serve
equally well, as, for example, the nonorthogonal set of vectors shown in Fig. 2.20.

The dot and cross products will now be combined to develop a test for linear
dependence and independence based on the elementary geometrical idea of the
volume of the parallelepiped shown in Fig. 2.21, three edges a, b, and ¢ of which
meet at the origin.

=>

FIGURE 2.21 Volume V of a parallelepiped.
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a test for linear
independence

scalar triple product

scalar triple product
as a determinant

The volume V of a parallelepiped is a nonnegative number given by the product
of the area of its base and its height. Suppose vectors a and b are chosen to form
two sides of the base of the parallelepiped. Then the vector area of this base has
already been interpreted as a x b. The vertical height of the parallelepiped is the
projection of vector ¢ in the direction of the unit vector i normal to the base, and
so is given by i - ¢. Consequently, as a x b = ||a|| - ||b|| sin 01, it follows that

V=|(axb)- ¢ (45)

The absolute value of the right-hand side of (45) has been taken because a volume
must be a nonnegative quantity, whereas the dot product (a x b) - ¢ may be of
either sign.

If vectors a, b, and ¢ form a basis for three-dimensional space, vector ¢ cannot
be linearly dependent on vectors a and b, and so the parallelepiped in Fig. 2.21
with these vectors as its sides must have a nonzero volume. If, however, vectors
a, b, and c are coplanar (all lie in the same plane), and so cannot form a basis for
the space, the volume of the parallelepiped will be zero. These simple geometrical
observations lead to the following test for the linear independence of three vectors
in three-dimensional space.

Test for linear independence of vectors in three-dimensional space Let a, b, and
¢ be any three vectors. Then the vectors are linearly independent if (a x b)- ¢ # 0,
and they are linearly dependent if (a x b) - ¢ = 0. [ |

A product of the type (a x b) - ¢ is called a scalar triple product. The name
arises because the result is a scalar. It is also called a mixed triple product since
both - and x appear. Three vectors are involved in this dot (scalar) product, one of
which is the vector a x b and the other is the vector c.

Scalar triple products are easily evaluated, because taking the dot product of
a x b in the form given in (42) with ¢ = ¢1i + 2 + c3k gives

(axb)-c=(abs — ashy)cy — (a1bs — asbr)cs + (a1by — azby)cs.

The right-hand side of this expression is simply the value of a determinant with
successive rows given by the components of a, b, and ¢, so we have arrived at the
following convenient formula for the scalar triple product.

Scalar triple product

Leta=aji+ ayj+ ask,b = bii+ b2j + b3k, and ¢ = c1i + ¢2j + c3k. Then

ay ap as
(a X b) -c=|by by bs3|. (46)
i C C3

Interchanging any two rows in a matrix changes the sign but not the value of
its determinant. Two such switches in (46) leave the value unchanged, so the dot



alternative forms of a
scalar triple product

Section 2.4  Linear Dependence and Independence of Vectors and Triple Products 85

product is commutative and so we arrive at the useful result
(axb)-e=a-(bxc). (47)

So, in a scalar triple product the dot and cross may be interchanged without altering
the result.

Given the two sets of vectors (a) a=i+2j—5k,b=i+j+2k, c=i+4j— 1%k
and (b) a=2i+j+k, b =3i+4k, c =i+ j+Kk, find if the vectors are linearly in-
dependent or linearly dependent.

Solution We apply Theorem 2.3 to each set, using result (46) to evaluate the scalar
triple products.

1 2 =5
(a) (axb)-e=11 1 2| =0,
1 4 -19

so the set of three vectors in (a) is linearly dependent. In fact this can be seen from
the fact that ¢ = 3a — 2b.

(b) (axb)-c= =—4+£0,

—_ N
—_ 0 =
o NS

so the set of three vectors in (b) is linearly independent. Although not re-
quired, the volume V of the parallelepiped formed by these three vectors is V =
[(axb) ¢ =|—4 =4 ]

Another notation for the scalar triple product of vectors a, b, and ¢ is [a, b, ¢],

SO
[a,b,c]=(axb)-c, (48)
or, in terms of a determinant,
ar ay as
[a,b.c]= by by bs- (49)
it C C3

Using this definition of [a, b, ¢] with the row interchange property of determi-
nants (see Section 1.7) shows that

[a,b,c] =[b,c, a] =][c, a,b], (50)

because two row interchanges are needed to arrive at [b, ¢, a] from [a, b, ¢], leaving
the sign of the determinant unchanged, whereas two more are required to arrive at
[c, a, b] from [b, ¢, a], again leaving the sign of the determinant unchanged.

The order of the vectors in results (46), or in the equivalent notation of (48), is
easily remembered when the results are abbreviated to

(eI = -]
L e T
T e e
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vector triple product

In this pattern, row two follows from row one when the first letter is moved to the
end position, and row three follows from row two by means of the same process. The
effect of applying this process to the third row is simply to regenerate the first row.
Rearrangements of this kind are called cyclic permutations of the three vectors.

Again making use of the row interchange property of determinants (see Section
1.7), it follows that

[a,b, c] = —[a, ¢, b],

because this time only one row interchange is needed to produce the result on the
right from the one on the left, so that a sign change is involved.

A different product involving the three vectors a, b, and c that this time gener-
ates another vector is of the form

ax (b x c¢),

and products of this type are called vector triple products since the results are
vectors. In these products it is essential to include the brackets because, in gen-
eral,a x (b x ¢) # (a x b) x ¢. The most important results concerning vector triple
products are given in the following theorem.

Vector triple products If a, b, and ¢ are any three vectors, then

(a) ax(bxc)=(a-c)b—(a-b)c
and
(b) (axb)xc=(a-c)b—(b-c)a.

Proof The proof of the results in Theorem 2.4 both follow in similar fashion,
so we only prove result (a) and leave the proof of result (b) as an exercise. We
write the cross product a x (b x ¢) in the form of the determinant in (43), with the
components of a in the second row and those of b x ¢ (obtained from (42)) in the
third row when we find that
i j k
ax(bxc)= a a az .
(bacs — b3ca)  (bsci — bic3)  (bicy — bacy)

Expanding this determinant in terms of the elements of its first row and grouping
terms gives

ax (b X c) = [(0262 + a3c3)b1 — (azbz + a3b3)c1]i + [(alcl —+ a3C3)b2
- (a1b1 + a3b3)C2]j + [([l161 + leCz)b3 — (Lllbl + azbz)C3]k.

As it stands, this result is not yet in the form that is required, but adding and
subtracting a; by c; to the coefficient of i, axb,¢; to the coefficient of j, and azbsc; to
the coefficient of k followed by grouping terms give

ax(bxc)=(a-c)b—(a-b)c,

and the result is established. [ |
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Find a x (b x ¢) and (a x b) x ¢, given that a =3i+j — 4k, b = 2i + j + 3k, and
c=i+5—k

Solution a-b=-5a-¢=12,andb-¢=4,s0
ax(bxc)=(a-c)b—(a-b)c=12b+ 5S¢ =29+ 37j + 31k,

and

(axb)xe=(a-c)b—(b-c)a=12b —4a = 12i + 8 + 52k. [ |

Accounts of geometrical vectors can be found, for example, in references [2.1], [2.3],
[2.6], and [1.6].

This section introduced the two fundamental concepts of linear dependence and inde-
pendence of vectors. It then showed how the scalar triple product involving three vectors,
that gives rise to a scalar quantity, provides a simple test for the linear dependence or
independence of the vectors involved. A simple and convenient way of calculating a scalar
triple product was shown to be in terms of a determinant with the elements in its rows
formed by the components of the three vectors involved in the product. Finally a vector
triple product was defined that gives rise to a vector quantity, and it was shown that to
avoid ambiguity it is necessary to bracket a pair of vectors in such a product. A rule for the
expansion of a vector triple product was derived and shown to involve a linear combina-
tion of two of the vectors multiplied by scalar products so that, for example, a x (b x €) =
(a-c)b — (a: b)c.

EXERCISES 2.4

In Exercises 1 through 4 use the vectors a, b, and ¢ to find
(a) the scalar triple product a - (b x ¢), and (b) the volume
of the parallelepiped determined by these three vectors di-
rected away from a corner.

l.a=2i—j—3k, b=3i—2k, c=i+j—4k.
2.a=i—j+2k, b=i+j+3k, ¢=2i—j+3k
3.a=—i—j+k b=2i+2j+3k c=—4i+j+3k
4. a=5i+3k, b=2i—j, ¢=-2i+3j—2k.

In Exercises 5 through 10 find which sets of vectors are
coplanar.

5.i+3j+ 2k, 2i+ )+ 4k, 4i +7j + 8k.

6. 2i+j+ 4k, i+2j+k, 4i+ 3j + 6k.

7. 2i+k, i+4j+2k, 3i+12j+ 7k.

8. i+j+Kk, 2i+j+2k, 4i+3j+k

9. 2i+j—k, 3i+j+ 2k, 5i+j+ 8k

10. 2i+j—k, i+2j+ 2k, 5i+4j+k

In Exercises 11 through 15 use computer algebra to verify
that [a, b, ¢] = [¢,a,b] = —[a, ¢, b].

1. a=i+j+kb=2i+j—k, ¢=3i—j+k

12. a=i—j—k, b=-5i+2j -3k, ¢=2i+3j—2k.

13, a=-3i—4j+k, b=9i+12j -3k, c=i+2j+k.

14. a=3i+4k, b=i+ 5k, ¢=2j+ k.

15. Prove that if a, b, ¢, and d are any four vectors, and
A, p are arbitrary scalars [Aa + ub, ¢, d] = A[a, ¢, d] +
ulb, ¢, d]. Use computer algebra with vectors a, b, ¢,
d from Exercise 12 with d = 4¢ — 2j + 6k, and scalars
A, n of your choice, to verify this result.

In Exercises 16 through 20 find (a) the cartesian equation of
the plane containing the given points, and (b) a unit vector
normal to the plane.

16. (1,2.1), (3.1, -2). (2,1, 4).

17. (2,0,3),(0,1,0), (2,4, 5).

18. (=1,2,-3),(2,4,1),(3,0,1).
19. (1,2,5),(-2,1,0),(0,2,0).

20. Prove result (b) of Theorem 2.4.
21. Show that

ax(bxc)+bx(exa)+cex(axb)=0.

22. The law of sines for a triangle with angles A, B, and C
opposite sides with the respective lengths a, b, and ¢
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takes the form

a b o
sinA~ sinB  sinC’

Prove this by considering a vector triangle with sides
a, b, and ¢, where ¢ = a + b, and taking the cross prod-
uct of ¢ =a+b first with a, then with b, and finally
with c.

In Exercises 23 through 26 use the fact that four points with
position vectors p, q, r, and s will be coplanar if the vectors
P — q,p —r, and p — s are coplanar to find which sets of
points all lie in a plane.

23.
24.
25.
26.
27.

28.

(1,1,-1),(-3,1,1), (-1, 2, -1), (1,0, 0).
(1,2,-1),(2,1,1),(0,1,2), (1,1, 1).
(0,—-4,0),(2,3,1), (3. =4, -2), (4. -2, -2).
(1,2,3),(1,0,1),(2,1,2), (4,1, 0).

The volume of a tetrahedron is one-third of the product
of the area of its base and its vertical height. Show the
volume V of the tetrahedron in Fig. 2.22, in which three
edges formed by the vectors a, b, and ¢ are directed
away from a vertex, is given by

V=(1/6)la- (b x ¢)|

Let a, b, ¢, and d be vectors and A, u, v be scalars
satisfying the equation

Ab xce)+pu(exa)+vaxb)+d=0.
Show that if a, b, and ¢ are linearly independent, then

r=—(a-d)/[a- (b x )],
v=—(c-d)/[a- (b xc)].

w=—(b-d)/[a-(bxc),

29.

30.

31.

Cc

FIGURE 2.22 Tetrahedron.

Leta, b, ¢, and d be vectors and A, i, v be scalars satis-
fying the equation

ra+ub+ve+d=0.

By taking the scalar products of this equation first with
b x ¢, then with a x ¢, and finally with a x b, show that
if a, b, and ¢ are linearly independent, then

=—d-(bxc)/[a-(bxc),
—d-(cxa)/[a-(bxc)],
—d-(axb)/[a-(bxc)].

A
“w
v

Show thata=i+2j+k, b=2i—j—k, andec=4i+
3j + ik are linearly independent vectors, and use them
with a vector d of your choice to verify the results of
Exercises 28 and 29.

Prove the Lagrange identity

(axb)-(exd)y=(a-c)(b-d)—(a-d)(b-c).

2.5 n-Vectors and the Vector Space R"

There are many occasions when it is convenient to generalize a vector and its
associated algebra to spaces of more than three dimensions. A typical situation
occurs in mechanics, where it is sometimes necessary to consider both the position
and the momentum of a particle as functions of time. This leads to the study of
a 6-vector, three components of which specify the particle position and three its
momentum vector at a time ¢.
Sets of n numbers (x1, X3, . .
as n-vectors or as the coordinates of a point in n-dimensional space are called

n-tuples

, X,) in a given order, that can be thought of either

ordered n-tuples of real numbers or, simply, n-tuples.
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n-vector An n-vector
If n > 2 is an integer, and x1, Xy, ..., X, are real numbers, an n-vector is an
ordered n-tuple
(1, X2, ..., Xp).
components and )
dimension The numbers x1, x2, ..., x, are called the components of the n-vector, x; is the

ith component of the vector, and # is called the dimension of the space to which
the n-vector belongs. For any given n, the set of all vectors with n real components
is called a real n-space or, simply, an n-space, and it is denoted by the symbol R".

A corresponding space exists when the n numbers xi, x, ..

., X, are allowed to be

complex numbers, leading to a complex n-space denoted by C”. In this notation

R is the three-dimensional space used in previous sections.

In R® the length of a vector was taken as the definition of its norm, so if
r = xii +xj + x3k, then |r| = (x] + x5 + x3)'/%. A generalization of this norm to

R" leads to the following definition.

norm in R The norm in R"
The norm of the n-vector (x1, x2, ..., X,), denoted by ||(x1, X2, ..., x,)| is
16, 2, )l = (0 + oG+ 22)
n L2 (51)
Sl
i=1
The laws for the equality, addition, and scaling of vectors in R® in terms of the
components of the vector generalize to R" as follows.
Equality of n-vectors
Let (x1, x2, ..., x,) and (y1, y2, .. ., ¥») be two n-vectors. Then the vectors will
be equal, written (x1, x2, ..., X,) = (V1, ¥2, - - -, ¥u), if, and only if, correspond-
algebraic rules for ing components are equal, so that

equality, addition,

and scaling using =Y, X2=DY2,..0Xn = Yo

components
Addition of n-vectors
Let (x1, x2, ..., x,) and (y1, 2, . . ., yu) be any two n-vectors. Then the sum of
these vectors, written (x1, X2, ..., X;) + (V1, ¥2, - . ., ¥u),is defined as the vector

whose ith component is the sum of the corresponding ith components of the

vectors fori = 1,2, ..., n, so that

(1, X2, oo X)) F (V1 Y20 o V) = (X +H Y. X2+ s

(33)
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dot product of
n-vectors

Scaling an n-vector

Let (x1,x2,...,x,) be an arbitrary n-vector and XA be any scalar. Then the
result of scaling the vector by A, written A(x1, X2, ..., X,), is defined as the
vector whose ith component is A times the ith component of the original
vector, fori =1,2,...,n,so that

Alx1, X2, .o, X)) = (Axg, Axg, -, AXy). (54)

The null (zero) vector in R” is the vector 0 in which every component is zero,
so that

0=(0,0,...,0). (55)

As with vectors in R3, so also with n-vectors in R", it is convenient to use
a single boldface symbol for a vector and the corresponding italic symbols with
suffixes when it is necessary to specify the components. So we will write

x=(x1,x,...,x,) and y= (1, Y2, -5 Vn)-

The reasoning that led to the interpretation of Theorem 2.1 on the algebraic rules
for the addition and scaling of vectors in R® leads also the following theorem for
n-vectors.

Algebraic rules for the addition and scaling of n-vectors in R” Letx,y, and z be
arbitrary n-vectors, and let A and p be arbitrary real numbers. Then:

) x+y=y+x;
(i) x+0=0+x=x;
(i) x+y)+z=x+(y+2z);
(iv) A(x+y) =Ax+Ay;
V) (Ap)x = A(ux) = n(rx);
(vi) (A + p)x = AX + ux;
(vii) [[Ax]| = [A[]Ix]. u

Because of this similarity between vectors in R® and in R", the space R" is
called a real vector space, though because the symbol R indicates real numbers
this is usually abbreviated a vector space. Analogously, when the elements of the
n-vectors are allowed to be complex, the resulting space is called the complex vector
space C".

So far there would seem to be little difference between vectors in R®> and R”,
but major differences do exist, and they are best appreciated when geometrical
analogies are sought for vector operations in R".

The dot product of n-vectors

Let x = (x1,x2,...,x,) and y = (y1, 2, ..., yu) be any two n-vectors. Then
the dot product of these two vectors, written x - y and also called their inner
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product, is defined as the sum of the products of corresponding components,
so that

(1, %0, o X)) - (VL Y2, o ) =X 0V + o X Ve (56)

The following properties of this dot product are strictly analogous to those of
the dot product in R* and can be deduced directly from (56).

Properties of the dot product in R” Let x,y, and z be any three n-vectors and A
be any scalar. Then:

M xy=y-x

(i) x-(y+z)=x-y+x-z

@iii)) (2x) -y =x-(ky) =A(x-y);

@(v) x-x = |x||%

V) x-0=0;

(vi) |x||> = 0if, and only if, x = 0. [

The existence of a dot product in R” allows the Cauchy—Schwarz and triangle
inequalities to be generalized, both of which play a fundamental role in the study
of vector spaces. Various forms of proof of these inequalities are possible, but the
one given here has been chosen because it makes full use of the properties of the
dot product listed in Theorem 2.6.

The Cauchy-Schwarz and triangle inequalities Let x = (x1, x2,...,x,) and y =
(y1, ¥2, ..., yu) be any two n-vectors. Then

(a) Ix-y| < |Ix]| - llyll (Cauchy—Schwarz inequality),

and

(b) Ix+yll < x| + llyll ~(triangle inequality).

Proof We start by proving the Cauchy-Schwarz inequality in (a). The inequality
is certainly true if x - y = 0, so we need only consider the case x -y # 0. Let x and
y be any two n-vectors, and A be a scalar. Then, using properties (ii) to (iv) of
Theorem 2.6,

X+ AylI? = (X + Ay) - (x + Ay),
= [Ix|I* + Ax -y + 2y - x + 27 [lyl)%.
However, by result (1) of Theorem 2.6,y -x =x -y, so
Ix + Ayl = X[ +22x -y + 221yl %
We now set A = —||x||?/(x - y) to obtain
% + 2y117 = =%l + CIxI*1yI1*)/1x - 1,

where we have used the fact that (x - y)? = |x - y|>. As ||x + Ay||? is nonnegative, this
result is equivalent to

—IxI* + (IxlI* - 1hyl*)/1x - yI* > 0.
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orthogonality
of n-vectors

unit n-vector

Cancelling the nonnegative number |x||?, which leaves the inequality sign un-
changed; rearranging the terms; and taking the square root of the remaining non-
negative result on each side of the inequality yields the Cauchy—Schwarz inequality

Ix-yl <[] - [yl
To prove the triangle inequality (b) we set A = 1 and start from the result
Ix -+ yI? = IxI* +2x -y + [lyl*.

As x - y may be either positive or negative, x -y < |x - y|, so making use of the
Cauchy-Schwarz inequality shows that

Ix +ylI < IxI1* + 21x] - Iyl + lyl*

= (Ixll + lIyl*.
The triangle inequality follows from taking the square root of each side of this
inequality, which is permitted because both are nonnegative numbers. ]

The dot product in R? allowed the angle between vectors to be determined and,
more importantly, it provided a test for the orthogonality of vectors. These same
geometrical ideas can be introduced into the vector space R" if the Cauchy—-Schwarz
inequality is written in the form

=l - Nyl = x-y < [Ix]l - llyll-
After division by the nonnegative number ||x|| - ||y||, this becomes
Xy
I llyll
This enables the angle 6 between the two n-vectors x and y to be defined by the
result
Xy

cosf = —————.
I - Iyl

On account of this result, two n-vectors x and y in R" will be said to be
orthogonal whenx - y = 0.

By analogy with R® we will call x = (x1, x2, .. ., X,) a unit n-vector if | x| = 1.
If we define the unit n-vectors e, e, ..., €, as

e, =(1,0,0,0,...,0), & =(0,1,0,0,...,0),...,e, = (0,0,0,0,...,1),

we see that

1 fori=
€€ =10 fori#j,

showing that the e; are mutually orthogonal unit n-vectors in R". As a result of this
the vectors ey, ey, ..., e, play the same role in R" as the vectors i, j, and k in R,
This allows the vector x = (x1, X2, ..., X,) to be written as

X = Xx1€] + X2€ + - - + Xp€y,

where x; is the ith component of x.
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Now suppose that for n > 3, we set
u =(1,0,0,0,...,0), w,=(0,1,0,0,...,0), ws3s=(0,0,1,0,...,0),

and all other w; identically zero, so that w; = (0,0,0,0,...,0) fori =4,5,...,n.
Then it is not difficult to see that u;, up, and w3 behave like the unit vectors 1, j,
and k, so that, in some sense the vector space R® is embedded in the vector space
R" with vectors in both spaces obeying the same algebraic rules for addition and
scaling. This is recognized by saying that R* is a subspace of R".

Subspace of R"

A subset S of vectors in the vector space R" is called a subspace of R" if S is
itself a vector space that obeys the rules for the addition and the scaling of
vectors in R".

Find the condition that the set S of vectors of the form (x, mx + ¢, 0), for any m
and all real x forms a subspace of the vector space R’, and give a geometrical
interpretation of the result.

Solution The set S can only contain the null vector (0, 0, 0) if c =0, soif ¢ # 0
the vectors in S cannot form a subspace of R*. Now let ¢ = 0, so that S contains the
null vector. The vector addition law holds, because if (x, mx, 0) and (x’, mx’, 0) are
vectors in S, the sum

(x, mx,0) + (', mx’, 0) = (x + x', m(x + x'), 0)

is also a vector in S. The scaling A(x, mx, 0) = (Ax, mix, 0) also generates a vector
in S, so the scaling law for vectors also holds, showing that S is a subspace of R®
provided ¢ = 0.

If the three components of vectors in § are regarded as the x-, y-, and
z-components of a vector in R®, the vectors can be interpreted as points on the
straight line y = mx passing through the origin and lying in the plane z = 0. This
subspace is a one-dimensional vector space embedded in the three-dimensional
vector space R’ ]

Test the following subsets of R" to determine if they form a subspace.

(a) Sis the set of vectors (x1, x; + 1, ..., x,) with all the x; real numbers.

(b) Sis the set of vectors (x1, X2, . .., x,,) With x; + x, + - - - + x, = 0 and all the x;
are real numbers.

Solution (a) The set S does not contain the null vector and so cannot form a
subspace of R”". This result is sufficient to show that S is not a subspace, but to see
what properties of a subspace the set S possesses we consider both the summation
and scaling of vectors in S. If (x1,x +1,...,x,) and (x},x; +1,...,x,) are two
vectors in S, their sum

(e, o+ 1, cx) (L x + 1, x) = (o Fx, +x 2,0, X, X))

is not a vector in S, so the summation law is not satisfied.
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The scaling condition for vectors is not satisfied, because if A is an arbitrary
scalar,

A, xi+ 1, x) = g, A+ A, x) £ (a,a+ 1,00, (Anp =a)

showing that scaling generates another a vector in S. We have proved that the
vectors in S do not form a subspace of R".

(b) The set S does contain the null vector, because x; = x, = - - - = x,, = 0 satisfies
the constraint condition x; + xp + - - - + x,, = 0. Both the summation law and the
scaling law for vectors are easily seen to be satisfied, so this set S does form a
subspace of R". ]

Let C(a, b) be the space of all real functions of a single real variable x that are
continuous for a < x < b, and let S(a, b) be the set of all functions belonging to
C(a, b) that have a derivative at every point of the interval a < x < b. Show that
S(a, b) forms a subspace of C(a, b).

Solution In this case a vector in the space is simply any real function of a single
real variable x that is continuous in the interval a < x < b. The null vector corre-
sponds to the continuous function that is identically zero in the stated interval, so
as the derivative of this function is also zero, it follows that the set S(a, b) must
also contain the null vector. The sum of continuous functionsina < x < bis a con-
tinuous function, and the sum of differentiable functions in this same interval is a
differentiable function, so the summation law for vectors is satisfied. Similarly, scal-
ing continuous functions and differentiable functions does not affect either their
continuity or their differentiability, so the scaling law for vectors is also satisfied.
Thus, S(a, b) forms a subspace of C(a, b). Think of the dimension of these spores
as infinite; norm and inner product are easy to define. ]

This section generalized the concept of a three-dimensional vector to a vector with n com-
ponents in R". It was shown that the magnitude of a vector in three space dimensions
generalizes to the norm of a vector in R" and that in terms of components, the equality,
addition, and scaling of vectors in R" follow the same pattern as with three space dimen-
sions. The dot product was generalized and two fundamental inequalities for vectors in R”
were derived. The concept of orthogonality of vectors was generalized and the notion of
a subspace of R" was introduced.

EXERCISES 2.5

In Exercises 1 through 8 find the sum of the given pairs of In Exercises 9 through 12 find the angle between the given

vectors, their norms, and their dot product.

1.
. (3,-1,-1,2,-4),(1,2,0,0,
. (2,1, -1,2,1), (-2, -1,1,
(3.,-2,1,1,2,0,1), (1, -1,1,
. (3,0,1,0),(0,2,0,4).

- (1,-1,2,2,0,1),(2,-2,1,1,1,0). In Exercises 13 through 18 determine if the set of vectors
. (-1,2,-4,0,1), (2, -1,1,0,
. (3,1,2,4,1,1,1),(1,2,3, -1, -2, 1, 3). why § either is or is not a subspace.

NN R WYN

(2,1,0,2,2), (1, -1,2,2,4).

pairs of n-vectors and the unit n-vector associated with each
vector.

3). 9. (3,1,2,1), (1, —1,2,2).

Z2, 1), 10. (4,1,0,2), (2, —1,2,1).

~1,1,0,1). 1L (2,-2,-2,4), (1, -1, -1,2).
12. 2,1, -1,1), (1, -2.2,2).

2). S forms a subspace of the given vector space. Give reasons



13.

14.

15.

16.

17.

18.

Section 2.6

S is the set of vectors of the form (x1, xy, ..
with the x; real numbers and x, = xf.

., X,)in R",

S is the set of vectors of the form (x, x,,...,x,) in
R", with the x; real numbers and x; +2x; +3x3 + -+ +
nx, = 0.

S is the set of vectors of the form (xy, x, ..., x,) in R",
with the x; real numbers and x; +x, +x3 + -+ x,, =
2.

S is the set of vectors of the form (xi, x,, ..., X¢) in R®,
with the x; real numbers and x; = 0 or x4 = 0.

S is the set of vectors of the form (x, x2, ..., X¢) in RS,
with the x; real numbers and x; — x, + x3--- + x6 = 0.
S is the set of vectors of the form (x, X3, ..., Xs) in R,
with the x; real numbers and x, < x3.

In Exercises 19 to 23 determine if the given set S is a sub-
space of the space C[0, 1] of all real valued functions that
are continuous on the interval 0 < x < 1. Give reasons why
either S is a subspace, or it is not.

26.

27.

28.

Linear Independence, Basis, and Dimension =~ 95

Consider the polynomial P(1) defined as
P(1) = lIx+ 2yl

where x and y are vectors in R". Show, provided not
both x and y are null vectors, that the graph of P()) as
a function of X is nonnegative, so P(1) = 0 cannot have
real roots. Use this result to prove the Cauchy-Schwarz
inequality

Ix-yl < [Ix[l- lIyll-

Let x and y be vectors in R” and 2 be a scalar. Prove
that

1%+ Ay117 + l1x = 2y 1% = 2(1Ix[1* + 2%}y [1*).-

If x and y are orthogonal vectors in R”, prove that the
Pythagoras theorem takes the form

Ix+ylI* = IxI* + [yl

) . 29. What conditions on the components of vectors x and y
19. Sis the set of all polynomials of degree two. in the Cauchy-Schwarz inequality cause it to become
20. Sis the set of all polynomial functions. an equality, so that
21. Sis the set of all continuous functions such that f(0) = . . 2, 12
-0 San-(30) (20) 2
22. Sistheset of all continuous functions such that f(0) = 0 i=1 i=1 i=1
an.d fay =2 ) ) ) 30. Modify the method of proof used in Theorem 2.7 to
23. S is the set of all continuous olnce differentiable func- prove the complex form of the Cauchy-Schwarz in-
tions such that f(0) = 0and f'(x) > 0. equality
24. Prove that the set S of all vectors lying in any plane in
R? that passes through the origin forms a subspace of 4 4 e 4 i
R Y x| < (Z |x,»|2> + (Z |y,~|2> :
i=1 i=1 i=1
25. Explain why the set S of all vectors lying in any plane in
R® that does not pass through the origin does not form where the x; and y; are complex numbers.
a subspace of R°.
o o ] ]
2.6 Linear Independence, Basis, and Dimension
I

The concept of the linear independence of a set of vectors in R introduced in
Section 2.4 generalizes to R" and involves a linear combination of n-vectors.

Linear combination of n-vectors

Letxy, xp, ..

., X,; be a set of n-vectors in R”. Then a linear combination of the

n-vectors is a sum of the form

C1X1 + C2Xp + - - - + CpXom,

where ¢, ¢, ..., ¢, are nonzero scalars.
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linear dependence
and independence
of n-vectors

THEOREM 2.8

An example of a linear combination of vectors in R’ is provided by the vector
sum (m=3,n=>5)

2x1 + X + 3x3,

where x; = (1,2,3,0,4),x, = (2,1,4,1, —3), and x3 = (6,0, 2, 2, —1). The vector
in R’ formed by this linear combination is

2X) 4 X3 4 3%x3 = 2(1,2,3,0,4) + (2, 1,4,1, =3) +3(6,0,2, 2, —1),
=(22,5,16,7,2).

A linear combination of n-vectors is the most general way of combining n-
vectors, and the definition of a linear combination of vectors contains within it the
definition of the scaling of a single n-vector as a special case. This can be seen
by setting m = 1, because this reduces the linear combination to the single scaled
n-vector cXxy.

Linear dependence of n-vectors

Letxy, X, ..., X, be aset of n-vectors in R”. Then the set is said to be linearly
dependent if, and only if, one of the n-vectors can be expressed as a linear
combination of the remaining n-vectors.

An example of linear dependence in R* is provided by the vectors x; =
(1,0,2,5),x =(2,1,2,1),x3 = (3,2,1,0), and x4 = (—1, —1, —1, 7), because

X4 = 2X1 — 3X2 + X3.

Linear independence of n-vectors

Letxy, xa, ..., X, be aset of n-vectors in R”. Then the set is said to be linearly
independent if, and only if, the n-vectors are not linearly dependent.

A simple example of a set of linearly independent vectors in R* is provided by the
vectors e; = (1,0,0,0), e, = (0,1,0,0), and e3 = (0, 0, 1, 0). The linear indepen-
dence of these 4-vectors can be seen from the fact that for no choice of ¢; and ¢,
can the vector cje; + c;e; be made equal to es.

To make effective use of the concept of linear independence, and to understand
the notion of the basis and dimension of a vector space, it is necessary to have a test
for linear independence. Such a test is provided by the following theorem.

Linear dependence and independence Let S be a set of non-zero n-vectors
X1, X2, ..., X, With m > 2. Then:
(a) Set Sis linearly dependent if the vector equation

Cc1X1 + X + -+ X, = 0

is true for some set of scalars (constants) ¢y, ¢y, . . ., ¢, that are not all zero;
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(b) Set Sis linearly independent if the vector equation
c1X1 +coXp + - + CXiy =0
is only true whency =c; =--- = ¢, =0.

Proof To establish result (a) it is necessary to show that the conditions of the
definition of linear dependence are satisfied. First, if the set S of n-vectors is linearly
dependent, scalars dy, d, . . ., d,, exist such that

dix1 +doxp + - -+ dpx,, = 0.

There is no loss of generality in assuming that d; # 0, because if this is not the case
a renumbering of the vectors can always make this possible. Consequently,

X1 = (—dy/dy )Xy + (—d3/d1)X3 + - - - + (=dn/d1)Xpm,

which shows, as claimed, that the set S is linearly dependent, because x; is linearly
dependent on x;, X3, . . ., X,,;. A similar argument applies to show that x, is linearly
dependent on the remaining n-vectors in S provided d, # 0,forr =2,3,..., m.
Conversely, if one of the n-vectors in set S, say xj, is linearly dependent on the
remaining n-vectors in the set, scalars d, d», . . ., d,,, can be found such that

X| =Xy + -+ dpXpy,
so that
X1—d2X2—-~-— meZO.

This result is of the form given in definition of linear dependence with ¢; =1,
¢ =—dy,...,cn = —dy, not all of which constants are zero, so again the set of
n-vectors in S is seen to be linearly dependent.

To establish result (b), suppose, if possible, that the set S of vectors is linearly
independent, but that some scalars dj, ds, . . ., d, that are not all zero can be found
such that

dixy + doxy + - -+ dpyX, = 0.
Then if d; # 0, say, is one of these scalars, it follows that
x| = (=da/d1)Xo + (=d5/d1)xX3 + - - + (—dp/d1 )Xom,

which is impossible because this shows that, contrary to the hypothesis, x; is linearly
dependent on the remaining n-vectors in S. So we must have ¢; = ¢, = -+ =
cn=0. |

A systematic and efficient computational method for the application of
Theorem 2.8 to vectors in R” will be developed in the next chapter for the three
separate cases that arise, (a) m < n, (b) m = n, and (c) m > n. However, when n
and m are small, a straightforward approach is possible, as illustrated in the next
example.

Test the following sets of vectors in R* for linear dependence or independence.
@ x=2,1,1,0), x=1(0,2,0,1), x3=(1,1,0,2), x4=(0,2,1,1).
b)) x1=0(4,0,2), x=(2,2,0), x3=(1,1,0), x4 =(5,1,2).
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Solution 1In both (a) and (b) it is necessary to consider the vector equation
X1+ + X = 0.

If the equation is only satisfied when ¢; = ¢; = - - - = ¢, = 0, the set of vectors will
be linearly independent, whereas if a solution can be found in which not all of the
constants ci, ¢, ¢3, ¢4 vanish, the set of vectors will be linearly dependent.

(a) Substituting for xi, Xz, X3, X4 in the preceding equation and equating cor-
responding components show the coefficients ¢; must satisfy the following
equations

2c1+c¢3=0
c1+204+c34+2c =0
cp+cy=0

¢+ 2c3+cy =0.
The third equation shows that ¢4 = —cy, so the equations can be rewritten as

2c1+c3=0
—c1+20+c3=0
¢ —c1+2c3 =0.
Adding twice the third equation to the first equation shows that c; = 0,so¢; = 0,and

it then follows that ¢; = ¢3 = ¢4 = 0. This has established the linear independence
of the set of vectors in (a).

(b) Proceeding in the same manner with the set of vectors in (b) leads to the
following equations for the coefficients ¢;:

4e1 +2¢p+c3+5¢4 =0
20 +c3+c4 =0
2¢1 +2¢c4 = 0.

The third equation shows that ¢4 = —c;, so using this result in the first two equations
reduces the first one to

—c1+2c0+c3=0
and the second to
—c1+2c+c¢c3=0.

There is only one equation connecting ci, ¢;, and c¢3, and hence also c4. This
means that if ¢; and c3 are given arbitrary values, not both of which are zero, the
constants ¢; and ¢4 will be determined in terms of them. Thus, a set of constants
c1, €2, ¢3, ¢4 that are not all zero can be found that satisfy the vector equation,
showing that the set of vectors in (b) is linearly dependent. This set of constants
is not unique, but this does affect the conclusion that the set of vectors is linearly
dependent, because to establish linear dependence it is sufficient that at least one
such set of constants can be found. [ |
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Example 2.22 has shown one way in which Theorem 2.8 can be implemented
for vectors in R”, but it also illustrates the need for a systematic approach to the
solution of the system of equations for the coefficients when 7 is large.

A trivial case of Theorem 2.8 arises when the set of vectors S contains the null
vector 0, because then the set of vectors in § is always linearly dependent. This can
be seen by assuming that x; = 0, because then the vector equation in the theorem
becomes

c0+cxo+ -+ Xy =0.

This vector equation is satisfied if ¢c; # 0 (arbitrary) andc; = ¢c3 = -+ = ¢,, = 0, 50,
as not all of the coefficients are zero, the set of vectors must be linearly dependent.

We conclude this introduction to the vector space R" by defining the span, a
basis, and the dimension of a vector space.

Span of a vector space

Let the set of non-zero vectors xi, Xp, ..., X, belonging to a vector space
V have the property that every vector in V' can be expressed as a linear
combination of these vectors. Then the vectors xi, X, .. ., X, are said to span
the vector space V.

All vectors v in the (x, y)-plane are spanned by the vectors i and j, because any
vector v = (v, v,) can always be written v = v1i + v, j. This is an example of vectors
spanning the space R?. ]

The vector space R" is spanned by the unit n-vectors
e; =(1,0,0,0,...,0), e,=(0,1,0,0,...,0),..., ¢,=(0,0,0,0,...,1). [ |

The subspace R® of the vector space R’ is spanned by the unit vectors
e; =(1,0,0,0,0), e, =(0,1,0,0,0), e3=(0,0,1,0,0),

because all vectors v = (vq, v, v3) in R can be written in the form of the linear
combination v = vie; + vie; + vses. [ |

Basis of a vector space

Let xq, Xp, ..., X, be vectors in R". Then the vectors are said to form a basis
for the vector space R" if:

(i) The vectors xq, Xy, ..., X, are linearly independent.

(ii) Everyvectorin R" can be expressed as a linear combination of the vectors
X1, X2, ..., Xj.

Dimension of a vector space

The dimension of a vector space is the number of vectors in its basis.
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A basis for the space of ordinary vectors in three dimensions is provided by the
vectors i, j, and k, so the dimension of the space is 3. [ |

A basis for R" is provided by the n vectors
e; =(1,0,0,0,...,0), e2=(0,1,0,0,...,0),..., e,=(0,0,0,0,...,1),

so its dimension is 7. [ |

It was shown in Example 2.20 (b) that the set S of vectors (xi, x2, ..., x,) with
X1+ x4+ -+ -+ x, = 0 forms a subspace of R". The dimension of R" is n, but the
constraint condition x; + x, + - - - + x,, = 0 implies that only n — 1 of the compo-
nents xj, Xz, ..., X, can be specified independently, because the constraint itself
determines the value of the remaining component. This in turn implies that the
basis for the subspace S can only contain n — 1 linearly independent vectors, so S
must have dimension n — 1. ]

More information on linear vector spaces can be found in references [2.1] and [2.5]
to [2.12].

In this section the concepts of linear dependence and independence were generalized to
vectors in R”, and the span of a vector space was defined as a set of vectors in R" with the
property that every vector in R" can be expressed as a linear combination of these vectors.
Naturally in R", asin R3, a set of vectors spanning the space is not unique. The smallest set
of n vectors spanning a vector space is said to form a basis for the vector space, and the
dimension of a vector space is the number of vectors in its basis. This corresponds to the
fact that the unit vectors i, j, and k form a basis for the ordinary three-dimensional space
R3, because every vector in this space can be represented as a linear combination of i, j,
and k.

EXERCISES 2.6

In Exercises 1 through 12 determine if the set of m vec-
tors in three-dimensional space is linearly independent by
solving for the scalars ¢;, ¢; . ..c, in Theorem 2.8. Where
appropriate, verify the result by using Theorem 2.3.

[y

.a=i+2j+k b=i—j+k c=2i+k

.a=3i—j+k b=i+3k ¢=5—j+ 7k

.a=2i—j+k b=3i+j—k ¢=8i+j+ 7k

. a=3i+2k b=i+j+2k c=11i+2j— 2k

a=4i—j+3k b=i+4j—2k c=3i—j—k

a=i+j—k b=i—j+k c=—-i+j+k

.a=i+2j+k b=i+3j—k, ¢=3i+10j — 5k.

. a=2i+3j+k b=i-3j+2k c=i+ 15j — 4k

.a=3i—j+2k, b=i+j+k (m=2).

. a=i+j+k b=i+2j+k, c=i+3j+k, d=i—4j+k
(m=4).

1. a=i—j+3k, b=2i—j+2k, c=i+k, d=3i+j+k

(m=4).

IS T~ N7 I NI

[y
(=}

12.a=i+j. b=j+k c=i—k

In Exercises 13 through 16, determine if the set of vec-
tors in R* is linearly independent by using the method of
Example 2.22.

13. (1,3,-1,0),(1,2,0,1),(0,1,0, 1), (1,1,0, 1).
14. (1,-2,1,2),(4,-1,0,2), (2,1, -1, 1), (1,0,0, —1).
15. (2,1,0,1),(1,0,1,1), (4, 1,2, 1), (1,0, 1, —1).
16. (1,2,1,1), (1, =2,0,—1),(1,1,1,2), (1, 1,0, 0).

In Exercises 17 through 20, find a basis and the dimension
of the given subspace S.

17. The subspace S of vectors in R® of the form
(x1, X2, X3, X4, X5) With x; = x,.

18. The subspace S of vectors in R* of the form
(x1, X2, X3, x4) With x; = 2x;.

19. The subspace S of vectors in R of the form
(x1, X2, X3, X4, X5) With x; = x; = 2x3.
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20. The subspace S of vectors in R® of the form (a) 2. (b) sin2x. (c) 0. (d) cos2x. (e) 2+ 3x. (f) 3 —
(xl, X2, X3, X4, X5, x6) with X1 = 2)62 and X3 = —X4. 4cos2x.

21. Let u = cos? x and v = sin® x form a basis for a vector 22. Given that r < n, prove that any subset S of r vectors
space V. Find which of the following can be represented selected from a set of n linearly independent vectors is
in terms of w and v, and so lie in V. linearly independent.

2.7 . Gram-Schmidt Orthogonalization Process

I

A set of vectors forming a basis for a vector space is not unique, and having ob-
tained a basis by some means, it is often useful to replace it by an equivalent set
of orthogonal vectors. The Gram—Schmidt orthogonalization process accomplishes
this by means of a sequence of simple steps that have a convenient geometrical
interpretation. We now develop the Gram-Schmidt orthogonalization process for
geometrical vectors in R?, though in Section 4.2 the method will be extended to vec-
torsin R" to enable orthogonal matrices to be constructed from a set of eigenvectors
associated with a symmetric matrix.

Let us now show how any basis for R*, comprising three nonorthogonal linearly
independent vectors aj, a,, and as, can be used to construct an equivalent basis
involving three linearly independent orthogonal vectors u;, u,, and us. It is essential
that the vectors ay, a,, and a3 be linearly independent, because if not, the vectors
uj, up, and us generated by the Gram-Schmidt orthogonalization process will be
linearly dependent and so cannot form a basis for R*. The derivation of the method
starts by setting

u; = ay,

where the choice of a; instead of a, or a3 is arbitrary.
The component of a; in the direction of u; is u; - a3, so the vector component
of a, in this direction is

(ug - a2)uy

(ug-a2)u; =
[y ]|

’

and this always exists because |u;||> > 0. Subtracting this vector from a, gives a
vector up that is normal to uy, so

Similarly, to find a vector normal to both u; and u; involving a3, it is necessary
to subtract from a3 the components of vector as in the direction of u; and also in
the direction of u,, so that

_ (111 -33)111 _ (llz'as)llz
[l [ fluz |1

uz = as

and this also always exists, because |u;||> > 0 and [Ju,||> > 0.
If an orthonormal basis is required, it is necessary to normalize the vectors
uy, up, and uz by dividing each by its norm.
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Rule for the Gram-Schmidt orthogonalization process in R*

A set of nonorthogonal linearly independent vectors aj, a,, and a3 that form
a basis in R® can be used to generate an equivalent orthogonal basis involving
the vectors, uy, uy, and u3 by setting

(ug - a2)uy

uy=a;, UW=a — ||111||2

(up-az)uy  (uz-az)u;
[l |12 [luz |2

Uz = az —

As already remarked, the choice of a; as the vector with which to start the
orthogonalization process was arbitrary, and the process could equally well have
been started by setting u; = a, or u; = a3. Using a different vector will produce a
different set of orthogonal vectors uy, uy, and us, but any basis for R* is equivalent
to any other basis, so unless there is a practical reason for starting with a particular
vector, the choice is immaterial.

Given the nonorthogonal basis a; =i—j—k, a =i+j+k, and a3 = —i + 2Kk,
use the Gram-Schmidt orthogonalization process to find an equivalent orthogonal
basis, and then find the corresponding orthonormal basis.

Solution Using the preceding rule we start with u; =i — j — Kk, and to find u, we
need to use the results u; - a, = —1 and ||u;||> = 3, so that

w=it+j+k—(=1/3)(i—j—k) =(4/3)i+(2/3)j + (2/3)k.

To find u3; we need to use the results w;-a3 = —3, |w|>=3, w-a3 =0, and
luz[|?> = 24/9, so that

u; =—i+2k—(-3/3)i—-j—k)=—j+k
So the required equivalent orthogonal basis is
uy=i—j—k w=(4/3)i+(2/3)j+2/3k, and wu3;=—j+k

The corresponding orthonormal basis obtained by dividing each of these vectors
by its norm (modulus) is

= (1/\/:;)111, i = (1/2)\/(3/2)112 and 13 = (1/«/5)]13 |

Other accounts of the Gram—-Schmidt orthogonalization process are to be found in
references [2.1] and [2.7] to [2.12].
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In this section it is shown how in R3 the Gram-Schmidt orthogonalization process converts

any three nonorthogonal linearly independent vectors a;, a,, and a; into three orthogonal
vectors uy, uy, and us. If necessary, the vectors uy, uy, and u; can then be normalized in
the usual manner to form an orthogonal set of unit vectors.

EXERCISES 2.7

In Exercises 1 through 6, use the given nonorthogonal
basis for vectors in R® to find an equivalent orthogonal
basis by means of the Gram-Schmidt orthogonalization
process.

1. aj=i+2j+k a;=i—jaz=2j—k.
2.a=j+3k ;=i+j—k a;=i+2k
3.a=2i+j, ,=2j+k, a3=k.

4. a; =i+3k, ay=i—j+k, a3 =2i+].
5.a=—i+k, a=2j+k as=i+j+k

6. a1=i+k, a2=—j+k, a3=i+j+2k

In Exercises 7 and 8, find two different but equivalent sets
of orthogonal vectors by arranging the same three non-
orthogonal vectors in the orders indicated.

7. (@)a; =3j—k, ay =i+, a3 =i+ 2k
(b)a; =i+j, a,=3j—k, a =i+2k.

8. @a=j—k aa=i+k as=—i—j+k
Mb)a,=—i—j+k a,=i+k as=j—k.
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any types of problems that arise in engineering and physics give rise to linear alge-

braic simultaneous equations. A typical engineering example involves the determi-
nation of the forces acting in the struts of a pin-jointed structure like a truss that forms the
side of a bridge supporting a load. The determination of the forces in a strut is important
in order to know when it is in compression or tension, and to ensure that no truss exceeds
its safe load. The analysis of the forces in structures of this type gives rise to a set of linear
simultaneous equations that relate the forces in the struts and the external load.

It is necessary to know when systems of linear equations are consistent so a solution
exists, when they are inconsistent so there is no solution, and whether when a solution
exists it is unique or nonunique in the sense that it involves a number of arbitrary param-
eters. In practical problems all of these mathematical possibilities have physical meaning,
and in the case of a truss, the inability to determine the forces acting in a particular strut
indicates that it is redundant and so can be removed without compromising the integrity
of the structure.

A more complicated though very similar situation occurs when linearly vibrating sys-
tems are coupled together, as may happen when an active vibration damper is attached
to a spring-mounted motor. However, in this case it is a system of simultaneous linear
ordinary differential equations determining the amplitudes of the vibrations of the motor
and vibration damper that are coupled together. The analysis of this problem, which will
be considered later, also gives rise to a linear system of simultaneous algebraic equations.

Linear ordinary differential equations are also coupled together when working with
linear control systems involving feedback. When such systems are solved by means of the
Laplace transform to be described later, linear algebraic systems again arise and the nature
of the zeros of the determinant of a certain quantity then determines the stability of the
control system.

Linear systems of simultaneous algebraic equations also play an essential role in com-
puter graphics, where at the simplest level they are used to transform images by translating,
rotating, and stretching them by differing amounts in different directions.

Although each equation in a system of linear algebraic equations can be considered
separately, such can be discovered about the properties of the physical problem that gave
rise to the equations if the system of equations can be studied as a whole. This can be
accomplished by using the algebra of matrices that provides a way of analyzing systems

105
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as a single entity, and it is the purpose of this chapter to introduce and develop this aspect
of what is called linear algebra.

After defining the notion of a matrix, this chapter develops the fundamental matrix
operations of equality, addition, scaling, transposition, and multiplication. Various appli-
cations of matrices are given, and the brief review of determinants given in Chapter 1 is
developed in greater detail, prior to its use when considering the solution of systems of
linear algebraic equations.

The concept of elementary row operations is introduced and used to reduce systems
of linear algebraic equations to a form that shows whether or not a unique solution exists.
When a solution does exist, which is either unique or determined in terms of some of the
remaining variables, this reduction enables the solution to be found immediately.

Theinverse of an n x n matrix is defined and shown only to exist when the determinant
of the matrix is nonvanishing, and, finally, the derivative of a matrix whose elements
are functions of a variable is introduced and some of its most important properties are
derived.

3.1 Matrices

Matrices arise naturally in many different ways, one of the most common being
in the study of systems of linear equations such as

apxy +apxy + - - -+ aypx, = b
anx) + anx; + - - -+ apx, = by 1)
a1 X1 + QX + - - -+ QX = bm'

In system (1) the numbers a;; are the coefficients of the equations, the numbers b;
are the nonhomogeneous terms, and the number of equations m may equal, exceed,
or be less than n, the number of unknowns xq, xz, ..., X,.

System (1) is said to be homogeneous when by = b, = --- = b,, = 0, and to be
nonhomogeneous when at least one of the b; is nonvanishing. The algebraic prop-
erties of the system are determined by the array of coefficients g;;, the nonhomo-
geneous terms b; and the numbers m and n. From now on, the array of coefficients
and the nonhomogeneous terms on the right will be denoted by the single symbols
A and b, respectively, where

an ain ... p b1
a a ...oa b
T I o b

The array of mn coefficients a;; in m rows and n columns that form A is an
example of an m x n matrix, where m x n is read “m by n.” The array b is an
example of an m x 1 matrix, and it is called an m element column vector. We will
use the convention that an array such as A, with two or more rows and two or more
columns, will be denoted by a boldface capital letter. An array with a single row, or
a column such as b, will be denoted by a boldface lowercase letter.

Each entry in a matrix is called an element of the matrix, and entries may be
numbers, functions, or even matrices themselves. The suffixes associated with an
element show its position in the matrix, because the first suffix is the row number
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and the second is the column number. Because of this convention, the element ass
in a matrix belongs to the third row and the fifth column of the matrix. So, for
example, if A is a 3 x 2 matrix and its general element a;; =i + 3j, then as i may
only take the values 1, 2, and 3, and j the values 1 and 2, it follows that

4 7
A=1|5 8
6 9
In a column vector ¢ with elements c11, ¢;1, €31, - - ., Cin1, as only a single column
is involved, it is usual to vary the suffix convention by omitting the second suffix
and instead numbering the elements sequentially as c1, ¢, c3, . . ., ¢, SO that
C1
(&)
C =
Cm

Later it will be necessary to introduce row vectors, and in an s element row vec-

tor r with elements ry1, 12, 713, - . . , 15, the notation is again simplified, this time by
omitting the first suffix and numbering the elements sequentially as r1, 72, . . ., 75, SO
l‘:[r], r2,...,rs]. (3)

In general, row and column vectors will be denoted by boldface lowercase letters
such as a, b, ¢, and x, and matrices such as the coefficient matrix in (2) will be
denoted by boldface capital letters such as A, B, P, and Q.

A different convention that is also used to denote a matrix involves enclosing
the array between curved brackets instead of the square ones used here. Thus,

(232w [137] .

denote the same 2 x 3 matrix. A matrix should never be enclosed between two
vertical rules in order to avoid confusion with the determinant notation because

3 4

5 2

[2 _g] is a matrix, but ‘

‘ =26 1is a determinant.

Definition of a matrix

Anm x nmatrix is an array of mmn entries, called elements, arranged in m rows
and n columns. If a matrix is denoted by A, then the element in its ith row and
jth column is denoted by a;; and
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some typical matrices The following are typical examples of matrices:

A1 x 1 matrix: [3]; asingle element may be regarded as a matrix.

1 350
A 3 x 4 matrix: 2 —1 4 3|; amatrix with real numbers as elements.
7 2 1 6

147 1—i

A 2 x 2 matrix: [3—{—41' 2 3

]; a matrix with complex numbers as
elements.

A 2 x 2 matrix: |: cost - sin @

sind  cos 9] ; a matrix with functions as elements.

A1l x3matrix: [2, —5, 7]; athree-elementrow vector.

A 2 x 1 matrix: |:191:| ; atwo-element column vector.

A square matrix is a matrix in which the number of rows m equals the number of
columns n. A typical square matrix is the 3 x 3 matrix

2 05
1 -3 4
31 7

Definition of the equality of matrices

Let A = [g;;] be an m x n matrix and B = [b;;] be a p x ¢ matrix. Then ma-
trices A and B will be equal, written A = B, if, and only if:

(a) A and B have the same number of rows, and the same number of
columns, so that m = p and n = g, and

(b) a;j = b;j, for eachi and j.

Equality of matrices means that if A and B are equal, then each is an identical copy
of the other.

|_EXAMPLE3.1_| 239

IfAz[lz7 2 ‘1’] B:[_g 2 ﬂ and C=[-3 6 1],
000

then A =Bifandonlyifa =9and b= —3,but A ## Cand B # C. ]

Definition of matrix addition

The addition of matrices A and B is only defined if the matrices each have
the same number of rows and the same number of columns. Let A = [g;;] and
B = [b;;] be m x n matrices. Then the the m x n matrix formed by adding A
and B, called the sum of A and B and written A + B, is the matrix whose
element in the ith row and jth column is a;; + b;;, for each i and j, so that

A+ B = [a; + bij].

Matrices that can be added are said to be conformable for addition.
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It is an immediate consequence of this definition that A + B = B + A, so matrix
addition is commutative.

Definition of the transpose of a matrix

Let A = [a;;] be an m x n matrix. Then the transpose of A, denoted by AT
(and sometimes by A’), is the matrix obtained from A by interchanging rows
and columns to produce the n x m matrix

AT = [a;;]" = [a;].

The definition of the transpose of a matrix means that the first row of A becomes
the first column of AT, the second row of A becomes the second columnof AT, ... .,
and, finally, the mth row of A becomes the mth column of AT. In particular, if A is
a row vector, then its transpose is a column vector, and conversely.

2 6 3 21 7
IfA:[l 0 4i| then AT=|6 0|, andif A=[7,3,2] then AT=|3
3 4 2

[ |

Definition of scaling a matrix by a number

Let A = [a;;] be an m x n matrix and A be a scalar (real or complex). Then if
A is scaled by A, written AA, every element of A is multiplied by A to yield
the m x n matrix

LA = [Aaij].

2 -6 7
If A =2 and A:|: ] thenAA:2A:|:

4 -12 14
1 4 15 ’

2 8 30
and if A = —1, then

A = (DA = —A = [_2 6 _7} . .

-1 -4 -15

Taken together, the definitions of the addition and scaling of matrices show
that if the matrices A and B are conformable for addition, then the subtraction of

T e matrix B from A, called their difference and written A — B, is to be interpreted as
(subtraction) of
matrices A-B=A+ (—1)B-

2 5 8 2 4 5 01 3
IfA=|:1 _4 51| and B:[2 _4 1], thenA—B:[ ]
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negative of a matrix

The null or zero matrix 0 is defined as any matrix in which every element is zero.
The introduction of the null matrix makes it appropriate to call —A the negative of
A, because

A-A=A+(-1)A=0.

When working with the null matrix the number of its rows and columns is never
stated, because these are always taken to be whatever is appropriate for the equation
that is involved.

Definition of the product of a row and a column vector

Leta = [aj, ay, ..., a,] be an r-element row vector, and b = [by, by, ..., b,|"
be an r-element column vector. Then the product ab, in this order, is the
number defined as

ab = a1by + axbr--- +a,b,.

Notice that this product is only defined when the number of elements in the row
vector A equals the number of elements in the column vector B.

Find the product ab given thata = [1, 4, —3, 10]andb = [2, 1, 4, —-2]".

Solution
ab =1, 4, -3, 10] 2
1
4
-2
=1)-@+®-(1)+(=3)-(4)+(10)-(-2)
= -26. -

Definition of the product of matrices

Let A = [a;;] be an m x n matrix in which the rth row is the row vector a,,
and let B = [b;;] be a p x g matrix in which the sth column is the column
vector by. The matrix product AB, in this order, is only defined if the number
of columns in A equals the number of rows in B, so that n = p. The product is
then an m x g matrix with the element in its rth row and sth column defined
as a,/by. Thus, if ¢,; = a,by, as ¢,y = a,1b15 + a,2bog + - - - + a, by,

AB = [crs] == [arlbls arF ar2b2s SFocogRE arnbns]s
forl <r <mand1 <s < g, or, equivalently,

a1b1 a1b2 31b3 5 0 o albq
azbl azbz azb3 °o o o azbq

AB =
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When a matrix product AB is defined, the matrices are said to be con-
formable for matrix multiplication in the given order.

It is important to notice that when the product AB is defined, the product BA may
or may not be defined, and even when BA is defined, in general AB # BA. This
situation is recognized by saying that, in general, matrix multiplication is noncom-
mutative.

Provided matrices A and B are conformable for multiplication, the above rule
for finding their product AB, in this order, is best remembered by saying that the
element in the ith row and jth column of AB is the product of the ith row of A and
the jth column of B.

Form the matrix products AB and BA given that

4 1
A:B 2 _Z] and B=|[2 6
0 3

Solution Letus calculate the matrix product AB. The first and second row vectors
of A are a; = [1,4, —3] and a, = [2, 5, 4], and the first and second column vectors
of Bareb; =[4,2,0]T and b, = [1,6,3]T. As Aisa?2 x 3 matrix and Bis a 3 x 2
matrix, the product AB is conformable for multiplication and yields a 2 x 2 matrix

AB — atb; aby| [(1-444-24+(=3)-0) (1-14+4-6+(-3)-3)
T laby aby| | (2:44+5.2+4-0) (2-1+5-6+4-3)

|12 16
T |18 44|
The product BA is also conformable for multiplication and yields a 3 x 3
matrix, where now we must use the row vectors of B that with an obvious change

of notation are by = [4, 1], by = [2, 6], b3 = [0, 3], and the column vectors of A that
are a; = [1,2]%, ap = [4,5]", and a3 = [-3, 4], so that

bia; bja, bjas _(4-1+1-2) (4-441-5) 4-(-3)+1-4)
BA = b231 b2a2 bza3 = (21+62) (24+65) (2(—3)+64)
bsa; bza; bsas [ (0-1+3-2) (0-4+3-5) (0-(=3)+3-4)

6 21 -8

=114 38 18

| 6 15 12

This is an example of two matrices A and B that can be combined to form the
products AB and BA, but AB # BA. ]

Write the system of simultaneous equations (1) in matrix form.

Solution Using the matrices A andbin (2) and settingx = [x1, X2, ..., x,]" allows
the system of equations (1) to be written

Ax =b.
Here, as is usual, to save space the transpose operation has been used to display

the elements of column vector x in the more convenient form x = [xq, xp, ..., xn]T.
| ]
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THEOREM 3.1

some important
properties of matrices

THEOREM 3.2

raising a matrix to a
power

The definitions of matrix multiplication and addition lead almost immediately
to the results of the following theorem, so the proof is left as an exercise.

Associative and distributive properties of matrices Let A, B, and C be matrices
that are conformable for the operations that follow, and let A be a scalar. Then:

(i) If AB and BA are both defined, in general AB # BA;
(ii) A(BC)=(AB)C = ABC;
(iii) (AA)B = A(AB) = 1AB;
(ivv AB+C)=AB+ACG;
vy (A+B)C=AC+BC. [ |

Transposition of a product If matrices A and B are conformable to form the
product AB, then

(AB)T =BTAT.

Proof The products (AB)T and BTA" are both defined, and each is an m x ¢
matrix. Introduce the notation [M];; to denote the element of M in row i and
column j. Then from the transpose operation and the rule for matrix multiplication,
for all permissible i, j,

[AB]I]» = [AB];; = (product of jth row of A with ith column of B) = Z ajib.
k=1

Similarly,

[BTA']; ; = (product of ith row of BT with jth column of AT)

n
= (product of ith column of B with jth row of A) = Z ajiby.
k=1

So [AB]}; = [BTAT];; for all permissible 7, j, showing that (AB)" = BTAT. ]

It is an immediate consequence of Theorem 3.1(ii) that if A is a square matrix
and m and n are positive integers,

A-A-A. ... A=A" and A" A" =A"",
[ S —

n times
A useful result from the definition of addition is
(A+B)T = AT + BT,
while from Theorem 3.2

(ABC)" = CTBTAT.
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As the order in which a sequence of permissible matrix multiplications is per-
formed influences the product, it is necessary to introduce a form of words that
makes the order unambiguous. This is accomplished by saying that if matrix A mul-
tiplies matrix B from the left, as in AB, then B is premultiplied by A, while if A
multiplies B from the right, asin BA, then B is postmultiplied by A. Equivalently, in
the product AB, we can say that A is postmultiplied by B, or that B is premultiplied
by A.

Important Differences Between Ordinary
Algebraic Equations and Matrix Equations

(i) The algebraic equation ab = 0, in which a and b are numbers, not both of
which are zero, implies that either a = 0 or b = 0. However, if the matrix product
AB is defined and is such that AB = 0, then it does not necessarily follow that either
A=0orB=0.

(ii) The algebraic equation ab = ac in which a, b, and ¢ are numbers, with a # 0,
allows cancellation of the factor a leading to the conclusion that b = ¢. However,
if the matrix products AB and AC are defined and are such that AB = AC, this
does not necessarily imply that B = C, so that cancellation of matrix factors is not
permissible.

The validity of these two statements can be seen by considering the following simple
examples.

Consider matrices A and B given by

1 4 4 -8
A= |:3 12i| and B = |:_1 2] .
Then AB = 0, but neither A nor B is a null matrix. [ |

Consider the matrices A, B, and C given by
1 -1 2 46 36 8
Az[z —2}’ Bz[z 3 4}’ and C:[3 5 6]

Then

but B # C. [ ]

In a square n x n matrix A = [a;;], the elements on a line extending from top
left to bottom right is called the leading diagonal of A, and it contains the n elements
at, ax, ...,y

So the leading diagonal of the 2 x 2 matrix A in Example 3.8 contains the
elements 1 and 12, and the leading diagonal of the 2 x 2 matrix B contains the
elements 4 and 2. Symbolically, the leading diagonal of the n x n matrix A = [a;}]
shown below comprises the n elements in the shaded diagonal strip, though these
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identity or unit matrix

some special matrices

n elements do not form an n element vector.

ap ap a3z - - - din
apy dxp a4z - © d2n
a a a Y
A — 31 32 33 3n
anl a2 ap3 - : © Opn

The trace of a square matrix A, written tr(A), is the sum of the terms on its
leading diagonal, so for the foregoing matrix tr(A) = ayy + ax + - -+ + dyp.

Square matrices in which all elements away from the leading diagonal are zero,
but not every element on the leading diagonal is zero, are called diagonal matrices.
Of the class of diagonal matrices, the most important are the unit matrices, also
called identity matrices, in which every element on the leading diagonal is the
number 1. These n x n matrices are usually all denoted by the symbol I, with the
value of n being understood to be appropriate to the context in which they arise.
If, however, the value of n needs to be indicated, the symbol I can be replaced by
L. It is easily seen from the definition of matrix multiplication that for any m x n
matrix A it follows that

I,A = Al, or, more simply, [A = Al = A,
and that when A is an n x n matrix,
IA = Al =A.
When working with matrices, the unit matrix I plays the part of the unit real number,

and it is because of this that I is called either the unit or the identity matrix.
An example of a 4 x 4 diagonal matrix is

3000
0200 . .

D= 000 ol with the trace given by tr(D) =3+2+0+1 = 6.
0 0 01

The 3 x 3 unit matrix is the diagonal matrix

1 00
I=I=|0 1 0|, anditstraceistrl)=1+1+1=3.
0 0 1

Various special square n x n matrices occur sufficiently frequently for them to
be given names, and some of the most important of these are the following:

Upper triangular matrices are matrices in which all elements below the leading
diagonal are zero. A typical example of a 4 x 4 upper triangular matrix is

13 -1 0
02 -6 1
U=1lg 0 -3 2
00 0 4
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Lower triangular matrices are matrices in which all elements above the leading
diagonal are zero. A typical example of a 4 x 4 lower triangular matrix is

2 00 0
1 00 0
L=|5 5, 59
2 4 7 3

Symmetric matrices A = [g;;] are matrices in which a;; = a;; for all i and j.
If A is symmetric, then A = AT. A typical example of a symmetric matrix is

15 -3

M=| 5 4 2

-3 2 7
Skew-symmetric matrices A = [a;;] are matrices in which a;; = —aj; for all
i and j. From the definition of an n x n skew-symmetric matrix we have
a;; = —a;; fori =1,2,...,n, so the elements on the leading diagonal must
all be zero. An equivalent definition of a skew-symmetric matrix A is that

AT = —A. A typical example of a skew-symmetric matrix is

0 3 -5 6
-3 0 2 —4
5 -2 0 -1
-6 4 1 O

S=

An orthogonal matrix Q is a matrix such that QQT=Q"Q=1 A typical
orthogonal matrix is

11
V22
=l 1
V22

More special than the preceding real valued matrices are matrices A = [4;;] in
which the elements a;; are complex numbers. We will write A to denote the matrix
obtained from A by replacing each of its elements a;; by its complex conjugate a;;,
so that

A = [a].
Then matrix A is said to be Hermitian if
A=A

A typical Hermitian matrix is

7 1—4
A=[1+4i 3]

The matrix A is said to be skew-Hermitian if
—T

A =—-A.
A typical skew-Hermitian matrix is

[ s stai
A_[—5+2i o}'
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block matrices

More will be said later about some of these special square matrices and the ways in
which they arise.

Finally, we mention that every m x n matrix A can be represented differently
as a block matrix, in which each element is itself a matrix. This is accomplished by
partitioning the matrix A into submatrices by considering horizontal and vertical
lines to be drawn through A between some of its rows and columns, and then
identifying each group of elements so defined as a submatrix of A. Clearly there is
more than one way in which a matrix can be partitioned. As an example of matrix
partitioning, let us consider the 3 x 3 matrix

3 -1 2
A=|1 2 0
2 10

One way in which this matrix can be partitioned is as follows:

3 -112
A=11 210
2 110
This can now be written in block matrix form as
Ay A1z]
A= ,
|:A21 A

where the submatrices are
1 2 0
A11 = [3 —1], A12 = [2], A21 = |:2 1] s and A22 = |:0:| .

The addition and scaling of block matrices follow the same rules as those for
ordinary matrices, but care must be exercised when multiplying block matrices.
To see how multiplication of block matrices can be performed, let us consider the
product of matrix A above and the 3 x 4 matrix

112 2 1
=311 0
213 0 2

which are conformable for the product AB that is itself a 3 x 4 matrix. If B is
partitioned as indicated by the dashed lines, it can be written as

[B11 Bi,
B = ,
| B2 Bzz]

where the submatrices are

1 2 2 1]

B = |:3:| B, = |:1 10 By =[2], and By =3, 0, 2]
Consideration of the definition of the product of matrices shows that we may now
write the matrix product AB in the condensed form

AuBu+ApBy AuBp+ A12B22:|

AB =
[A21B11 + A22Bai AuBr + AxB2
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where the partitioned matrices have been multiplied as though their elements were
ordinary elements. This result follows because of correct partitioning, as each prod-
uct of submatrices is conformable for multiplication and all of the matrix sums are
conformable for addition.

In this illustration, routine calculations show that

AuBu+ApBy =[4], AuBpn+ApBxn=[11, 5, 7],

7 4 4 1
AzBi + ApBy = , and AnBp + ApBy = ,
5 5 5 2
)
4] [11, 5, 7] 4 11 5 7
5 552 55 5 2

This result is easily confirmed by direct matrix multiplication.

The calculation of a matrix product AB using partitioned matrices applies in
general, provided the partitioning of A and B is performed in such a way that the
products of all the submatrices involved are defined.

Matrix partitioning has various uses, one of which arises in machine compu-
tation when a very large fixed matrix A needs to be multiplied by a sequence
of very large matrices P, Q, R, .... If it happens that A can be partitioned in
such a way that some of its submatrices are null matrices, the computational time
involved can be drastically reduced, because the product of a submatrix and a
null matrix is a null matrix, and so need not be computed. The economy fol-
lows from the fact that in machine computation multiplications occupy most of
the time, so any reduction in their number produces a significant reduction in the
time taken to evaluate a matrix product, and the result is even more significant
when the same partitioned matrix with null blocks is involved in a sequence of
calculations.

Block matrices are also of significance when describing complex oscillation
problems governed by a large system of simultaneous ordinary differential equa-
tions. Their importance arises from the fact that the matrix of coefficients of the
equations often contains many null submatrices, and when this happens the struc-
ture of the nonnull blocks provides useful information about the fundamental
modes of oscillation that are possible, and also about their interconnections.

For other accounts of elementary matrices see the appropriate chapters in
references [2.1], [2.5], and [2.7] to [2.12].

This section defined m x n matrices, and the special cases of column and row vectors, and
it introduced the fundamental algebraic operations of equality, addition, scaling, transpo-
sition, and multiplication of matrices. It was shown that, in general, matrix multiplication
is not commutative, so that even when both of the products AB and BA are defined, it is
usually the case that AB # BA.

Pre- and postmultiplication of matrices was defined, and some important special types
of matrices were introduced, such as the unit matrix L. It was also shown how a matrix A
can be subdivided into blocks, and that a matrix operation performed on A can be inter-
preted in terms of matrix operations performed on block matrices obtained by subdivision
of A.
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EXERCISES 3.1

In Exercises 1 through 4 find the values of the constants a, 4 31
b, and c in order that A = B. 1. A =4, pu=-2, A={(2 1 1/,
L A= [a®> 1 ¢ B—|¢ 1 4 (12 1]
T2 3 a) Tl 2 b —1f (6 1 07
B B=|2 4 2
1 4 3 1 4 3 11 2
22.A=|a 2 4|, B=|2 2 4|. i -
9 1 ¢ b 1 0 3.1 4
- 12. =3, pu=-3, A=|2 2 1|,
[ a? a 1 a> a 1 |13 6 2|
3. A=| b 1 2|, B=|3 1 2]. r3 2 17
1 34a 2 1 -1 ¢ L2 1 1
4. A=|1+Db a 51, B=|4 a 5 In Exercises 13 through 16 find the product AB.
v 1 a P 1 a
- 13. A=[1, 4, -2, 3], B=[2 1, -1, 2I'
In Exercises 5 through 8 find A + B and A — B. 14. A=1[2, 3, 1, 4], B=[3 1, 1, 3.
_ 15. A=[1, 4
1 4 36 20 1 =2 3 B:[[Z 2’ i’l 7_15] 3T
55A=|2 1 0 2|, B=|1 1 =3 1{. 7 ’ ’
1 -1 0 1 01 1 o0 16. A=[1, 3, -1, 2, 0],
- B=[-1, 2, 13, 4, 1].
L7 6 2 -16 In Exercises 17 through 22 find the product AB and, when
6. A=) 02 4), B=)1 -23 it exists, the product BA.
-1 0 1 2 1 2
) (1 4 213
(1 2 4 0 2 3 17'A:_2 0]’ B:[1 4 1]'
310 3 -1 1
7' A= 1 1 0 ’ B = O 1 1 . 18. A: [1, 4, 6, —7], B = [2, 3, —2, 3]T
12 2 4 1 3 2 [1 0 0 31 4
_ 19A=({0 1 0|, B=|2 1 -5]|.
1 4 3 6 1 0 0 0 00 1 7 2 0
021 4 3100 -
8. A=1003 1] B={1 24 of 2 00 9 -1 4
000 2 111 3 200A=|0 -3 0|, B=|1 6 -2].
- L0 0 5 2 2 3
In Exercises 9 through 12 form the sum AA + uB. T 31
1 4 2 41 2 523
9. a=1, n=3 A=|2 1 4|, 2. A= 22 6| B=12 0 4
322 15 2 1 47
23 -l 1210 301
B= 12 4 211 4 4 2
o3 ZA=11 021 BT 6 2
10. .= -1, u=2 A:[; ! (1)] (1121 14
23. Given
32[211]_ 2 5 -3 421
024 A=| 51 4| and B=|2 5 6|,
-3 4 6 1 6 3

show that (AB)T = BA.



In Exercises 24 through 28 write the given systems of equa-
tions in the matrix form Ax = b, where A is the coefficient
matrix, x is the vector of unknowns, and b is the nonhomo-
geneous vector term.

24. 3x+5y—6z="17 26. Sx+3y—6z=14
x—Ty+4z=-3 6x — 5y + 11z =20
2x+4y —5z=4. x—4y+3z=2

9x — 3y +2z=735.
25. du+5v—-—w+7z=25

3u+2v+3z=6 27. 3x+4y —2z=2xx
v+6ow—T7z=0. 2x — 7y +6z=2Ay
8x+3y+5z=xrz

28. 2x +3y+6z=1(3x+2y +3z)

3x —4y+2z=xr(x—-5y+22)
4x +9y +2z = 1(x — 2y + 42).

1 3 6 2 01
A=|1 2 0|, B=[4 2 3|, and
01 3 0 -1 1

solve for X given that

3X+A=A"B-X+3B.

29. If

30. If

solve for X given that
2AB" + X — 2 = 3X + 4B — 2A.
31. Given that

show that
A’ —9A” 1 18A = 0.

01 0
A=]10 0 1],
2 1 -2

A3 +2A7 - A -21=0.

32. Given that

show that
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33. Prove the second result in Theorem 3.1 that A(BC) =
(AB)C = ABC.

34. Prove the third result in Theorem 3.1 that (AA)B =
A(1B) = LAB.

35. Prove the fourth result in Theorem 3.1 that A(B + C)
=AB + AC.

In Exercises 36 through 39 verify that (AB)" = BT AT.

3 1 4 2 1 3
3. A=|2 1 2|, B=|1 2 5/|.
4 2 3 02 1
2 1 4 3 ;‘1‘2
37.A=|1 6 2 1|, B=
11 -2 4 132
L 7 3
1 4 2 31 -5
38.A=|7 3 —-1|, B=|1 3 4
02 5 2 0 8
1 4 6 2 _;ii
39.A=1|2 1 4 1|, B=
300 2 225
L 11 1

40. Verify that (ABC)T = CTBTAT given that

15 3 -2 -2 3
O B P BRI e

41. Prove that if D is the n x n diagonal matrix

k 0 0 0

0 k O 0
D=|0 0 kK 0|, then

|0 0 0 ky

[k 0 0 0

0 k' 0 0
D"=]0 0 &k} 01,

L0 0 0 km

where m is a positive integer.
42. Find A2, A®, and A*, given that

12 7
A=|2 5 6].
1 0 -1

43. Find A2, A*, and AS, given that

_[ 1/2 —(«/5)/2}
Ll 12 ]
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44. Use the matrix A in Exercise 42 to find A3, A5, and A”.

45. A square matrix A such that A> = A is said to be idem-
potent. Find the three idempotent matrices of the form

o

A square matrix A such that for some positive integer
n has the property that A"~! = 0, but A” = 0 is said to
be nilpotent of index n (n > 2). Show that the matrix

46.

47.

is nilpotent and find its index.

A quadratic form in the variables xi, x, x3, ..
an expression of the form ax? + bxx, + ¢x3 + dxix; +
-+-+ fXx,_1%, + gx2 in which some of the coefficients
a,b,c,d,..., f,g may be zero. Explain why x'Ax is a
quadratic form and find the quadratic form for which

Matrices and Systems of Linear Equations

A =

0
4
1

q

a quadratic form xT Ax can always be written as a sym-
metric matrix.

In Exercises 50 through 52 find the symmetric matrix A
p for the given quadratic form when written x' Ax, with
rj|. x =[x, y, 2"

50.
51.

52.

x>+ 3xy —4y> +4xz+6yz — 2.
2x% 4+ 4xy + 6y* + Txz — 92°.
Tx? 4+ Txy — 5y* +dxz+2yz — 922

00 53. A square matrix P is called a stochastic matrix if all its
0 0 elements are nonnegative and the sum of the elements
1 0 in each row is 1. Thus, the matrix
pu pn Pin
£ i P= P2 P2 Pan
o vn
Pnl P2 DPnn

will be a stochastic matrix if p;; >0 for 0 <i <n,
0<j<n,and

3403 X Yopy=1 fori=1.2.....n.
A= 4226 and x= |7 i=1
02 51 X3
36 1 7 X4 Let the n element column vector E = [1,1,1,...,1]%.
- - T By considering the matrix product PE, and using math-
48. Find the quadratic form xT Ax when ematical induction, prove that P" is a stochastic matrix
41 3 6] I for all positive integral values of m.
23 5 4 2 54. Construct a 3 x 3 stochastic matrix P. Find P? and P3,
A= 1 41 2 and x= X3 and by showing that all elements of these matrices are
20 4 1 X4 nonnegative and that all their row-sums are 1, verify

49. Explain why the matrix A in the general expression for

3.2

equations and

matrices for electric

circuits

the result of Exercise 53 that each of these matrices is a
stochastic matrix.

Some Problems That Give Rise to Matrices

(a) Electric Circuits with Resistors
and Applied Voltages

A simple electric circuit involving five resistors and three applied voltages is shown
in Fig. 3.1. The directions of the currents iy, i>, and i3 flowing in each branch of
the circuit are shown by arrows. The currents themselves can be determined by an
application of Ohm’s law and the Kirchhofflaws that can be stated as follows:

(a) Voltage = current x resistance (Ohm’s law);

(b) The algebraic sum of the potential drops around each closed circuit is zero
(Kirchhoff’s second law);

(¢) The current entering each junction must equal the algebraic sum of the cur-
rents leaving it (Kirchhoff’s first law).

An application of these laws to the circuit in Fig. 3.1, where the potentials are in
volts, the resistances are in ohms, and the currents are in amps, leads to the following
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FIGURE 3.1 An electric circuit with
resistors and applied voltages.

10
A

set of simultaneous equations:
8 = 12i1 +10(i; — i) + 8(i1 — i3)
4 =10(i —i1) + 6(iy — i3)
6= 8(l3 — il) + 6(l3 — iz) + 4i5.

After collecting terms this system can be written as the matrix equation Ax = b,
with

30 —-10 -8 i 8
A = —10 16 —6 s X = iz s b = 4
-8 —6 18 i3 6

The directions assumed for the currents i, for r = 1, 2, 3 are shown by the arrows
in Fig. 3.1, but if after the system of equations is solved, the value of the current is
found to be negative, the direction of its arrow must be reversed.

The circuit in Fig. 3.1 is simple, so in this example the currents can be found
by routine elimination between the three equations. When many coupled circuits
are involved a matrix approach is useful, and it then becomes necessary to develop
a method for solving for x the matrix equation Ax = b, the elements of which
are the required currents. If the number of equations is small, x can be found by
making use of the matrix A~!, inverse to A, that will be introduced later, though
the most computationally efficient approach is to use one of the numerical methods
for solving systems of linear simultaneous equations described in Chapter 19.

(b) Combinatorial Problems: Graph Theory

Matrices play an important role in combinatorial problems of many different types
and, in particular, in graph theory. The purpose of the brief account offered here
will be to illustrate a particular application of matrices, and no attempt will be made
to discuss their subsequent use in the solution of the associated problems.
Combinatorial problems involve dealing with the possible arrangements of
situations of various different kinds, and computing the number and properties of
such arrangements. The arrangements may be of very diverse types, involving at
one extreme the ordering of matches that are to take place in a tennis tournament,
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graphs, vertices,
edges, and adjacency
matrix

FIGURE 3.2 The graph representing routes.

and at the other extreme finding an optimum route for a delivery truck or for the
most efficient routing of work through a machine shop.

The ideas involved are most easily illustrated by means of examples, the first
of which involves the delivery from a storage depot of a consumable product to
a group of supermarkets in a large city where it is important that daily deliveries
be made as rapidly as possible. One possibility involves a delivery truck making a
delivery to each supermarket in turn and returning to the storage depot between
each delivery before setting out on the next delivery.

An alternative is to travel between supermarkets after each delivery without
returning to the storage depot. The question that then arises is which approach to
routing is the best, and how it is to be determined.

A typical situation is illustrated in Fig. 3.2, in which supermarkets numbered
1 to 5 are involved, with circles representing supermarkets and lines and arcs rep-
resenting the routes.

The representation in Fig. 3.2 is called a graph, and it is to be regarded as a set
of points represented by the circles called vertices of the graph, and edges of the
graph represented by the lines and arcs. In Fig. 3.2 the vertices are the circles 1,
2,...,5 and the seven edges are the lines and arcs connecting the vertices.

A special type of matrix associated with such a graph is an adjacency matrix,
thatis, a matrix whose only entries are 0 or 1. The rules for the entries in an adjacency
matrix A = [a;;] are that

P 1, if verticesi and j are joined by an edge
" 0, otherwise.

The adjacency matrix for the graph in Fig. 3.2 is seen to be the symmetric matrix

01011

>

I
=

—
—_—O =
—_o = o
O = = O

It is to be expected that an adjacency matrix is symmetric, because if i is adjacent
to j, then j is adjacent to ;.

Although we shall not attempt to do so here, the interconnection properties
of the problem represented by the graph in Fig. 3.2 can be analyzed in terms of its
adjacency matrix A. The optimum routing problem can then be resolved once the
traveling times along roads (lines or arcs) are known.

Sometimes it happens that the edges in a graph represent connections that only
operate in one direction, so then arrows must be added to the graph to indicate these
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FIGURE 3.3 A typical digraph. FIGURE 3.4 The Konigsberg bridge problem.

digraph

Konigsberg
bridge problem

directions. A graph of this type is called a digraph (directed graph). The rules for
the entries in the adjacency matrix A = [a;;] of a digraph are that

P 1, if verticesi and j are joined by an edge with an arrow from i to j
H 0, otherwise.

A typical digraph is shown in Fig. 3.3, and it has the associated adjacency matrix

0
0
A:1
0

— o = O
[N eNen S

1
0
0
0

The adjacency matrix A characterizes all the possible interconnections between
the four vertices and, as with the previous example, an analysis of the properties of
any situation capable of representation in terms of this digraph can be performed
using the matrix A. Problems of this type can arise in transportation problems in
cities with one-way streets, and in chemical processes where a fluid is piped to
different parts of a plant through an interconnecting network of pipes through
which fluid may only flow in a given direction.

Before closing this brief introduction to graph theory, mention should be made
of a problem of historical significance, since it represented the start of graph theory
as it is known today. The problem is called the Konigsberg bridge problem, and it
was solved by Euler (1707-1783). During the early 18th century the Prussian town
of Konigsberg was established on two adjacent islands in the middle of the river
Pregel. The islands were linked to the land on either side of the river, and to one
another, by seven bridges, as shown in Fig. 3.4a. It was suggested to Euler that he
should resolve the conjecture that it ought to be possible to walk through the town,
starting and ending at the same place, while crossing each of the seven bridges only
once.
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matrices and
computer graphics

Euler replaced the picture in Fig. 3.4a by the graph in Fig. 3.4b, though it was
not until much later that the term graph in the sense used here was introduced.
In Fig. 3.4b the vertices S and Q represent the two islands and, using the same
lettering, P and R represent the riverbanks. The number of edges incident on each
vertex represents the number of bridges connected to the corresponding land mass.
Euler introduced the concept of a connected graph, in which each pair of vertices is
linked by a set of edges, and also what is now called an eulerian circuit, comprising
a path through all vertices that starts and ends at the same vertex and uses every
edge only once. He called the number of edges incident upon a vertex the degree
of the vertex, and by using these ideas he was able to prove the impossibility of the
conjecture. The arguments involved are not difficult, but their details would be out
of place here.

Many more practical problems are capable of solution by graph theory, which
itself belongs to the branch of mathematics called combinatorics. In elementary
accounts, graph theory and related combinatorial issues are usually called discrete
mathematics. More information about combinatorics and its connection with ma-
trices can be found in References [2.2] and [2.13].

(c) Translations, Rotations, and Scaling
of Graphs: Computer Graphics

The simplest operations in computer graphics involve copying a picture to a differ-
ent location, rotating a picture about a fixed point, and scaling a picture, where the
scaling can be different in the horizontal and vertical directions. These operations
are called, respectively, a translation, a rotation, and a scaling of the picture. Oper-
ations of this nature can all be represented in terms of matrices, and they involve
what are called linear transformations of the original picture.

Translation

A translation of a two-dimensional picture involves copying it to a different location
without either rotating it or changing its horizontal and vertical scales. Figure 3.5
shows the original cartesian axes O(x, y) and the shifted axes O’(x’, y’), where
the respective axes remain parallel to their original directions and the origin O’ is
located at the point (%, k) relative to the O(x, y) axes.

The relationship between the two sets of coordinates is given by

x=x+h and y=y +k

y y/
kb————
(04 } X
|
|
1
o h X

FIGURE 3.5 A translation.
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FIGURE 3.6 A rotation through an angle 6.

Ifx =[x, y]",x =[x/, y']', and b = [h, k], the coordinate transformation can be
written in matrix form as

x=x +b,

where matrix b represents the translation.

Rotation

A rotation of the coordinate axes through an angle 0 is shown in Fig. 3.6, where
P(x, y) is an arbitrary point. The coordinates of P in the (x, y) reference frame and
the (x', y') reference frame are related as

Xx=OR= OPcos(¢+0)= OPcos¢cosd® — OPsin ¢ sin 0
= 0Qcost — PQsin® = x'cost — y'sinf,

and

y=PR= OPsin(¢p +6) = OPsin¢ cosd + OP cos¢sinf
= PQcost + OQsinf = y' cosf + x'sinb,

SO
x=x'cosf — y'sinf and y=y' cosf + x'sinb.
Defining the matrices x, X/, and R as
R
allows the coordinate transformation to be written as

x = Rx'.

Scaling

If S is a matrix of the form

ke 0
=[5 &)
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where k, and k, are positive constants, and X' = Sx, it follows that
x=kx' and y=k,

showing that x is obtained by scaling x’ by k., while y is obtained by scaling y’ by
ky. This form of scaling is represented by premultiplication of x by S, and if, for

example,
4 0
=[o 3]

the effect of this transformation on a circle of radius a will be to map it into an
ellipse with semimajor axis of length 4a parallel to the x-axis and a semiminor axis
of length 3a parallel to the y-axis.

Composite transformations

By combining the preceding matrix operations to form a composite transformation,
it is possible to carry out several transformations simultaneously. As an example,
the effect of a rotation R followed by a translation b when performed on a vector
x' are seen to be described by the matrix equation

x=Rx +b,

the effect of which is shown in Fig. 3.7.
If a scaling S is performed before the rotation and translation, the effect on a
vector X' is described by the matrix equation

x = RSx’' + b.

This is illustrated in Fig. 3.8b, which shows the effect when a transformation
of this type is performed on the circle of radius a centered on the origin shown in
Fig. 3.8a, with

| h | cosm/3 —sinm/3 13 0
b_|:k]’ R_[sinn/B cosn/3j|’ and S_|:O 2]'

It is seen that the circle has first been scaled to become an ellipse with semiaxes 3a
and 2a, after which the ellipse has been rotated through an angle 7/3, and finally
its center has been translated to the point (4, k).

o

FIGURE 3.7 A rotation and a translation.
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NIV

(a) (b)
FIGURE 3.8 The composite transformation x = RSx’ + b.

It is essential to remember that the order in which transformations are per-
formed will, in general, influence the result. This is easily seen by considering the
two transformations x = RSx' + b and x = SRx' + b. If the first of these is per-
formed on the circle in Fig. 3.8a, it produces Fig. 3.8b, but when the second is
performed on the same circle, it first converts it into an ellipse with its major axis
horizontal, and then translates the center of the ellipse to the point (/, k). In this
case the effect of the rotation cannot be seen, because the circle is symmetric with
respect to rotations.

A relationship of the form x = F(x’) can be interpreted geometrically in two
distinct ways which are equally valid:

1. As the change in the way we describe the location of a point P. Then the
relationship is called a transformation of coordinates (Figs. 3.5, 3.6, 3.7).

2. As a mapping of a point P from one location to a new one.

(d) Matrix Analysis of Framed Structures

A framed structure is a network of straight struts joined at their ends to form a
rigid three-dimensional structure. A typical framed structure is the steel work for
a large building before the walls and floors have been added. A simple example
of a framed structure, called a truss, is a plane construction in which the struts are
joined together to form triangles, as in the side section of the small bridge shown
in Fig. 3.9.

For safety, to ensure that no strut fails when the bridge carries the largest
permitted load, it is necessary to determine the force experienced by each strut in
the truss when the bridge supports its maximum load in several different positions.
Typically, the largest load could be due to a heavy truck crossing the bridge. The
analysis of trusses is usually simplified by making the following assumptions:

e The structure is in the vertical plane;
e The weight of each strut can be neglected;
e Struts are rigid and so remain straight;
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FIGURE 3.9 A typical truss found in a 3m
side section of a bridge. FIGURE 3.10 A truss supporting a concentrated load.

equations and
matrices for a framed
structure

e Each joint is considered to be hinged, so the only forces acting at a joint are
along the struts meeting at the joint if forces are applied at joints only.

e There are no redundant struts, so that removing a strut will cause the truss to
collapse.

We now write down the simultaneous equations that must be solved to find the
forces acting in the seven struts of length L that form the truss shown in Fig. 3.10,
when a concentrated load 3m is located at point C midway between A and E. This
load could be considered to be a heavily laden truck standing in the center of the
bridge.

To determine the reactions at the support points A and E, we use the fact that
for equilibrium the turning moments about these two points must be zero. The
turning moment of the load 3m about the point A must be cancelled by the turning
moment of the reaction R, at E, so 3m(L) = R,(2L), showing that R, = 3m/2.
Similarly, the turning moment of the load 3m about the point £ must be cancelled
by the turning moment of the reaction Ry at A, so 3m(L) = Ri(2L), showing that
Ry =3m/2.

The directions in which the forces F; to F7 are assumed to act are shown by
arrows, and if later a force is found to be negative, the direction of the associated
arrows must be reversed. For equilibrium the sum of the vertical components of
all forces acting at each joint must be zero, as must be the sum of the horizontal
components of all forces acting at each joint. The equations representing the balance
of forces at each joint are as follows, where when resolving the forces acting at joint
C, the effect of the load 3m which acts vertically downwards must be taken into
account:

Joint A(vertical) Fisinm/3 —-3m/2 =0

Joint A(horizontal) Ficosn/3+ F =0

Joint B(vertical) Fisinm/3+ Fzsinn/3 =0

Joint B(horizontal) Ficosn/3— Fcosn/3— F, =0
Joint C(vertical) Fsinng/3+ Fssing/3+3m=0

Joint C(horizontal) P, + Fycosm/3 — Fscosm/3 — Fg =0
Joint D(vertical) Fssinn/3+ Frsinn/3 =0



FIGURE 3.11 A compound
mass—spring system.
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Joint D(horizontal) Fy+ Fscosm/3 — Fycosnt/3 =0
Joint E(vertical) Fsinm/3 —3m/2 =0
Joint E(horizontal) Fs+ Frcosm/3 =0.

After substituting for sin 7z /3 and cos 77 /3, these equations can be written in the
matrix form Ax = b, where

(V30 0 0 0 0 07
110 0 0 0 o 3m)2 ]
13013 0 0 0 0 B 0
Lo =L -1 0 0 o0 B X
A 0 0 V3 0 V3 0 0 ? L | -
o 1 1 0o - -1 o | *T F“ A
0 0 0 013 0 1v3 o X
6
0 0 O I 0o -1 P 3m/2
l L -
0 0 0 0 0 0 1V3 0
0 0 0 0 0 I

These are 10 equations for the 7 unknown forces F; to F7, so unless 3 of the
equations represented in Ax = b are combinations of the remaining 7 equations,
we cannot expect there to be a solution. When the rank of a matrix is introduced
in Section 3.6, we will see how systems of this type can be checked for consistency
and, when appropriate, simplified and solved.

In this case the equations are sufficiently simple that they can be solved se-
quentially, without the use of matrices. The solution is seen to be

Fi=mv3, F=-m/(¥3/2), F=-mv3, F,=m3,
F5 = —mﬁ, F6 = —m(«/§/2), F7 = m«/§

The signs show that the arrows in Fig. 3.10 associated with forces F», F3, Fs, and
Fi should be reversed, so these struts are in tension, while the others are in com-
pression.

Notice that matrix A is determined by the geometry of the truss, and so does
not change when forces are applied to more than one of the joints on the truss
(bridge). This means that after the 10 equations have been reduced to seven, the
same modified matrix A can be use to find the forces in the struts for any form of
concentrated loading. Had a more complicated struss been involved, many more
equations would have been involved, so that a matrix approach becomes necessary.
This approach also identifies any redundant struts in a structure, because the force
in a redundant strut is indeterminate.

(e) A Compound Mass-Spring System

Matrices can have variables as elements, and an analysis of the compound mass—
spring system shown in Fig. 3.11 shows one way in which this can arise. Figure 3.11
represents a mass m; suspended from a rigid support by a spring of negligible mass
with spring constant k;, and a mass n, suspended from mass m; by a spring of
negligible mass with spring constant k,. The vertical displacement of m from its
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equations of motion
of a coupled
mass-spring system

equilibrium position is x;, and the vertical displacement of »1, from its equilibrium
position is x,. Each spring is assumed to be linearly elastic, so the restoring force
exerted by a spring is equal to the product of the displacement from its equilibrium
position and the spring constant.

The product of the mass m1; and its acceleration is m d’xy/dt?, and the restoring
force due to spring k; is k; x1, while the restoring force due to spring k is k> (x; — x2),
so the equation of motion of m is

d2
ny 7);1 = —k1X1 — kz(X] — XQ).
Similarly, the equation of motion of n, is
dZX2
meoa = —k(x2 — x1),

where the negative signs are necessary because the springs act to restore the masses
to their original positions.

This system can be written as the matrix differential equation X + Ax = 0, by
defining A and x as

kithk) & d’x,
2
A= m m1 , X= |:x1] , and X= d
k2 k2 X2 d2X2
ny ny dr?

The solution of this system will not be considered here as ordinary differential
equations and systems of the type derived here are discussed in detail in Chapter 6,
where matrix methods are also developed. Chapter 7 develops Laplace transform
methods for the solution of differential equations and systems. It will suffice to
mention here that the dynamical behavior of the compound mass—spring system in
Fig. 3.11 is completely characterized by matrix A.

(f) Stochastic Processes

Certain problems arise that are not of a deterministic nature, so that both the formu-
lation of the problem and its outcome must be expressed in terms of probabilities.
The probability p that a certain event occurs is a number in the interval 0 < p < 1.
An event with probability p = 0 is one that never occurs, and an event with prob-
ability p =1 is one that is certain to occur. So, for example, when tossing a coin
N times and recording each outcome as an H (head) or a T (tail), if the number
of heads is Ny and the number of tails is Ny, so that N = Ny + Nr, the numbers
N/ N and Np/N will be approximations to the respective probabilities that a head
or a tail occurs when the coin is tossed. If the coin is unbiased, it is reasonable to
expect that as N increases both NMg/N and Ny/N will approach the value 1/2. This
will mean, of course, that the chances of either a head or a tail occurring on each
occasion are equal.

The example we now outline is called a stochastic process and is illustrated by
considering a process that evolves with time and is such that at any given moment
it may be in precisely one of N different situations, usually called states, where N is
finite. We shall denote the N states in which the process may find itself at any given
time t, by S1, S, ..., Sy, withm =0,1,2, ..., and t,,,_; < t,, it being assumed that
the outcome at each time depends on probabilities, and so is not deterministic.
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To formulate the problem we assume that what are called the conditional prob-
abilities py; (also called transition probabilities) that determine the probability with
which the process will be in state S; at time ¢, are all known, given that it was in
state Sy at time t,,—1, and that these probabilities are the same from ¢ to t, as from
tm—1 to by, form=0,1,2,.... This last assumption means that the probability with
which the transition from state S; to S; occurs is independent of the time at which
the process was in state .

The conditional probabilities can be arranged as the N x N matrix P = [pj.],
so as probabilities are involved, all the p;; are nonnegative, and as each stage must
have an outcome, the sum of the elements in every row of matrix P must equal 1.
A matrix P with these properties, namely that

N
0<pu<l 0<j<N 0<k<N, and Y pu=1,
=

is called a stochastic matrix (see Exercise 53, Section 3.1).

Processes like these, whose condition at any subsequent instant does not depend
on how the process arrived at its present state, are called Markov processes. Simple
but typical examples of such processes involving only two states are gambling wins
and losses, the reliability of machines that may either be operational or under repair,
shells fired from a gun that either hit or miss the target and errors that introduce
an incorrect digit 1 or 0 when transferring binary coded information.

To develop the argument a little further, let us now consider a process that can
be in one of two states, and that the matrix P describing its transitions is given by

23 153
P—[1/4 3/4]

Now suppose that initially the probability distribution is given by the row ma-
trix E(0) = [p, q], where, of course, p + ¢ = 1. Then if E(m) denotes the proba-
bility distribution of the states at time t,,, it follows that E(1) = E(0)P, but as P
is independent of the time we conclude that after m transitions the general result
must be

E(m) = E(0)P",

so in this case
2/3 1/31"
Direct calculation shows that

E(3) = [0.470p + 0.398¢, 0.530p + 0.602¢],
E(6) = [0.432p + 0.426q, 0.568 p + 0.5744],

and
E(10) = [0.429p + 0.429¢, 0.571p + 0.571¢],

so it is reasonable to ask if E(m) tends to a limiting vector as m — oo and, if so,
what this is? As this problem is simple, an analytical answer is possible, though it
involves using a diagonalizing matrix P which will be discussed later.
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We will see later that P can be written as ADB, where D is a diagonal matrix
and AB =I. In this case

_ (1 4 1 0 37 47
A_[l —3]’ D—[o 5/12}’ and B—[m —1/7]

pP— 1 41|11 0 3/7 477
|1 =3(|0 5/12| |17 =1/7|°
In what follows we will need to make repeated use of the fact that
_(3/7 4711 4| |1 O]
BA = [1/7 —1/7] [1 —3} a [0 1:| =1

Using this last property we find that
P2 1 4|1 0 3/7  4/7(|11 4|1 O 3/7 477
|1t =30 S5/2||1/7 —-1/7||1 =3||0 S5/12||1/7 —-1/7

o4 o0 V37 47
(1 =3[0 S5/12| |1/7 —=1/7|"
However, when a diagonal matrix is raised to a power, each of its elements is
raised to that same power (see Problem 41, Section 3.1), so

P2:[1 4} [1 0 [3/7 4/7]
1 =3|lo 5112717 —1/7)

SO

and, in general,

sz[1 4} [1 0 1[3/7 4/7]

1 =3[0 (/2)y"|[1/7 -1/7]"
Thus,
34+4(5/12)" 4 —4(5/12)"
P — 7 7
3-3(5/12)" 4 +43(5/12)"
7 7

showing that as m — oo, so
Jlim E(m)P™ = [3(p +q)/7.4(p +q)/7) = [3/7,4/7],

and we have found the limiting state of the system.

Stochastic processes also occur that involve more than two states. The problem
of determining the probability with which such processes will be in a given state,
and when a limiting state exists, the limiting values of the probabilities involved, is
of considerable practical importance. An introduction to stochastic process can be
found in reference [2.4].

This section has introduced some of the many areas in which matrices play an essential
role. These range from electric circuits needing the application of Kirchhoff’s laws, through
routing problems involving the concepts of directed graphs and adjacency matrices, to the
classical Konigsberg bridge problem, computer graphic operations performed by linear
transformations, the matrix analysis of forces in a framed structure, the oscillations of a
coupled mass—spring system, and stochastic processes.
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EXERCISES 3.2

1. State which of the following matrices is a stochastic ma- 4.

trix, giving a reason when this is not the case.

05 03 02

(@) [025 0 0.75].
05 05 0
12 0 -02

® |0 08 o02].
0.1

0.6 03
2. Given the stochastic matrix

P:FM 1/47

[0.5
0.7

(04 02 04
0.3

01 06
08 0 02]. 2

0 1 0 FIGURE 3.13

0.2
0.3

(©)

0.3 4’///,—rf’£;;z\‘\*\\\\\4
3
0.2]. T

(d)

12 172 1

and the initial probability distribution E(0) = [p, ¢], with
p,q >0 and p+ q =1, the probability distribution of

the two states at time ¢, is given by
E(m) = E(0)P™.
Find E(2), E(4), and E(6), together with their values

when p =1/4, g =3/4.

FIGURE 3.14

In Exercises 3 through 6 find the adjacency matrices for the

given graphs and digraphs.
3.

FIGURE 3.12

1 2
FIGURE 3.15

3.3 — Determinants
.

notation for a
determinant

Every square matrix A with numbers as elements has associated with it a single
unique number called the determinant of A, which is written detA. If Aisann x n
matrix, the determinant of A isindicated by displaying the elements a;; of A between
two vertical bars as follows:

aip  an ain
a a a

detA = 21l 2] 2n ) (5)
apl  ap2 Ann

The number 7 is called the order of determinant A, and in (5) the vertical bars are
used to distinguish detA, that is a number, from matrix A that is an n x n array of
numbers.
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A general definition of the value of detA in terms of its elements a;; will be
given later, so for the moment we define only the value of first and second order
determinants (see Section 1.7). If A only contains a single element a1; so A = [ay1]
then, by definition, detA = ay, and if A is the 2 x 2 matrix

A= %1 a2 ’
ar axn
then, by definition,

ann ap
detA = |:£l21 022] = aj1axy — ar1di;. (6)

Notice that in (6) the numerical value of detA is obtained by forming the
product of the two terms a;; and ay, on the leading diagonal, and subtracting from
it the product of the two terms a; and a;, on the cross diagonal. This process, called
expanding the determinant, is easily remembered by representing the method by
which the determinant is expanded as

an an
>< = aay — azai,
a axn

where the product involving the downward arrow generates the first pair of terms
on the right and the product involving the upward arrow indicates that the product
of the associated pair of terms is to be subtracted.

Find detA given
3 -1 4
(a) detA = 5 6‘ and (b) detA = ‘ 3 ol

Solution (a) Using (5) we have

3 -1
detA:‘z 6‘:3-6—2~(—1)=20.
(b) Again using (5) we have
detA:‘l_—gl.l ;:(1+i)-2—(—3i)~i:—1+2i. m

To provide some motivation for the introduction of determinants, we solve by
elimination the two linear simultaneous algebraic equations

ajxy + apx; = by
a x1 + anx; = by.

™)

To eliminate x, we multiply the first equation by ay, and the second equation by
app, and then subtract the results to obtain

(a1an — azia)x; = anby — apbs.
This shows that when aj1ax — azia;n # 0,
apby —apnb;

X1 = .
apdy — da
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This result can be expressed in terms of detA as

x1 = (anb; — a;nby)/detA. ®)
Similarly, when x; is eliminated from equations (7) we find that

Xy = (ai1by — ay by)/detA. ©)

Examination of (8) and (9) shows that their numerators can be written in terms
of determinants that are closely related to detA, because

Dy

=7 and x, = L (10)
where
D=detA, Dy ="' 2| ana p,= | D (11)
b, axn ay by

The form of solution of equations (7) in terms of the determinants in (10) and
(11) is called Cramer’s rule. The rule itself says that x; = D;/D fori = 1, 2, where
determinant D is obtained from D = detA by replacing the first column of A by the
nonhomogeneous terms b; and b, on the right of equations (7), and determinant D,
is obtained from D by replacing the second column of A by these same two terms.

Use Cramer’s rule to solve the equations

3x1+5x =4
2x1 — 4XZ =1.

Solution The three determinants required by Cramer’s are

3 5 4 5 3 4
D=detA=‘2 _4‘=—22, Dlz‘l _4‘=—21, Dzz'z 1‘2_5,
sox; = D;/D=21/22 and x, = D,/D = 5/22. m

This example shows how determinants enter naturally into the solution of a
system of equations. As determinants of order n > 2 occur in the study of differ-
ential equations, analytical geometry, throughout linear algebra, and elsewhere, it
is necessary to generalize the definition of a determinant of order 2 given in (6) to
determinants of any order n.

With this objective in mind, we first define the minors and cofactors of a deter-
minant of order n. The minor M;; associated with the element a;; in the ith row and
jth column of the nth order determinant in (5) is the determinant of order n — 1
formed from detA by deleting the elements in the ith row and jth column. As each
element of detA has an associated minor, a determinant of order »n has #? minors.

By way of example, the minor Ms; of the nth order determinant in (5) is the
determinant of order n — 1

aip ai - Ayj-1 Ajy1 v Al
apy dxp - i1 A2j41 v A2p
Msj=|ay agp -+ aij_1 G4j41 - Qapl. (12)

apl Ap2 -+ Auj—1  Apj+1 - Qpp
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expanding a second
order determinant in
terms of rows or
columns

The cofactor C;; associated with the element a;; in determinant (5) is defined
in terms of the minor M;; as

C,']' =(—1)i+j]\4ij fOI'i,j =1,2,...,I’l, (13)
so an nth order determinant has n? cofactors.

Find the minors and cofactors of

detA = ‘2 _3‘

1 4|°
Solution Inspection shows that My; =4, My, = 1, Mby = —3, and M, = 2. Using
definition (12), the cofactors are seen to be

Chi=CD)"My =4, Co=(D)""Myp=-1, Cy=(-1"My =3,
and Cy = (—1)2+2M22 =2. [ |

Recognizing that the cofactors of the second order determinant

app  ap
azy A

detA = are C1 = axp, Cpp = —ay, Gy = —ap, and Cp =ayy,

we see from the definition detA = ajjax — axjapp that detA can be expressed in
terms of these cofactors in four different ways:

detA = a11Cy1 + a12C1a, using elements and cofactors from the first row of A;
detA = a1 Gy + anCx, using elements and cofactors from the second row of A;
detA = a11C11 + a»1Cy1, using elements and cofactors from the first column of A;
detA = a12C12 + anCyp, using elements and cofactors from the second

column of A.

This has proved by direct calculation that the value of the general second order
determinant detA is given by the sum of the products of the elements and their
associated cofactors in any row or column of the determinant. When the definition
of a determinant is extended to the case n > 2 it will be seen that this same property
remains true.

There are various ways of defining an nth order determinant, and from among
these we have chosen to use one that involves a recursive process. More will be said
about this recursive process, and how it can be used to evaluate the determinant,
once the definition has been formulated.

Definition of a determinant of order n

The nth order determinant detA in which the element a;; has the associated

cofactor Cj; fori, j =1,2,...,nis defined as
apy aipp - i i
detA = | 2 N a0 (14)
j=1

apl Ap2 - Qpn
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Recalling the different ways in which a second order determinant can be eval-
uated, we see that the expansion of detA in (14) is in terms of the elements and
cofactors of the first row, so for conciseness this expansion is said to be in terms of
the elements of the first row.

The recursive process enters this definition through the fact that each cofactor
C,jisadeterminant of order n — 1, as can be seen from (12), so each cofactor in turn
can be expanded in terms of determinants of order n — 2, and the process continued
until determinants of order 2 are obtained that can then be calculated using (6).

Expand
1 4 -1
detA=12 0 3.
1 2 1

Solution To expand this third order determinant using (14), we must find the
cofactors of the elements of the first row, so to do this we first find the minors and
then use (13) to find the cofactors, as a result of which we find that

M=y 3| ==6. soCu=(-)"*(=6)=—6
My, = % i’ =—-1, soCp=(-D)*(-1)=1
My=[" 0 =4 s0Cu=(-)"@)=4
As the elements of the first row are a;; = 1, a1 = 4, and a;3 = —1, we find from

(12) that
detA = (1)C1 4+ 4)Ci2 + (=1)Ci3 = (1)(=6) + (1) + (-1)4) = —-6. =

The determinant associated with either an upper or a lower triangular matrix
A of any order is easily expanded, because repeated application of (12) shows that
it reduces to the product of the terms on the leading diagonal, so the expansion
of the nth order upper triangular determinant with elements ay1, ax, . .., a,, on its
leading diagonal

aip ap - iy
0
detA = 0 a(z)z a2" =ana ... a, (15)

0 0 0 au

and a corresponding result is true for a lower triangular matrix.

Definition (14) can be used to prove that nth order determinants, like second
order determinants, have the property that their value is given by the sum of the
products of the elements and their cofactors in any row or column. This result,
together with a generalization concerning the vanishing of the sum of the products
of the elements in any row (or column) and the corresponding cofactors in a different
row (or column), forms the next theorem. The details of the proof can be found in
linear algebra texts, for example, [2.1], [2.5], [2.7], [2.9], but the method used has
no other application in what is to follow, so the proof will be omitted.
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THEOREM 3.3

Laplace expansion
theorem

Laplace expansion theorem and an extension Let A be an n x n matrix with ele-
ments a;;. Then,

(i) detA can be expanded in terms of elements of its ith row and the cofactors
C;j of the ith row as

n
detA = a;1Ci1 +apCio + - + ainCin = Zaijcij
=

for any fixed i with 1 <i < n.
(ii) detA can be expanded in terms of elements of its jth column and the cofactors
C;j of the jth column as

n
detA =a1;Cij +a2; G + - - -+ a,; Gy = Zaijcij
=1

for any fixed j with1 < j <n.

(iii) The sum of the products of the elements of the ith row with the corresponding
cofactors of the kth row is zero when i # k.

(iv) The sum of the products of the elements in the jth column with the corre-
sponding cofactors of the kth column is zero when j # k. ]

Results (i) and (ii) are often used to advantage when a row or column contains
many zeros, because if the determinant is expanded in terms of the elements of
that row or column, the cofactors associated with each zero element need not be
calculated.

Results (iii) and (iv) simply say that the sum of the products of the elements in
any row (or column) with the corresponding cofactors in a different row (or column)
is zero.

PIERRE SIMON LAPLACE (1749-1827)

A French mathematician of remarkable ability who made contributions to analysis, differential
equations, probability, and celestial mechanics. He used mathematics as a tool with which to
investigate physical phenomena, and made fundamental contributions to hydrodynamics, the
propagation of sound, surface tension in liquids, and many other topics. His many contributions
had a wide-ranging effect on the development of mathematics.

Verify Theorem 3.3(i) by expanding the determinant in Example 3.13 in terms
of the elements of its second row. Use the determinant to check the result of
Theorem 3.3(iii).

Solution The second row contains a zero element in its mid position, so the co-
factor Cy associated with the zero element need not be calculated. The necessary
cofactors in the second row that follow from the minors are

M =3 T =6 sou= (10 = -
L (V2430 —
My = =—-2 soCy= ( 1) ( 2) =2.

1 2
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As ay = 2 and ap3 = 3, it follows from Theorem 3.3(i) that when detA is expanded
in terms of elements of its second row,

detA = (2)(—6) + (3)(2) = —6,

confirming the result obtained in Example 3.13.

As a particular case of Theorem 3.3(iii), let us show that the sum of the products
of the cofactors in the first row of detA and the corresponding elements in the third
TOW is Zero.

In Example 3.13 it was found that C;; = —6, C» =1, and Cj3 = 4, so as the
elements of the third row are az; = 1, a3, = 2, and a33 = 1, we have

a31C11 + a3 Crp +a3Ci3 = (—=6)(1) + (2)(1) + (1)(4) =0,

confirming the result of Theorem 3.3(iii) when the elements of row 3 and the co-
factors of row 1 are used. u

Determinants have a number of special properties that can be used to sim-
plify their expansion, though their main uses are found elsewhere in mathematics,
where determinants often characterize some important theoretical feature of a
problem. The most important and useful of these properties are contained in the
next theorem.

Properties of determinants A determinant detA has the following properties:

(i) If any row or column of a determinant detA only contains zero elements, then
detA = 0.

(ii) If A is a square matrix with the transpose AT, then detA = detAT.

(iii) If each element of a row or column of a square matrix A is multiplied by a
constant k, then the value of the determinant is kdetA.

(iv) If two rows (or columns) of a square matrix are interchanged, the sign of the
determinant is changed.

(v) If any two rows or columns of a square matrix A are proportional, then
detA =0.

(vi) Let the square matrix A be such that each element g;; of the ith row (or the

jth column) can be written as a;; = ai(}) + al-(jz). Then if A; is the matrix derived from
A by replacing its ith row (or jth column) by the elements ai(}) and A; is the matrix
derived from A by replacing its ith row (or jth column) by the elements ai(/-z),

detA = detA; + detA,.

(vii) The addition of a multiple of a row (or column) of a determinant to another
row (or column) of the determinant leaves the value of the determinant unchanged.

(viii) Let A and B be two n x n matrix, then

det(AB) = detA detB.

Proof

(i) Theresultfollows by expanding the determinant in terms of the row or column
that only contains zero elements.
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Cramer’s rule for a
system of n equations
in n unknowns

(ii) The result follows from the fact that expanding detA in terms of the elements
of its first row is the same as expanding detA” in terms of the elements of its first
column.

(iii) The result follows by expanding the determinant in terms of the row or column
in which each element has been multiplied by the constant k, because k appears as
a factor in each term, so the result becomes kdetA.

(iv) The proof is by induction, starting with a second order determinant for which
the result can be seen to be true from definition (6). To proceed with an inductive
proof we assume the results to be true for a determinant of order » — 1, and show it
must be true for a determinant of order r. Expand a row of a determinant of order
r in terms of the elements of a row (or column) that has not been interchanged.
Then, by hypothesis, as the cofactors are determinants of order r — 1, their signs
will all be reversed. This establishes that if the hypothesis is true for a determinant
of order r — 1 it must also be true for a determinant of order r. As the result is true
for r = 2, it follows by induction that it is true for all integers r > 2, and the result
is proved.

(v) If the value of the determinant is detA, and one row is k times another,
then from (ii) by removing the factor k from the row the value of the determinant
will be kdetA{, where A; is now a determinant with two identical rows. From
(ii), interchanging two rows changes the sign of the determinant, but the rows
are identical, leaving the determinant invariant, so detA; = 0. A similar argument
shows the result to be true when two columns are proportional, so the result is
proved.

(vi) The result is proved directly by expanding the determinant in terms of the
elements of the ith row (or the jth column).

(vii) Let the square matrix B be obtained from A by adding k times the ith row (or
a column) to the jth row (or column). Then from (iii) and (vi),

detB = detA + kdetC,

where C is obtained from A by replacing the ith row (or column) by the jth row
(or column). As detC has two identical rows (or columns), it follows from (v) that
detC = 0, so detB = detA and the result is proved.

(viii) A proof of this result will be given later after the introduction of elementary
row operation matrices. ]

Cramer’s rule, which was first encountered when seeking the solution of the two
equationsin (7),can be extended to a system of n equations in a very straightforward
manner, and it takes the following form.

Cramer’s rule

The solution of the system of n equations in the n unknowns x1, x2, ..., X,
anx; +apx; + - - -+ apx, = by
anx) + apx; + - - -+ ayx, = by

a1 X1 + appXp + - - -+ AupXy = bn
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is given by
x; = detA;/detA fori=1,2,...,n,

where detA is the determinant of the coefficient matrix with elements a;;, and
detA, is the determinant obtained from the coefficient matrix by replacing its
ith column by the column containing the number by, b, ..., b,.

The justification for Cramer’s rule in this more general form will be postponed
until after the introduction of inverse matrices, when a simple proof can be given.
Cramer’s rule is mainly of theoretical importance and, in general, it should not
be used to solve equations when n > 3. This is because the number of multipli-
cations required to evaluate a determinant of order n is (n — 1)n!, so to solve
for n unknowns (n + 1) determinants must be evaluated leading to a total of
(n*> — 1)n! multiplications, and this calculation becomes excessive when n > 3.
An efficient way of solving large systems by means of elimination is given in
Chapter 19.

Use Cramer’s rule to solve

X1 —2x+x3=1
2x1+x —2x3=3
—x1 4+ 3x; + 4x3 = —2.

Solution The determinants involved are

1 =2 1 1 -2 1
detA=| 2 1 —-2|=29, detA;=]| 3 1 -2/=37
-1 3 4 -2 3 4
1 1 1 1 -2 1
detA, =| 2 3 2|=1, detAsz=| 2 1 3| = —6,
-1 =2 4 —1 3 =2
so x; = 37/29, x, = 1/29, and x3 = —6/29. |

A purely algebraic approach to the study of determinants and their properties is
to be found in reference [2.8], and many examples of their applications are given
in references [2.11] and [2.12].

This section has extended to an nth order determinant the basic notion of a second or-
der determinant that was reviewed in Chapter 1, and then established its most important
properties. The Laplace expansion formulas that were established are of theoretical im-
portance, but it will be seen later that the practical evaluation of a determinant is most
easily performed by reducing the n x n matrix associated with a determinant to its echelon
form.
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EXERCISES 3.3

In Exercises 1 through 4 find detA.

21 -1
1. detA=1|0 4 3.
3 2 =2
-1 2 1
2. detA=| 1 3 2|.
-4 1 2
2 4 -3
3. detA =|-2 1 0|.
5 =2 4
4 0 0
4. detA =|—-2 cosx —sinx]|.
5 sinx coS X

5. Given that

-3 1 4
detA=| 2 -1 5/=87,
4 25

confirm by direct calculation that (a) interchanging the
first and last rows changes the sign of detA and (b) in-
terchanging the second and third columns changes the
sign of detA.

6. Given that

detA =

—_ N
[\

3
2| = —24,
3

confirm by direct calculation that (a) adding twice row
two to row three leaves detA unchanged and (b) sub-
tracting three times column three from column one
leaves detA unchanged.

Establish the results in Exercises 7 through 12 without a di-
rect expansion of the determinant by using the properties
listed in Theorem 3.4.

1+a a a
7.1 b 14b b |=0+a+b+o).
c c 1+c¢
1 a b+c
8.1 b c+a|=0.
1 ¢ a+b
a’> b
9. la b c|=(@—-b)a—c)b-o).
1 1 1

10.

11.

x> +a? ab ac
ab  x*+b*  bc |=x*(x*+a®+b+3).
ac cb X2+ 2

1 a b
1 bl=(a+b+1)(a—-1)(b-1).

a b 1

kK1 1 1

1 k11| ,

LTk 1l=EEE-1,

1 1 1 k

In Exercises 13 and 14 use Cramer’s rule to solve the system
of equations.

13.

14.

15.

16.

17.

2)61 —3X2+X3 =1
X]+2)C2—2.X3 =1
3x1 +x — 2x3 = 2.

3)61+X2+2X3:5
2X1 — 4.X'2 + 3)63 =-3
X1+ 2x +4x3 = 2.

Let P(1) be given by

P() =

where A is a parameter. Expand the determinant to find
the form of the polynomial P()) and use the result to
find for what values of A the determinant vanishes.

Let P(1) be given by

4-% 0 1
PO =| 1 —» 1|,
-1 -2 2-1

where A is a parameter. Expand the determinant to find
the form of the polynomial P(1) and use the result to
find for what values of A the determinant vanishes.

Given that

-3 0 4 1 2 3
A= 1 2 -1 and B=|2 3 1],
1 0 1 31 2

calculate det(AB), detA, detB, and hence verify that
det(AB) = detAdetB.
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3.4 Elementary Row Operations, Elementary
& Matrices, and Their Connection
with Matrix Multiplication

the three basic types
of elementary row
operation

the augmented matrix

To motivate what is to follow we will examine the processes involved when solving
by elimination the system of linear equations

anxy + apxy + - - -+ apx, = b
anxi + anx; + - - -+ aypx, = by (16)
@1 X1 + 33 + - - -+ Xy = by,

though later more will need to be said about the details of this important prob-
lem, and how it is influenced by the number of equations 7 and the number of
unknowns 7.

Elementary Row Operations

The three types of elementary row operations used when solving equations (16) by
elimination are:

TYPE T The interchange of two equations
TYPE Il The scaling of an equation by a nonzero constant
TYPE III The addition of a scalar multiple of an equation to another equation

In matrix notation the system of equations (16) becomes
Ax = b, 17)

where A = [a;;] is an m x n matrix, x = [x1, x2, ..., x,]T, and b = [by, by, ..., by]".
The three elementary row operations of types I to III that can be performed on
the equations in (16) can be interpreted as the corresponding operations performed
on the rows of the matrices A and b. This is equivalent to performing these same
operations on the rows of the new matrix denoted by (A, b), defined as

an an P a1n i b1
a)y ap ... ay ! b

@aw=| . (18)
Al A2 Ayn + by,

that has mrows and n + 1 columns and is obtained by inserting the column vector b
containing the nonhomogeneous terms on the right of matrix A.

When considering the system of linear equations in (16), matrix (A, b) is called
the augmented matrix associated with the system. The separation of the last column
in (18) by a vertical dashed line is to indicate partitioning of the matrix to show that
the elements of the last column are not elements of the coefficient matrix A.
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We are now in a position to introduce a notation for the three elementary row
operations that are necessary when using an elimination process to find the solution
of a system of equations in matrix form (ordinary or augmented).

Elementary row operations
The three elementary row operations that may be performed on a matrix are:

(i) Theinterchange of the ith and jth rows, which will be denoted by R{i — j,
j—i}.
(ii) The replacement of each element in the ith row by its product with a
nonzero constant «, which will be denoted by R{(«)i — i}.
(iii) The replacement of each element of the jth row by the sum of g times
the corresponding element in the ith row and the element in the jth row, which
will be denoted by R{(B8)i + ] — j}.

To illustrate the elementary row operations, we consider the matrix

1 6 4 -3 2
A=(2 01 7 4
528 23

An example of an elementary row operation of type (i) performed on A is provided
by R{1 — 3,3 — 1}. This requires rows 1 and 3 to be interchanged to give the new
matrix

528 23
R1—>33—>1JA=|2 01 7 4
1 6 4 -3 2

An example of an elementary row operation of type (ii) performed on A is provided
by R{(—3)1 — 1}. This requires each element in row 1 to be multiplied by —3 to
give the new matrix

3 —18 —12 9 —6
R(-3)1-1A=| 2 0 17 4
5 2 82 3

Anexample of an elementary row operation of type (iii) performed on A is provided
by R{(4)1 + 2 — 2}, which requires the elements of row 1 to be multiplied by 4 and
then added to the corresponding elements of row 2 to give the new matrix

1 6 4 -3 2
R(H1+2—>2JA=|6 24 17 -5 12]. m
5 2 8 2 3

A sequence of elementary row operations performed on the augmented
matrix (A, b) will lead to a different augmented matrix (A’, b"). However, as this is
equivalent to performing the corresponding sequence of operations on the actual
equations in (16), although (A, b) and (A’, b") will look different, the interpreta-
tion of (A’, b’) in terms of the solution of the system of equations in (16) will, of
course, be the same as that of (A, b). It will be seen later that the purpose of car-
rying out these operations on a matrix is to simplify it while leaving its essential
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THEOREM 3.5

algebraic structure unaltered, e.g., without changing the solution x1, ..., x,, of the
corresponding system of equations.

The definition that now follows is a consequence of the equivalence, in terms of
equations (16), of matrix (A, b) and any matrix (A’, b") that can be derived from it
by means of a sequence of elementary row operations, though the definition applies
to matrices in general, and not only to augmented matrices.

Row equivalence of matrices

Two m x n matrices will be said to be row equivalent if one can be obtained
from the other by means of a sequence of elementary row operations. Row
equivalence between matrices A and B is denoted by writing A ~ B.

The row equivalence of matrices has the useful properties listed in the following
theorem.

Reflexive, symmetric, and transitive properties of row equivalence

(i) Every m x n matrix A is row equivalent to itself (reflexive property).

(ii) Let A and B be m x n matrices. Then if A is row equivalent to B, B is row
equivalent to A (symmetric property).

(iii) Let A, B, and C be m x n matrices. Then if matrix A is row equivalent to B
and B is row equivalent to C, A is row equivalent to C (transitive property).

Proof

(i) The property is self-evident.

(ii) To establish this property we must show the three elementary row operations
involved are reversible. In the case of elementary row operations of type (i) the
result follows from the fact that if an application of the operation R{i — j, j — i}
to matrix A yields a new matrix B, an application of the operation R{j — i,i — j}
to matrix B generates the original matrix A.

Similarly, in the case of elementary row operations of type (ii), if an application
of the operation R{(«x)i — i} to matrix A yields a new matrix B, an application of
the operation R{(1/«)i — i} to matrix B reproduces the original matrix A.

Finally we consider the case of elementary row operations of type (iii). If an
application of the operation R{(8)i + j — j} to matrix A yields a new matrix B,
an application of the operation R{(—pB)i + j — j} to B returns the original matrix
A. Taken together these results establish property (ii).

(iii) Using property (ii) in (iii) establishes the row equivalence first of A and B,
and then of B and C, and hence of A and C, so property (iii) is proved. [ ]

Let us now define what are called elementary matrices and examine the effect
they have when used to premultiply a matrix.

Elementary matrices

An n x n elementary matrix is any matrix that is obtained from an n x n unit
matrix I by performing a single elementary row operation.
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the three basic types
of elementary
matrix

THEOREM 3.6

The following concise notation will be used to identify the elementary matrices that
correspond to each of the three elementary row operations.

TYPE I E;; will denote the elementary matrix obtained from the unit matrix I
by interchanging its ith and jth rows.

TYPE IT E;(c) will denote the matrix obtained from the unit matrix I by multi-
plying its ith row by the nonzero scalar c.

TYPE 111 E;;(c) will denote the matrix obtained from the unit matrix I by adding
¢ times its ith row to its jth row.

Let I be the 3 x 3 unit matrix. Then

1 0 0 1 00 1 00
I=|0 1 0|, Es=|0 0 1|, Es@=]|0 1 0|, and
00 1 01 0 00 4
1 0 0
E13(5)=010 |
5 01

Determinants of Elementary Matrices
It follows directly from the definitions of elementary matrices that:

(a) The determinant of an elementary matrix of Type I is —1, because two rows
of a unit matrix have been interchanged so, in terms of E;;, we have det(E;;) = —1.

(b) The determinant of an elementary matrix of Type II in which a row is multi-
plied by a nonzero constant ¢ is ¢, because a row of a unit matrix has been multiplied
by ¢ so, in terms of E;(c), we have det(E;(c)) = c.

(¢) The determinant of an elementary matrix of Type I1I in which c times one row
has been added to another row is 1, because the addition of a multiple of a row of

a unit matrix to another row leaves its value unchanged so, in terms of E;;(c), we
have det(E;;(c)) = 1.

The next theorem shows that premultiplication of a matrix A by an elementary
matrix E that is conformable for multiplication performs on A the same elementary
row operation that was used to generate E from L

Row operations performed by elementary matrices Let E be anm x melementary
matrix produced by performing an elementary row operation on the unit matrix
I, and let A be an m x n matrix. Then the matrix product EA is the matrix that is
obtained when the row operation that generated E from I is performed on A.

Proof The proof of the theorem follows directly from the definition of a matrix
product and the fact that, with the exception of the ith element in the ith row of I,
whichis 1, all the other elements in that row are zero. So if E is the elementary matrix
obtained from I by replacing the element 1 in its ith row by «, the result of the matrix
product EA will be that the elements in the ith row of A will be multiplied by «. As
the form of argument used to establish the effect on A of premultiplication by P to
form PA can also be employed when the other two elementary row operations are
used to generate an elementary matrix E, the details will be left as an exercise. B
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EXAMPLE 3.18 Let A be the matrix

2 45
A=|1 3 7
6 1 2

If we use the notation for elementary matrices, and introduce the elementary matrix
E,; from Example 3.17 obtained by interchanging the last two rows of I, a routine
calculation shows that

10 0][2 4 5 2 45
ExA=1|0 0 1|]|1 3 7|=|6 1 2],
01 0[l6 12 13 7

so the product E»;A has indeed interchanged the last two rows of A.

Similarly, again using the elementary matrices in Example 3.17, it is easily
checked that E;(4)A multiplies the elements in the third row of A by 4, while
E3(5)A adds five times the first row of A to the last row. ]

The main use of Theorem 3.6 is to be found in the theory of matrix algebra,
and in the justification it provides for various practical methods that are used when
working with matrices. This is because when solving purely numerical problems the
necessary row operations need only be performed on the rows of the augmented
matrix instead of on the system of equations itself.

Typical uses of the theorem will occur later after a discussion of the linear
independence of equations, the definition of what is called the rank of a matrix,
and the introduction of the inverse of an n x n matrix A. In this last case, the results
of the theorem will be used to provide an elementary method by which what is
called the inverse matrix of an n x n matrix can be obtained when 7 is small.

Summal‘y This section introduced the three types of elementary row operations that are used when
manipulating matrices together with the corresponding three types of elementary matrix
that can be used to perform elementary row operations.

3.5  The Echelon and Row-Reduced Echelon
= Forms of a Matrix

We now use the row equivalence of matrices to reduce a matrix A to one of two
slightly different but related standard forms called, respectively, its echelon form
and its row-reduced echelon form. It is helpful to introduce these two new concepts
by considering the solution of the system of m equations in #» unknowns introduced
in (16) and written in an equivalent but more condensed form as (A, b), where

an an P a1n b1
(Ab)= @ 2 e B (19)
Ami App - - . G by

because this is equivalent to the full matrix equation Ax = b.
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echelon and
row-reduced
echelon forms

rules for finding the
echelon form

Echelon and row-reduced echelon forms of a matrix

A matrix A is said to be in echelon form if:

(i) The first nonzero element in each row, called its leading entry, is 1;

(ii) In any two successive rows i and i + 1 that do not consist entirely of
zeros the leading element in the (i + 1)th row lies to the right of the leading
element in ith row;

(iii) Any rows that consist entirely of zeros lie at the bottom of the matrix.
Matrix A is said to be in row-reduced echelon form if, in addition to conditions
(1) to (iii), it is also true that

(iv) In a column that contains the leading entry of a row, all the other ele-
ments are zero.

In summary, this definition means that a matrix A is in echelon form if the
first nonzero entry in any row is a 1, the entry appears to the right of the first
nonzero entry in the row above, and all rows of zeros lie at the bottom of the
matrix. Furthermore, matrix A is in row-reduced echelon form if, in addition to
these conditions, the first nonzero entry in any row is the only nonzero entry in the
column containing that entry.

The following matrices are in echelon form:

1 11111
1 0 5 7 001 2 01
0 010 and 000 15 2
0 0 0O 000 O0T13
0 000O0O© 0
The matrices
0 102050 1 0 0 9 2 1 0 05
00110 32
, 01 0 2 3|, and 010 2
000 0110 00110 0 0 1 1
000O0O0O0TO 0
are in row-reduced echelon form. ]

Rules for the reduction of a matrix to echelon form

The reduction of the m x n matrix to its echelon form is accomplished by
means of the following steps:

1. Find the row whose first nonzero element is furthest to the left and, if
necessary, move it into row 1; if there is more than one such row, choose
the row whose first nonzero element has the largest absolute value.

2. Scale row 1 to make its leading entry 1.

3. Subtract multiples of row 1 from the m — 1 rows below it to reduce to
zero all entries that lie below the leading entry in the first column.

4. In the m — 1 rows below row 1, find the row whose first nonzero entry is
furthest to the left and, if necessary, move it into row 2; if there is more



Section 3.5 The Echelon and Row-Reduced Echelon Forms of a Matrix 149

than one such row, choose the row whose first nonzero entry has the
largest absolute value.

5. Scale row 2 to make its leading entry 1.

6. Subtract multiples of row 2 from the m — 2 rows below it to reduce to
zero all entries in the column below the leading entry in row 2.

7. Continue this process until either the first nonzero entry in the mth row
is 1, or a stage is reached at which all subsequent rows consist entirely
of zeros.

8. The matrix is then in its echelon form.

Remark

The selection in Step 1, and the steps corresponding to Step 4, of a row whose first
nonzero entry has the largest magnitude is made to reduce computational errors,
and is not necessary mathematically. This criterion is introduced to ensure that the
elimination procedure does not use an unnecessary scaling of a nonzero entry of
small absolute magnitude to reduce to zero an entry of large absolute magnitude.

rules for finding the Rules for the reduction of a matrix to row-reduced echelon form
row-reduced echelon
L2 1. Proceed as in the reduction of a matrix to echelon form, but when steps

equivalent to Step 6 are reached, in addition to subtracting multiples
of the row containing a leading entry 1 from the rows below to reduce
to zero all elements in the column below the leading entry, this same
process must be repeated to reduce to zero all elements in the column
above the leading entry.

2. Anequivalent approach is first to reduce the matrix to echelon form and
then, starting with row 2 and working downwards, to subtract multiples
of successive rows from the rows above to generate columns with leading
entries to ones with the single nonzero entry 1.

Each of these methods reduces a matrix to its row-reduced echelon form.

The row equivalence of a matrix with either its echelon or its row-reduced
echelon form means that the different-looking systems of equations represented
by these three matrices all have identical solution sets. The simplified structure of
the row echelon and row-reduced echelon forms of the original augmented matrix
makes the solution of the associated system of equations particularly easy, as can
be seen from the following examples.

PETTITEERT  Reduce the following matrix to its echelon and its row-reduced echelon form:

N S
W N A=
N A 0N
—_ NN o
NN AW
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Solution

— =N O
W N A=

divide row 1 by 2

[©) W SN ol \ 8}

— NN O

—_= O

TN N N N e

NN

~

~

switch rows

subtract row 2

from row 4

and the matrix is now in echelon form.
Having already obtained the echelon form of the matrix, we now use it to obtain
the row-reduced echelon form. We already have

2and 1
1 27
0 3
2 2
1 5

2 4 8 2 4
01 2 0 3
1 2 4 2 2
1 36 1 5]
1 2 4 1 2
subtract row 1 0 1.2 03
fromrows3and400010
01 2 0 3

SO O

2 41 2
1 2 0 3
0 010
0 0 0O

012 0 3 1 2 4 1 2
2 .48 2 4 101203 subtract twice row 2
1 2 4 2 2 00 010 from row 1
1 3 6 15 00 0 0 0]
1 0 0 1 4 1 0 0 0 —4
0120 3 quptractrow3 |0 1 2 03 ,
0 0 0 1 0 from row 1 0 0 0 1 0
00 0O 0 100 00 0
and the matrix is now in its row-reduced echelon form. [ |
PETTTTERI Solve the system of equations
X +2x3=73

2x1 +4x) +8x3 +2x4 =4
X1—|—2)C2—|—4X3—|—2)C4=2
X1+ 3x, + 6x3 + x4 = 5.

Solution The augmented matrix (A, b) for this system is the matrix in Exam-
ple 3.20 that was shown to be equivalent to the row-reduced echelon form

1

o O O

0

1
0
0

0
2
0
0

S = O O

~

S O W

If we recall that the first four columns of this matrix contain the coefficients of xq, x,,
x3, and x4, while the last column contains the nonhomogeneous terms, the matrix

implies the much simpler system of equations

x4 =0,

X + 2x3 = 3,

and x = —4.



back substitution

Summary

Section 3.5 The Echelon and Row-Reduced Echelon Forms of a Matrix 151

As there are only three equations connecting four unknowns, it follows that
in the second equation either x, or x3 can be assigned arbitrarily, so if we choose
to set x3 = k (an arbitrary number), the solution set of the system in terms of the
parameter k becomes

x1=—-4, x,=3-2k, x3=k and x4=0.

The same solution could have been obtained from the echelon form of the matrix

124 112
012 0{3
000 1{0f
000 010

because this implies the system of equations

X1 +2x+4x354+x43=2, x+2x3=3, and x4 =0.

Starting from the last equation we find x4 = 0, and setting x3 = kin the middle
equation gives, as before, x, = 3 — 2k. Finally, substituting x,, x3, and x4 in the first
equation gives x; = —4. This process of arriving at a solution of a system of equations
whose coefficient matrix is in upper triangular form is called back substitution.

It should be noticed that the system of equations would have had no solution
if the row-reduced echelon form had been

100 0|4
012013
000T1}0
000015

This is because although the equations corresponding to the first three rows of
this matrix would have been the same as before, the fourth row implies 0 =5,
which is impossible. This corresponds to a system of equations where one equation
contradicts the others, so that no solution is possible. ]

This section defined two related types of fundamental matrix that can be obtained from a
general matrix by means of elementary row operations. The first was a reduction to echelon
form and the second, derived from the first form, was a reduction to row-reduced echelon
form. Each of the reduced forms retains the essential properties of the original matrix,
while simplifying the task of solving the associated system of linear algebraic equations.

EXERCISES 3.5

Let P, Q, and R be the matrices

300 0 01 120
P=|0 1 0|, Q=(0 1 0, R=(0 1 0Of.
0 0 1 1 00 0 01

In Exercises 1 through 4 verify by direct calculation
that (a) premultiplication by P multiplies row 1 by 3;
(b) premultiplication by Q interchanges rows 1 and 3; and

(c) premultiplication by R adds twice row 2 to row 1.

2 11 4 0
1L [1 3 0l 302 0
1 2 4 12
(1 -1 2 9 1
202 1 3 4. (2 4
3 07 12
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In Exercises 5 and 6 write down the required elementary In Exercises 13 through 18, reduce the given augmented
matrices. matrices to their row-reduced echelon form and, where ap-

5. When L is the 3 x 3 unit matrix, write down Eq,, E»(3),

and E12(6)

6. When Iis the 4 x 4 unit matrix, write down E4, E4(3),

and E23 (4)

In Exercises 7 through 12, reduce the given matrices to their
row-reduced echelon form.

0
7. |3
|1
4
8. |2
K
4
9. |2
| 4

3 41

1 2 2.

5 21

1 31 3

1 1 2 0f.

2110

-2 2 31
00 3 2].
1 2 5 1

propriate, use the result to solve the related system of equa-
tions in terms of an appropriate number of the unknowns

X1, X2, ..
2 3 110] '2102;1
13|13 114 131 412
16. L
6 9 418] 212 3141
[3 211 2 1 110] 47 4 1117
251 2 - |
0. |3 1 1 3] 14. |2 3 14| 1010250
0 1 3 4 4 9 418 2260 610
21 3 1 - - 17. Lo
- 021 1.1 101160
2 2 41 4 | |
113 2 1 15. |11 3 1 211 _32708|2
11. . -
3251 4 39 4 30 306 0!6
10312 - !
- 18 (115 1}9
323 2 |
wl3 71 -1l 2 0 4 2110
511 3

3.6 Row and Column Spaces and Rank
I

row and column
ranks and spaces

The reduction of an m x n matrix A to either its echelon or its row-reduced echelon
form will produce a row of zeros whenever the row is a linear combination of some
(or all) of the rows above it. So if an echelon form contains r < m nonzero rows,
it follows that these r rows are linearly independent, and hence that the remaining
m —r rows are linearly dependent on the first r rows. The number r is called the
row rank of matrix A.

This means that if the » nonzero rows of an echelon form uy, u, ..., u, are
regarded as n element row vectors belonging to a vector space R”, the r vectors will
span a subspace of R”. Consequently, as these vectors form a basis for this subspace,
every vector in it can be expressed as a linear combination of the form

ajuy + ap + - - -+ a,u,,

where the a1, ay, ..., a, are scalar constants. This subspace of R” is called the row
space of matrix A.

It should be remembered that the vectors forming a basis for a space are not
unique, and that any basis can be transformed to any other one by means of suitable
linear combinations of the vectors involved. So although the r nonzero rows of the
echelon form of A and those of its row-reduced echelon form look different, they
are equivalent, and each forms a basis for the row space of A.

Just as there may be linear dependence between the rows of A, so also may
there be linear dependence between its columns. If s of the n columns of an m x n
matrix A are linearly independent, the number s is called the column rank of matrix
A. When the s nonzero columns vy, v,, ..., vs are regarded as m element column
vectors belonging to a vector space R™, these vectors will span a subspace of R”.
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Consequently, as these vectors form a basis for this subspace, every vector in it can
be expressed as a linear combination of the form

bivi + bavy + - - + byvy,

wherethe by, by, ..., by are scalar constants. This subspace of R is called the column
space of matrix A.

The connection between the row and column ranks of a matrix is provided by
the following theorem.

The equality of the row and column ranks Let A be any matrix. Then the row
rank and column rank of A are equal.

Proof Let an m x n matrix A have row rank r. Then in its row-reduced echelon
form it must contain r columns vy, v, ..., V,, in each of which only the single
nonzero entry 1 appears. Call these columns the leading columns of the row-reduced
echelon form, and let them be arranged so that in the ith column v, the entry 1
appears in the ith row.

The row-reduced echelon form of A will comprise the leading columns arranged
in numerical order with, possibly, columns between the ith and the (i + 1)th leading
columns in which zero elements lie below the ith row but nonzero elements may
occur above it. Furthermore, there may be columns to the right of column v, in
which zero elements lie below the rth row but nonzero elements may lie above it.

By subtracting suitable multiples of the leading columns from any columns
that lie between them or to the right of v,, it is possible to reduce all entries in
such columns to zero. Consequently, at the end of this process, the only remaining

nonzero columns will be the r linearly independent leading columns vy, v, ..., V,.
This establishes the equality of the row and column ranks. ]
Rank

The rank of matrix A, denoted by rank (A), is the value common to the row
and column ranks of A.

Rank of A and AT Let A be any matrix. Then
rank (A) = rank (AT).

Proof The columns of A are the rows of AT, so the column rank of A is the row
rank of AT. However, by Theorem 3.7 these two ranks are equal, so the result is

proved. ]
Let
1 03 0 4 0
21 7 0 10 1
A=17032 ¢ 4
1 03 0 4 0
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Then the row-reduced echelon form of A is B(B ~ A)
103 040
B 0110 21

100011 2]}
00 0O0O0OTO

showing that the number of leading columns is 3, so the row rank of A is 3, and
hence its rank is 3. Three row vectors spanning a subspace of R®, and so forming a
basis for this subspace, are the three nonzero row vectors in this 4 x 6 matrix,

w=[1,023040, wu=[0 11021, and w=[0, 0,0, 1, 1, 2].

The row-reduced echelon form of AT is

1 0 01
01 00
0 010
00 0 Of
0 0 0O
0 0 0O

showing that the number of leading columns is 3, confirming as would be expected
that the column rank of A (the row rank of A7) is 3. The three row vectors of AT
spanning a subspace of R*, and so forming a basis for this subspace, are the three
nonzero rows in this 6 x 4 matrix, namely,

[1, 0,0, 1], [0, 1,0, 0], and [0, O, 1, O].

The three linearly independent column vectors of A are obtained by transposing
these vectors to obtain

This section introduced the important algebraic concepts of the rank of a matrix, and of
the row and column spaces of a matrix. The equality of the row and column ranks of a
matrix was then proved. It will be seen later that the rank of a matrix plays a fundamental
role when we seek a solution of a linear algebraic system of equations.

EXERCISES 3.6

In Exercises 1 through 14 find the row-reduced echelon
form of the given matrix, its rank, a basis for its row space,
and a basis for its column space.

.

1.[

1 31011
221001

0 21

4 1

3

302 6 0 1 2 3
3 4 1 0 11 3] 5. |:2 3 1:|.
‘12 0 2 4 0} 3 21
132 1 300 6 3 30 4
2 0 21 4 |:2 3100 2 4i| 6. |:1 2 2:|.
1 0 4 5| 1 210 4 1 2| 8§ 8 12
01 2 4
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12 1 4 5 7 0 -1 4 3 17 2 47
9 10121} 0 1 2 13./100 5 7
331578 Ll 00 1l 00 0 3]
2 4 0 10 8 :1000: (15 0 37
0. |0 2 1 3 1. 1 0 00 211 1
_261139} 1 -1 00 4.1 2 3 2
2., 1 0l 33 4 3

1 3 21 (4 5 7 5]

The Solution of Homogeneous Systems
of Linear Equations

Having now introduced the echelon and row-reduced echelon forms of an m x n
matrix A, we are in a position to discuss the nature of the solution set of the system
of linear equations

ap1xy + apxy + - - -+ ayX, = by
ay X1+ anxy + - - -+ ayx, = by (20)
Al X1+ Qrp3p + - -+ Apn X = by,

which will be nonhomogeneous when at least one of the terms b; on the right is
nonzero, and homogeneous when by = b, = --- = b,, = 0. In this section we will
only consider homogeneous systems.

Rather than working with the full system of homogeneous equations corre-
sponding to b; =0,i =1,2,...,min (20), it is more convenient to work with its
coefficient matrix

ai aip ain
a a 6 o o [

A — 21 22 2n , (21)
A1 A2 Amn

which contains all the information about the system. The coefficients in the first
column of A are multipliers of x;, those in the second column are multipliers of
X2, ..., and those in the nth column are multipliers of x;,.

Denote by Afg either the echelon or the row-reduced echelon form of the
coefficient matrix A. Then, as elementary row operations performed on a coefficient
matrix are equivalent in all respects to performing the same operations on the
corresponding full system of equations, the solution set of the matrix equation

Ax=0 (22)

will be the same as the solution set of an echelon form of the homogeneous equa-
tions

Apx = 0. (23)



156 Chapter 3  Matrices and Systems of Linear Equations

trivial solution

It is obvious that x = 0, corresponding to x = [0, 0, ..., 0]T, is always a solution of
(22) and, of course of (23), and it is called the trivial solution of the homogeneous
system of equations. To discover when nontrivial solutions exist it is necessary to
work with the equivalent echelon form of the equations given in (23).

If rank(A) = r, the first r rows of Ag will be nonzero rows, and the last m — r
rows will be zero rows. As there are m rows in A, we must consider the three
separate cases (a) m < n, (b) m = n, and (c) m > n.

Case (a): m < n. In this case there are more variables than equations. As
rank(A) = r, and there are m equations, it follows that r = rank(A) < m.
The system in (22) will thus contain only r linearly independent equations
corresponding to the first » rows of Ag. So working with system (23), we
see that r of the variables xq, x5, ..., x,, will be determined in terms of the
remaining m — r variables regarded as parameters (see Example 3.23).

Case (b): m = n. In this case the number of variables equals the number of
equations. If rank(A) = r < n we have the same situation as in Case (a),
and the variables x1, x,, . . ., x,, will be determined by the system of equations
in (23) in terms of the remaining m — r variables regarded as parameters.
However, if r = n, only the trivial solution x = 0 is possible, because in this
case Ag becomes the unit matrix I,,, from which it follows directly that x = 0.
Case (c): m > n. In this case the number of equations exceeds the number
of variables and r = rank(A) < n. This is essentially the same situation as
in Case (b), because if r = rank(A) < n, the variables x1, xy, ..., x, will be
determined by the system of equations in (22) in terms of the remaining m — r
variables regarded as parameters, while if rank(A) = n only the trivial solution
x = 0 is possible.

The practical determination of solution sets to homogeneous systems of linear
equations is illustrated in the next example.

Find the solution sets of the homogeneous systems of linear equations with coeffi-
cient matrices given by:

1 2 1 7 0 1 3 2 % 2 g %
(@) A=(3 6 4 24 3|, b)) A=[2 1 0f, (c) A= 411 10 5|
1 4 4 12 3 1 2 1 10 1 1
1 4 1 2
1 3 01 1 23 1 4 3
dA=]|2 1 1 1|, (¢)A=|0 1 3 0 1 5
4 9 3 5 31 2 3 1 4
|5 5 23
Solution

(a) The row-reduced echelon form of the matrix is

100 8 3
Ag=|0 1 0 -2 -3
001 3 3

’
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showing that rank(A) = 3. This corresponds to the following three equations be-
tween the five variables xq, x7, x3, x4, and xs:

X1 +8x44+3x5=0, x—2x4—3x5=0, and x3+3x4+3x5=0.

Letting x4 = « and x5 = 8 be arbitrary numbers (parameters) allows the solution
set to be written
x1=—-8x—38, x=20+4+38, x3=-3a—-38, xy=oa, x5s=2,.

(b) The row-reduced echelon form of the matrix is

1 00
Ag=|0 1 0],
0 01

showing that rank(A) = 3. This corresponds to the trivial solution x; = x; = x3 = 0.
(¢) The row-reduced echelon form of the matrix is

100 20/13
010 5/13
001 -7/13]
000 0

Ag =

showing that rank(A) = 3. This corresponds to the solution set x; + (20/13)x4 =
0, x, + (5/13)x4 = 0, and x3 — (7/13)x4 = 0. Setting x4 = k, an arbitrary number
(a parameter), shows the solution set to be given by

x1=—(20/13)k, x, =—(5/13)k, x3=(7/13)k, and x4 =k

(d) The row-reduced echelon form of the matrix is

100 0
01 0 1/3
Ag=[0 0 1 2/3],
000 0
000 0

showing that rank(A) = 3. This corresponds to the following three equations for
the four variables xi, xo, x3, and xy4:

=0, x+1/3)x;=0, and x3+ (2/3)x4 =0.
Setting x4 = k, an arbitrary number (a parameter), shows the solution set to be
given by
x1=0, xx=-k/3=0, x3=-2k/3, and x4==k.
(e) The row-reduced echelon form of the matrix is
1 0 0 1 —-1/4 12

AE=1|0 1 0 0 13/4 -5/2|,
0010 —3/4 52

showing that rank(A) = 3. This corresponds to the following three equations for
the six variables x; to xg:

X1 + X4 — (1/4)X5 + (1/2))(6 =0, x»+ (13/4))(5 — (5/2)X6 =0
x3 — (3/4)xs + (5/2)x¢ = 0.
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Setting x4 = «, xs = 8, and x; = y, where «, 8, and y are arbitrary numbers
(parameters), shows the solution set to be given by

x1=—a+1/Hp—-1/2)y, x2=-(13/H)B+(5/2)y, x3=03/HB—(5/2)y
Xs=a, xs=pB, and x5=7y. [ ]

Summal‘y This section made use of the rank of a matrix to determine when a nontrivial solution of
a linear system of homogeneous linear algebraic equations exists and, when it does, its
precise form.

EXERCISES 3.7

In Exercises 1 through 10, use the given form of the matrix 1 3 4 1 410
A to find the solution set of the associated homogeneous 2 1 3 3 21 31
linear system of equations Ax = 0. 5.1 0 2 ‘156 72
1 3 2 1 1] [1 2 4 17 zéi 2 10t
1. (1 1 0 1 2. 3.0313 - _115001
00121 3] 1413 2 11 3 91231213
20 1 1T (2 6 5 4] 1230 010130
03101 - s 6. 10 1 4 2. -
2'20201' ;%(1)(1) 1 31 2 132 11
10311 410 3 5 1| 0 4 1 1 0125102
- - 01 2 0 3}
(1 01 5] M5 22132 103 12
7 0141011
{12100 20
2301102
(]
3.8 The Solution of Nonhomogeneous Systems
e —

of Linear Equations

We now turn our attention to the solution of the nonhomogeneous system of equa-
tions in (20) that may be written in the matrix form

Ax =b, (24)

where A is an m x n matrix and b is an m x 1 nonzero column vector. In many
respects the arguments we now use parallel the ones used when seeking the form of
the solution set for a homogeneous system, but there are important differences. This
time, rather than working with the matrix A, we must work with the augmented
matrix (A, b) and use elementary row operations to transform it into either an
echelon or a row-reduced echelon form that will be denoted by (A, b)g. When this
is done, system (24) and the echelon form corresponding to (A, b)g will, of course,
each have the same solution set.

It is important to recognize that rank(A) is not necessarily equal to rank
(A, b)g, so that in general rank(A) < rank((A, b)g). The significance of this
observation will become clear when we seek solutions of systems like (24).
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Case (a): m < n. In this case there are more variables than equations, and it
must follow that rank((A, b)g) < m. If rank(A) =rank((A, b)g) =r, it follows
that r of the equations in (24) are linearly independent and m — r are linear
combinations of these r equations. This means that the first r rows of (A, b)g
are linearly independent while the last m — r rows are rows of zeros. Thus, r
of the variables x; to x,, will be determined by the equations corresponding to
these r nonzero rows, in terms of the remaining m — r variables as parameters.
It can happen, however, that rank(A) = r < rank((A, b)g), and then the
situation is different, because one or more of the rows following the rth row
will have zeros in its first # entries and nonzero numbers for their last entries.
When interpreted as equations, these will imply contradictions, because they
will assert expressions such as 0 = ¢ with ¢ # 0 that are impossible. Thus, no
solution will exist if rank(A) # rank((A, b)g).

Case (b): m = n. In this case the number of variables equals the number
of equations, and it must follow that rank((A, b)g) < n. The situation now
parallels that of Case (a), because if rank(A) = rank((A,b)g) =r < m, thenr
of the equations in (24) will be linearly independent, while m — r will be linear
combinations of these r equations. So, as before, the first r rows of (A, b)g will
be linearly independent while the last m — r rows will be rows of zeros. Thus, r
of the variables x; to x, will be determined by the equations corresponding to
these r nonzero rows in terms of the remaining m — r variables as parameters.
In the case r = n, the solution will be unique, because then Ag = I. Finally,
if rank(A) # rank((A, b)g), it follows, as in Case (a), that no solution will
exist.

Case (c): m > n. In this case there are more equations than variables, and it
must follow that rank((A, b)g) <n.If rank(A) =rank((A, b)g) =r, it follows,
as in Case (b), that r of the equations in (24) are linearly independent while
m — r are linear combinations of these r equations. Thus, again, the first 7 rows
of (A, b)g will be linearly independent while the last m — r rows will be rows
of zeros. Consequently, r of the variables x; to x, will be determined by the
equations corresponding to these r nonzero rows in terms of the remaining
m — r variables as parameters. If rank(A) # rank((A, b)g), then as before no
solution will exist.

These considerations bring us to the definition of consistent and inconsistent

systems of nonhomogeneous equations, with consistent systems having solutions,
sometimes in terms of parameters, and inconsistent systems have no solution.

Consistent and inconsistent nonhomogeneous systems

The nonhomogeneous system Ax = b is said to be consistent when it has a
solution; otherwise, it is said to be inconsistent.

As with homogeneous systems, the practical determination of solution sets of
nonhomogeneous systems of linear equations will be illustrated by means of
examples.
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Find the solution sets for each of the following augmented matrices (A, b), where
the matrices A are those given in Example 3.23.

121 7 041 132 2
@ (Ab)={3 6 4 24 3{0| ® Ab=|2 1 0] 1
1 4 4 12 313 12 11 -3
_ 1 41 212
2 3 6 12 !
! 13010
(©) (A,b) L4z 293 @ Ab =211 B
D=4 110 501 T !
! 4.9 3 507
1 0 1 112 !
- 552 300
12 3 1 4 3 (=2
€ (Ab)=]0 13 0 1 5|0
31231 411
Solution
(a) In this case,
100 8 3} -7
(Abe=[0 1 0 -2 —3}11/2
001 3 3| -3

As rank(A, b)g = 3, and the rank of matrix A is the rank of the matrix formed by
deleting the last column of (A, b)g, it follows that rank(A) = 3. So rank(A, b)g =
rank(A), showing the equations to be consistent, so they have a solution.

If we remember that the first column contains the coefficients of x;, the second
column the coefficients of x,, ..., and the fifth column the coefficients of x5, while
the last column contains the nonhomogeneous terms, we can see that the matrix
(A, b)g is equivalent to the three equations

X1 +8x4 +3x5 =7, x2—2x4 —3x5=11/2, x3+3x4 +3x5 = 3.

So, if we set x4, = @ and x5 = 8, with o and 8 arbitrary numbers (parameters), the
solution set becomes

x1=-8¢—38-7, x,=20+3B+11/2, x3=-3c—38—3,
x4 =a and X5=,3.

(b) In this case,

100 9
(Abe=0 1 0}-17
00 1! 22

Here A is a 3 x 3 matrix and rank(A) = rank((A, b)g) = 3, so the equations are
consistent and the solution is unique. The solution set is seen to be

X1 = 9, Xy = —17, and X3 = 22.
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(¢) In this case,

100 20/1310
010 5130
(Ab)e=[0 0 0 —7/13{0
000 0 |1
000 0 1o

This system has no solution because the equations are inconsistent. This follows
from the fact that rank(A) = 3, as can be seen from the first four columns, while the
five columns show that rank((A, b)g) = 4, so that rank(A) # rank((A, b)g). The
inconsistency can be seen from the contradiction contained in the last row, which
asserts that 0 = 1.

(d) In this case

(A,b)E =

oS o oo
S oo~ O
SO R, OO

0
1/3
2/3

0

0

[ =l e i)

This system also has no solution because the equations are inconsistent. This fol-
lows from the fact that rank(A) = 3 and rank((A, b)g) = 4, so that rank(A) #
rank((A, b)g). The inconsistency can again be seen from the contradiction in the
last row, which again asserts that 0 = 1.

(e) In this case

100 1 —1/4 127 58
(Ab)e=[0 1 0 0 13/4 —5/2|-21/8],
001 0 —3/4 521 7/8

showing that rank(A) = rank((A, b)g) = 3, so the equations are consistent.

Reasoning asin (a) and setting x4 = o, x5 = 8,and x¢ = y, with«, 8, and y arbitrary
numbers (parameters), shows the solution set to be given by

x1=—a+1/4)B—1/2)y +5/8, xp=-(13/4)B+(5/2)y —21/8,
x3=06/4)B—-0G/2y+7/8, xa=a, xs=p, xX5=y. -

A comparison of the corresponding solution sets in Examples 3.23 and 3.24
shows that whenever the nonhomogeneous system has a solution, it comprises the
sum of the solution set of the corresponding homogeneous system, containing ar-
bitrary parameters, and numerical constants contributed by the nonhomogeneous
terms. This is no coincidence, because it is a fundamental property of nonhomo-
geneous linear systems of equations. The combination of solutions comprising the
sum of a solution of the homogeneous system Ax = 0 containing arbitrary con-
stants, and a particular fixed solution of the nonhomogeneous system Ax = b that
is free from arbitrary constants, is called the general solution of a nonhomogeneous
system. The result is important, so it will be recorded as a theorem.
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THEOREM 3.9

Matrices and Systems of Linear Equations

General solution of a nonhomogeneous system The nonhomogeneous system of
equations

Ax=Db

for which rank(A) = rank ((A, b)g) has a general solution of the form

X = Xy + Xp,

where xy is the general solution of the associated homogeneous system Axy = 0
and xp is a particular (fixed) solution of the nonhomogeneous system Axp = b.

Proof Let x be any solution of the nonhomogeneous system Ax = b, and let xp
be a solution of the nonhomogeneous system Axp = b that contains no arbitrary
constants (a fixed solution). Then, as the equations are linear,

A(x—xp) =Ax—Axp=b—-b =0,

showing that the difference xp = x — xp is itself a solution of the homogeneous
system. Consequently, all solutions of the nonhomogeneous system are contained
in the solution set of the homogeneous system to which xp belongs, and the theorem

is proved. ]
Summal‘y This section used the rank of a matrix to determine when a solution of a linear system
of nonhomogeneous equations exists and to determine its precise form. If the ranks of a
matrix and an augmented matrix are equal, it was shown that a solution exists, furthermore,
if there are n equations and the rank r < n, then r unknowns can be expressed in terms
of arbitrary values assigned to the remaining n — r unknowns. The system was shown to
have a unique solution when r = n, and no solution if the ranks of the matrix and the
augmented matrix are different.
In Exercises 1 through 10 write down a system of equa- n -1 2 -1:-4 21003 i 1
tions with an appropriate number of unknowns x;, x,, ... | |
corresponding to the augmented matrix. Find the solution 2 3 b2 | 12 .11 2113 i 0
set when the equations are consistent, and state when the 5.1 2 -2 3115 0125 1i2
equations are inconsistent. 301 -1 1 i 1
_ - |
-2 1 3111 131110 1 1 -1 2113
0 3 -2 111 311321 2 31 _
. i 1 2 114
1. |2 1 0 4:23 110 311 21153 i
i 11 2:0
302 -1 202 202 110 6. |0 2 113]. 9. |
\ — - 1 [
11 3 204 > 6 715 2bhe
_ - _ - i 0 3 511
213 111 142 304 12 1o - |
20014 101 (203 12 123 0)1 _
! . ; 1 31121
300 211 5 4 8 518 010211 |
- - - - 7. i 10. {1 -2 1 3 110].
213 110 |
| 2 010 310
|1 415 ) -
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The Inverse Matrix

The operation of division is not defined for matrices. However, we will see that
n x nmatrices A for which detA # 0 have associated with them an n x n matrix B,
called its multiplicative inverse, with the property that

AB=BA =1.

The purpose of this section will be to develop ways of finding the multiplicative
inverse of a matrix, which for simplicity is usually called the inverse matrix, but first
we give a formal definition of the inverse of a matrix.

The inverse of a matrix

Let A and B be two n x n matrices. Then matrix A is said to be invertible and
to have an associated inverse matrix B if

AB=BA =1

Interchanging the order of A and B in this definition shows that if B is the inverse
of A, then A must be the inverse of B.

To see that not all n x n matrices have inverses, it will be sufficient to try to find
a matrix B such that the product AB = I, where

1 2 a b
A= |:1 2] and B = |:c d} .
The product AB is

AB — 1 2f{|la b|_ |a+2c b+2d
|1 2||c d|  |a+2c b+2d|’

so if this product is to equal the 2 x 2 unit matrix I, it is necessary that

a+2c b+2d| |1 O

a+2c b+2d| |0 1|

Equating corresponding elements in the first columns shows that this can only

holdifa + 2¢ = 1 anda + 2¢ = 0, while equating corresponding elements in the sec-
ond columns shows that b + 2d = 0 and b + 2d = 1, which is impossible, so matrix

A has no inverse. In this case detA = 0, and we will see later why the nonvanishing
of detA is necessary if A is to have an inverse.

Nonsingular and singular matrices

An n x n matrix is said to be nonsingular when its inverse exists, and to be
singular when it has no inverse.

We have already seen that the matrix

12
a=[ 3]
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THEOREM 3.10

THEOREM 3.11

basic properties of
the inverse matrix

for which detA = 0, has no inverse and so is singular. However, in the case of matrix
A that follows, a simple matrix multiplication confirms that it has associated with
it an inverse B, where

1 01 2 1 =2
A=|-1 2 0 and B = 1 1 -1,
01 1 -1 -1 2

because AB = BA = I. Furthermore, detA # 0, so A is nonsingular, as is B, and
each is the inverse of the other. [ |

Before proceeding further it is necessary to establish that, when it exists, the
inverse matrix is unique.

Uniqueness of the inverse matrix A nonsingular matrix A has a unique inverse.

Proof Suppose, if possible, that the nonsingular n x n matrix A has the two dif-
ferent inverses B and C. Then as AC = I, we have

B = BI = B(AC) = (BA)C = IC = C,

showing that B = C, so the inverse matrix is unique. ]

It is convenient to denote the inverse of a nonsingular n x n matrix A by the
symbol A~!. This is suggested by the exponentation notation (raising to a power),
because if for the moment we write A = A', then AA~' = A’A~1 =1, showing
that exponents may be combined in the usual way, with the understanding that
AATT=A0-D = A0 =,

Basic properties of inverse matrices

(i) The unit matrix I is its own inverse, so I = I"1.
(ii) If A is nonsingular, so also is A~!, and (A~!)~! = A.
(iii) If A is nonsingular, so also is AT, and (A~!)T = (AT)~L.
(iv) If A and B are nonsingular n x n matrices, so is AB, and
(AB) ' =B 1AL

(v) If A is nonsingular, then (A~')" = (A™) " form=1,2,....
Proof We prove only (i) and (iv), and leave the proofs of (ii), (iii), and (v) as

exercises. The proof of (i) is almost immediate, because I? = I, showing that T = 11
To prove (iv) we premultiply B-'A~! by AB to obtain

ABB'A ' =AIA ' =AA =1,
which shows that (AB)~!is B"'A~!, so the proof is complete. ]
A simple method of finding the inverse of an n x n matrix is by means of

elementary row operations, but to justify the method we first need the following
theorem.
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Elementary row operation matrices are nonsingular Every n x n matrix E that
represents an elementary row operation is nonsingular.

Proof Every n x n matrix E that represents an elementary row operation is de-
rived from the unit matrix I by means of one of the three operations defined at the
start of Section 3.4. So, as rank(I) = n and E and I are row similar, it follows that
rank(E) = n, and so E is also nonsingular. [ |

We can now describe an elementary way of finding an inverse matrix by means
of elementary row transformations. Let A be a nonsingular n x n matrix, and let
E(, E,, ..., E, represent a sequence of elementary row operations of Types I, 11,
and III that reduces A to I, so that

E,E,1... E;E/A=1
Then postmultiplying this result by A~! gives
E,E, .. EEI=A""
so A7 is given by
A" =E,E,_ - EE]I

where the product of the first m matrices on the right is nonsingular because of
Theorem 3.11. Expressed in words, this result states that when a sequence of el-
ementary row operations is used to reduce a nonsingular matrix A to the unit
matrix I, performing the same sequence of elementary row operations on I, in the
same order, will generate the inverse matrix A~!. If matrix A is singular, this will
be indicated by the generation of either a complete row or a complete column of
zeros before 1is reached.

If A is nonsingular, it is reducible to the unit matrix I, and clearly detA # 0.
However, if A is singular, the attempt to reduce it to I will generate either a row or
a column of zeros, so that then detA = 0. The vanishing or nonvanishing of detA
provides a simple and convenient test for the singularity or nonsingularity of A
whenever n is small, say n < 3, because only then is it a simple matter to calculate
detA.

The practical way in which to implement this result is not to use the matrices
E; to reduce A to I, but to perform the operations directly on the rows of the
partitioned matrix (A, I), because when A in the left half of the partitioned matrix
has been reduced to I, the matrix I in the right half will have been transformed
into A1

Use elementary row operations to find A~! given that

1 01
A=|-1 2 0
011
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the proof that
det(AB) = detA detB

Solution We form the augmented matrix (A, I) and proceed as described earlier.

10111 00 ~ 10111 00
AD=|-1 2 0{0 1 0 addrovgl 02 1{1 10
01 1100 19 Jo11i00 1
~ o110 O ~ ro1; 1 0 0
subtractrow3 | 1 o0l1 1 —1|subtractrow2|g 1 o! 1 1 -1
from row 2 01100 1 from row 3 00 11 -1 -1 2
N 100) 2 1 =2
subtractrow3 | 1 o! 1 1 —1
from row 1 00 1; 1 1 3

The 3 x 3 matrix on the left of this row-equivalent partitioned matrix is now the
unit matrix I, so the required inverse matrix is the one to the right of the partition,
namely,

2 1 =2
A= 1 1 -1
-1 -1 2

Once A~! has been obtained, it is always advisable to check the result by
verifying that AA~! = 1. ]

Before proceeding further we will use elementary matrices to provide the
promised proof of Theorem 3.4(viii).

Proof that det(AB) = detA detB Let E; be a row matrix of Type I. Then if A is a
nonsingular matrix, det(E;A) = —detA, because only arow interchange isinvolved.
However, det(E;) = —1,so det(E;A) = detEjdetA. Similar arguments show this to
be true for elementary row operation matrices of the other two types, so if E is an
elementary row operation of any type, then

det(EA) = detEdetA.

If detA # 0, premultiplication by a sequence of elementary row operation
matrices Eq, E,, ..., E, will reduce A to I, so performing them on I in the reverse
order allows us to write

A=EE,.. .EI=EE,.. E,.
A repetition of the result det(EA) = detEdetA shows that
detA = detE detE, ... detE,.

If B is conformable for multiplication with A, using the preceding result we
have

det(AB) = det(E(E, ...E,B)
= detE;detE,; ... detE,detB,

but
detEjdetE;...detE, = detA, andso det(AB) = detAdetB.
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To complete the proof we must show this result remains true if A is singular, in
which case detA = 0. When detA = 0, the attempt to reduce it to the unit matrix I
by elementary row operation matrices will fail because at one stage it will produce
a determinant in which a row will contain only zero elements. Consequently, a
determinant detE,,, say, will be zero, which is impossible, so det(AB) = 0. However,
if detA = 0, then detAdetB = 0, so that once again det(AB) = detAdetB, and the
result is proved. ]

Use (a) elementary row operations and (b) the determinant test to show matrix A
is singular, given that

1 10
A=|1 0 1
4 3 1

Solution

(a) Using elementary row operations on the augmented matrix gives
11071 00 N 1 10,100
(AD=|[1 0 1}/0 1 0fsubtractrowl 0 —1 1 |1

1 0
4 3 110 0 1] fromrow2 1. 3 11 g 0 1
N 1 10y 100
subtract 4 times [ —1 1 i -1 1 0
row 1 from row 3 0 -1 1! -4 0 1
N 1 107 1 0
subtractrow2 |0 —1 1 i -1 1
from row 3 0 0 0! -3 —1 1

The reduction is terminated at this stage by the appearance of a row of zeros on
the matrix to the left of the partition, showing that A cannot be reduced to I, and
hence that A is singular.

(b) Applying the determinant test to A, we find that detA = 0, showing that A
is singular. Although in this case this is by far the quickest way to establish the
singularity of A, this would not have been so had the order of detA been much
greater than 3. This is because when n > 3, the effort involved in performing the
elementary row operations in an attempt to reduce A to I is considerably less than
the effort involved when calculating detA. u

The following very different way of finding the inverse of an n x n matrix A is
mainly of theoretical importance, though it is a practical method when # is small.
The method is based on the properties of the sum of products of elements and
cofactors of a determinant.

Let A = [a;;] be an n x n matrix, C = [Cj;] be the associated n x n matrix of
cofactors and form the matrix product

an an ... A C11 C21 P Cnl
ACT = | @1 a2 ... axy Chr Cn ... Cp
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adjoint matrix

THEOREM 3.13

formal definition of

an inverse matrix

Ifwe write B = AC",with B = [b;;], it follows from the rule for matrix multiplication
that

bij = anCij +aipCoj + - - + a;n Cyj.

Thus, b;; is seen to be the sum of the product of the elements of the ith row of A
and the corresponding cofactors of the elements of the jth row of A. It then follows
from the Laplace expansion theorem for determinants that

bij =detA, fori=j=12_...n
and
b,’j:O, for 75]

Using these results in the matrix product, we find that

detA 0 0O ... 0
0 detA 0
ACT=| 0 0 detA ... O
0 0 0 detA
= detA L

Consequently, provided detA # 0, it follows that

(1/detA)AC" =1.
Writing this as

A{(1/detA)C"} =1
shows that

A~ = (1/detA)CT.

The matrix CT, called the adjoint of A and written adjA, is the franspose of the
matrix of cofactors of A. So the formula for the inverse of A becomes

A~ = (1/detA)adjA. (25)

We have arrived at the following definition and theorem.

Adjoint matrix

If A is an n x n matrix, and C is the associated matrix of cofactors, the trans-
pose C' of the matrix of cofactors is called the adjoint of A and is written
adjA.

The inverse matrix in terms of the adjoint of A Let A be a nonsingular n x n
matrix. Then the inverse of A is given by

Al = (1/detA)adjA. =
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Use Theorem 3.13 to find A~ given that

1 30
A=|2 1 1
1 0 1
Solution The matrix of cofactors
1 -1 -1 1 -3 3
cC=|-3 1 3|, soCl=|-1 1 -1
3 -1 -5 -1 3 -5

Expanding detA in terms of the elements of its first row (we already have its asso-
ciated cofactors in the first row of C) givesdetA =1-14+(-1)-34+1-0=-2,s0
from Theorem 3.13,

Al =(-1/2)CT =

RI= D= =
IL DI= MW
DI NI—= NIW

Although the result of Theorem 3.13 is of considerable theoretical importance,
unless # is small, the task of evaluating the determinants involved makes it imprac-
tical for the determination of inverse matrices. In general, for large n, an inverse
matrix is found by means of a computer using elementary row operations to reduce
AtoL

General Proof of Cramer’s Rule

In conclusion, we will use Theorem 3.13 to arrive at a simple proof of Cramer’s rule
for the system of equations

apxy +apxy + - - -+ apx, = b
anx) + apx; + - - -+ ayx, = by
a1 X1 + AppXy + - - -+ Xy = bn

If we write the system as Ax = b, then, provided detA # 0, the solution can be
written

x = A~!b = (1/detA)(adjA)b = (1/detA)CTb,

where CT is the transpose of the matrix of cofactors of A. If x = (x, x2, ..., ;)T
andb = (b1, by, ..., b,)", the ith element of x is given by

x; = (1/detA)(Cy;by + Coiby + -+ + Cyiby) fori=1,2,....n.

This is simply the expansion of detA; in terms of the elements of its ith column,
where A, is the matrix obtained from A by replacing the elements of the ith column
by the elements of b. This has established that

x; = detA,;/detA, fori=1,2,...,n,

and the proof is complete. ]
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More information about the material in Sections 3.4 to 3.9 is to be found in the
appropriate chapters of references [2.1], [2.5], and [2.7] to [2.12].

GABRIEL CRAMER (1704-1752):

A Swiss mathematician who made many contributions to algebra and geometry. The result
called Cramer’s rule was, in fact, first formulated by Maclaurin around 1729 and published
posthumously in his Treatise on Algebra (1748). The form of the rule attributed to Cramer
appeared in his book Traite des courbes algebraiques (1750), which became a standard reference
work during the remainder of the century. The work was so well written and so often quoted
that after his death Cramer was, on occasions, considered to be the originator of the rule.

Su mmal‘y Division by matrices is not defined, but the introduction of a multiplicative inverse A~" of a
nonsingular n x n matrix A, called the inverse of A, enables certain operations that in some
sense are similar to matrix division to be performed. This section gave the formal definition
of the inverse of a matrix and established its most important algebraic properties. The
inverse matrix was used to prove Cramer’s rule for a general system of n nonhomogeneous
linear algebraic equations when the determinant of the coefficient matrix is nonsingular.

EXERCISES 3.9

In Exercises 1 through 8, construct a suitable augmented 10. Given that
matrix and find the inverse of the given matrix using ele-
mentary row operations. 412 .
- ~ A=|3 1 0}, verify that (A™")T =(AT)"! and
1 3 7 2 31 3 2 1
1. |2 1 —1]. 5 |1 2 0f. e .
21 5 2 41 (A7) =9
—4 1 0 r3 0 1 In Exercises 11 through 16, use Theorem 3.13 to find the
2 1 -3 1 6. 11 -1 11/. inverse of the given matrix, and check the result by showing
2 1 4 0 4 5 that AA™! =L
- - 2 4 -5 -3 2 6
113 1 2 01
|16 2 0 1 2 5| L - a
2o - 2|1 43 S
4.1 3 4. 01 23 ' 3 15.
0 -2 1 _ 10 =5 1 1 0 -2 3
- 8 22 42 1 -2 27
113 0 1} [0 2 1 - -
31 10 13. (1 4 10 [0 1 —4 17
. 31 2 37 52
9. Given that - 16. 1 22 6 0
3 -1 1 1 =31 o1 3 1]
A=|1 4 0 and B=|2 0 5], In the following two exercises, use the determinant test to
2 I -3 3 L2 show the given matrix is singular, and then verify this by
) » i using elementary row operations applied to a suitable aug-
verify that (AB)™ = B~ A" mented matrix, as in Example 3.27. Compare the effort in-
volved in each case.
02 1 0 1 3 01
11 3 0 1 1 21
Tl 1 4 2f By 125
4 3 10 2 0 -1 1 2
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3.10 . Derivative of a Matrix
]

When the elements of matrix A are differentiable functions of a single variable,
say t, so that A = A[a;;(t)], calculus can be performed on matrices, so it becomes
necessary to define the derivative of a matrix. An illustration of the need for this
was given in Section 3.2(e), where the matrix differential equation X + Ax =0
was obtained as the system of second order differential equations determining
the motion of a compound mass—spring system.

Derivative of a matrix

Let the m x n matrix A have elements a;;(f) that are differentiable functions
of the variable ¢. Then the first order derivative of A with respect to ¢, written

fundamental dA/dt,is defined as
definition of dA/dt

dA /dt = [d(ai;)/dr],
and its nth order derivative with respect to ¢ is defined recursively as
d"A/dt" = djdt[d"'Ajdt"], forn=1,2,...,

with the convention that d°(a;;)/dt’ = a;;, so that d°A /dt’ = A.
The derivative of a constant matrix is the null (zero) matrix 0.

BETIGTEETM  Find dA/dr and d*A/df? given that
12 3t cosht te!
(@) A= |:2t +1 € sin2t:|’ (b) A = I:cos3ti| )
Solution

(a) By definition,

|2t 3 sinht > 2 120 cosht
dA/dt = |:2 e 2c052t:| and - d°A/di" = |:0 e —4sin2t:| )
| e +re > s | 2 +tef
(b) dA/di = [—3 sin 3t] and - d°A/di" = —9 cos 3¢ =
Derivative of the sum of two matrices Let A(¢) and B(¢) be an m x n matrices,
each with differentiable elements. Then
derivative of a sum, a
product, and an d/dt{A + B} = dA/dt + dB/dL.

Proof The result follows immediately from the definition of the sum of two
matrices. ]
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THEOREM 3.15

THEOREM 3.16

Summary

Derivative of a matrix product Let A(¢) be an m x n matrix and B(¢) be an
n x q matrix, each with differentiable elements. Then, if the m x g matrix C(t) =
A()B(),

dC/dt = {dA/dt)B + A{dB/dt).

Proof 1t follows from the definition of the matrix product of two matrices A and
B that are conformable for multiplication that ¢,s = a,1b15s + a,2b2s + - -+ + arnbys,
so each term in ¢, is a product of two differentiable functions. Differentiating ¢,
establishes the theorem in which the order of the matrix products must be as shown.

|

Derivative of an inverse matrix Let A(z) be an n x n nonsingular matrix with
differentiable elements. Then

dA7Ydt = —A"Y{dA/dt} AL,

Proof As A is nonsingular, its inverse A~! exists and AA~! = I. Differentiating
the matrix product AA~" = I gives

(dA/dtY A~ + AdA~!/dt = 0.

Premultiplication by A~! followed by a rearrangement establishes the theorem.

|

Find dA~'/dt given that

A |:cpst —sinti| .
sin ¢ cost
Solution We have
dA/dt = [—(s:ionstt :(s:iolftt} and A~ = [—(s:ionstt zgltt} ’
so from Theorem 3.16
dA~Jdt = —A~{dA/d) A" = [_zlonstt _;Onst‘} .
In this case the result is easily checked by direct differentiation of A~ ]

Applications of the derivative of a matrix are to be found in reference [2.11]
and, for example, in connection with systems of ordinary differential equations in
reference [3.15].

Matrices can occur with functions as their elements as, for example, when a matrix de-
scribes a rotation through an angle 6 about the origin of a cartesian coordinate system
Ofx, y}, or when a column vector contains the unknown functions uq(t), ux(t), ..., us(t)
that form the solution set of a system of linear differential equations with independent
variable t. Because of this, it is necessary to understand how to differentiate a matrix with
respect to an independent variable that is present in functions forming its elements. This
section addressed this matter by first defining the fundamental operation of differentiation
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of a matrix, and then establishing the way in which it is to be applied to the sum and
product of two matrices and to the inverse matrix.

EXERCISES 3.10

In Exercises 1 through 4, find dC/dt and d*>C/dt>.

5 .
1. C=A + B, where A = |}2 ! ts1nt]

cost sin2t

2
B— |:1 2t coshzi| .
t 3 cost

t sint cos3t

B |:2 2t smht].
t t sin t

2
2. C=A-B, whereA:[e 1 tant:| and

3
3.C=A-2B, whereA:[t_gz gi eth] and

ezr t t3
B_|:1 t2 sinht |’

_ [+ ¢ 2
4. C=A +3B, whereA_|: 2 1 Ins and

B:[zsint 4 t ]
t t cosht

In Exercises 5 and 6, use Theorem 3.15 to find dC/dt, where
C = AB, and check the result by direct differentiation of C.

5 A - [smt —cgs3z:| and B — |:1+21 281nti|.
cost sint 2 cost

6. Az[cgsht cpst] and B=[ln(2t) t ]
sinht sint t cost

In Exercises 7 and 8 find dA~'/dt by means of Theorem
3.16 and then verify the result by direct differentiation
of A=L.

cost sint O
7. A= | —sint cost 0
1? r 1

22
was[ 2]
9. Find an expression for
d* (A"} dr?

in terms of A=, dA/dt, and d*A/dt*>. Apply the result
to

cost —sint
A=|".
sin ¢ cost

and verify it by direct differentiation of A~!.



CHAPTER 3
TECHNOLOGY PROJECTS

Project 1

Simplification of det C When C = [¢;; + dj;]

The purpose of this project is to provide practice
with the computer algebra of determinants and to ex-
tend the result of Theorem 3.4(vi) to the case when
each element of a determinant is the sum of two
numbers.

1. Let aj, ay, a3, by, by, by be arbitrary 3 X1 ele-
ment column vectors. Then, by repeated appli-
cation of Theorem 3.4(vi), extend its result to
the case when C = [a; + by, a; + by, a3 + b3] by
expressing det C as a sum of 3 X 3 determinants
with columns formed from ay, a,, a3, by, by, and
bs.

2. Define an arbitrary matrix C of the form C =
[a; + by, ay + by, a3 + bs], and with the aid of a
computer algebra determinant package find det
C by using the result of Step 1. Confirm the re-
sult by applying the computer algebra package
directly to find det C.

Project 2

The Row-Reduced Echelon Form of a Matrix
and Its Rank

The purpose of this project is to provide practice with
elementary row operations performed by means of
computer algebra. It involves reducing a matrix step
by step, using the rules given in Section 3.5, to its row-
reduced echelon form, from which its rank can then
be determined by inspection.

1. Let A be the matrix

0 1 32
1 2 1 -3
A=|-4 0 1 2
0 -3 -4 5
2 1 =2 =

N OO~ A
— W= =N

Using computer algebra, apply sequentially the
steps in the rule in Section 3.5 to reduce A to

174

its row-reduced echelon form, and hence find
rank (A).

2. Confirm the result obtained in Step 1 by using
a computer algebra package to find directly the
row-reduced echelon form of A. Take note that
in some computer algebra packages the row-
reduced echelon form of a matrix A is called
the Gauss—Jordan form of A.

Project 3

A Theorem on the Rank of a Matrix Product
ABC

The purpose of this project is to provide practice with
matrix multiplication and the reduction of matrices
to their row-reduced echelon forms using computer
algebra.

1. If A, B, and C are arbitrary rectangular matri-
ces, it can be shown that when the matrix product
ABC exists, then

Rank(AB) + Rank(BC) = Rank(B)
+ Rank(ABC).

2. Define three arbitrary rectangular matrices A,
B, and C for which the product ABC is defined.
Using computer algebra matrix multiplication
and computer algebra row-reduction to echelon
form, find the ranks of AB, BC, B, and ABC,
and hence confirm the inequality in Step 1 for
this particular case.

Project 4

Consistency of Augmented Coefficient
Matrices, Solution by Back Substitution
and Cramer's Rule

The purpose of this project is to use computer alge-
bra to determine the consistency of two 6 X7 aug-
mented coefficient matrices. The solution for the cor-
responding consistent set of linear equations is then
found after the reduction of its augmented coefficient
matrix to row-reduced echelon form followed by back



substitution. Finally, the solution is checked using
Cramer's rule, which, despite the large determinants
involved, becomes feasible when computer algebra is
used.

1. Use computer algebra to determine which of the
augmented coefficient matrices A and B is con-
sistent, given that

1473 024
3102 -3 41
1211 432
A=l 400 16 3| and
0121 =210
2521 -175
4 -1 3 0 1 4 2
1 1 -1 -3 21 -1
g0 1 -1 2 21 3
=14 0 1 -1 2 3 -4
1 -1 3 2 -4 2 -1
0 4 3 3 12 0

2. Inthe case of the consistent set of equations, us-
ing the reduction of the coefficient matrix to its
row-reduced echelon form, find the solution by
back substitution.

3. Using computer algebra, apply Cramer's rule
to the consistent set of equations to find the
solution, and so confirm the result found in
step 2.

Project 5

A One-Way Traffic Flow Problem

The diagram shows the pattern of one way traffic flow
at six road intersections at the corners of two city
blocks. The arrows show the directions of traffic flow,
and the associated numbers are the traffic flow rates
in vehicles per hour at peak traffic time.

160 480
B A
500 180
X1
X X7
c F
880 110
X6
X3 Xs
x E
980 D ¢ 150
760 700

By equating the flow rate of traffic into an intersection
to the flow rate out of it (no parking is allowed), find
equations relating the traffic flow rates xi, xp, ..., X7
along each of the roads. Explain why with the given
peak flow rates it is impossible to close road DE, and
comment on the effect on traffic flow if road CD is
closed for repairs.

Project 6

Forces in Bridge Struts

Use matrix methods to find the forces in the pin-
jointed framed bridge section shown in Fig. 3.10, given
that a concentrated load m acts vertically downwards
at joint B.

Give a simple example of a pin-jointed framed
structure that contains a redundant strut, and prove
its redundancy by attempting to determine the forces
acting in the strut when the structure is loaded.

175



CHAPTER

Eigenvalues, Eigenvectors,
and Diagonalization

n engineering and physics, problems involving n linear algebraic equations in nindepen-

dent variables with a constant coefficient matrix A often arise where a solution vector
x is required to be proportional to Ax. Setting the constant of proportionality equal to
A, this means that x must be a solution of the equation Ax = Ax or, equivalently, of the
equation (A — Al)x = 0. The numbers %; for which nonzero solutions x; exist are called
the eigenvalues of matrix A, and the corresponding vectors x; are called the eigenvectors
of A.

Eigenvalues and eigenvectors arise, for example, when studying vibrational problems,
where the eigenvalues represent fundamental frequencies of vibration and the eigenvectors
characterize the corresponding fundamental modes of vibration.

They also occur in many other ways; in mechanics, for example, the eigenvalues can
represent the principal stresses in a solid body, in which case the eigenvectors then describe
the corresponding principal axes of stress caused by the body being subjected to external
forces. Also in mechanics, the moment of inertia of a solid body about lines through its
center of gravity can be represented by an ellipsoid, with the length of a line drawn from
its center to the surface of the ellipsoid proportional to the moment of inertia of the body
about an axis through the center of gravity of the body drawn parallel to the line. In this
case the eigenvalues represent the principal moments of inertia of the body about the
principal axes of inertia, that are then determined by the eigenvectors.

More precisely, if A is an n x n matrix, the polynomial P,(%) of degree n in the scalar
A defined as P,(A) = det (A — Al) is called the characteristic polynomial of A. The roots of
the equation P,(1) = 0 are called the eigenvalues of matrix A, and the column vectors
X1, Xz, ..., X, satisfying the matrix equation (A — ;1)x; = 0 are called the eigenvectors of
matrix A.

This chapter explains how eigenvalues and eigenvectors are determined and estab-
lishes important properties of eigenvectors. The eigenvectors of an n x n matrix A with n
linearly independent eigenvectors are then used to simplify the structure of A by means
of a process called diagonalization. An important application of diagonalization will arise
later when considering the solution of linear systems of ordinary differential equations that
arise from the study of mechanical, electrical, and chemical reaction problems. Diagonal-
ization is also an important tool when working with partial differential equations, different
types of which describe the temperature distribution in a metal, electromagnetic wave
propagation, and diffusion processes, to name a few examples.

177
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After a brief discussion of some special n x n matrices with complex elements, real
quadratic forms are defined and the properties of eigenvectors are used to reduce a general
quadratic form to a sum of squares. This is a process that finds many different applications,
one of which occurs later when classifying the partial differential equations of engineering
and physics in order to know the type of auxiliary conditions that must be imposed in
order for them to give rise to physically meaningful solutions.

The chapter ends with the introduction of the matrix exponential e?, where A is a real
n x n matrix, and it is shown how this enters into the solution of a linear first order matrix
differential equation of the form dx/dt = Ax.

4.1 Characteristic Polynomial, Eigenvalues,

characteristic
polynomial, equation,
and eigenvalue

and Eigenvectors

hroughout this chapter we will be considering the solutions of the homogeneous
system of algebraic equations

Ax = Ax, (1)

where Alfg;;] is an n x n matrix, X is an » element column vector with elements
X1, X2, ..., Xy, and A is a scalar. For A given we wish to find x and A. Introducing the
n x n unit matrix by I allows (1) to be written

(A — AD)x = 0, )

showing that x is a solution of a homogeneous system of equations with the co-
efficient matrix A — AL It was seen in Chapter 3 that nontrivial solutions x of (2)
are only possible if one or more rows of the coefficient matrix A — AI are linearly
dependent on its remaining rows. This means that nontrivial solutions x will exist if
rank(A — AI) < n, but this, in turn, is equivalent to the more convenient condition
det(A — AI) = 0. This is a polynomial equation for A.

Let P,(2) be the polynomial of degree n in A defined by the determinant

ap — A ain a3 ayg - - - - ai,
az azx — A ans3 ay - - - - - arn
P,(X)=| a3 asp  ax—Ai asm - - - - - a4y |. 3)
anl ap a3 (/) Lo Ay — A

Inspection of the determinant defining P,(i) shows the coefficient of 1" is (—1)",
so the polynomial is of the form

P(A) = (1" +ar" o2 — e + ). (4)

The polynomial P,(%) is called the characteristic polynomial of A and the as-
sociated polynomial equation P,(1) = 0 is the characteristic equation of A. As the
characteristic equation of A is of degree n in A, it will have n roots, some of which
may be repeated. The roots of P,(1) =0, or equivalently the zeros of P,(1), are
called the eigenvalues of A or, sometimes, the characteristic values of A.
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Eigenvalues (characteristic values) of A

The eigenvalues of an n x n matrix A are the n zeros of the polynomial
P(%) = det(A — AI), or, equivalently, the n roots of the nth degree polynomial
equation det(A — AI) = 0.

In general, a matrix with complex coefficients will have complex eigenvalues,
though even when the coefficients of A are all real it is still possible for complex
eigenvalues to arise. This is because then the characteristic equation will have real
coefficients, so if complex roots occur they must do so in complex conjugate pairs.

If an eigenvalue A* is repeated r times, corresponding to the presence of a
factor (A — A*)" in the characteristic polynomial P,(1), the number r is called the
algebraic multiplicity of the eigenvalue A*. The set of all eigenvalues Aj, Az, ..., A,
of Aiscalled the spectrum of A, and the number R = max{|A{], |A2], ..., |A4]}, equal
to the largest of the moduli of the eigenvalues, is called the spectral radius of A. The
name comes from the fact that when the spectrum of A is plotted as points in the
complex plane, they all lie inside or on a circle of radius R centered on the origin.

An eigenvector of an n x n matrix A, corresponding to an eigenvalue A = A;,
is a nonzero n-element column vector x; that satisfies the matrix equation

AX; = )\iX,'

or, equivalently, that is a solution of the homogeneous system of n algebraic equa-
tions

(A — )\l‘I)Xi =0. (5)

Eigenvectors of A

The eigenvector x; of the n x n matrix A, corresponding to the eigenvalue
A = A, is a solution of the homogeneous equation (A — A;1)x; = 0.

It is important to recognize that because system (5) is homogeneous, the ele-
ments of an eigenvector can only be determined as multiples of one of its nonzero
elements as a parameter. This means that if for some choice of the parameter x is
an eigenvalue, then kx will also be an eigenvalue for any k # 0.

The next theorem is fundamental to the use of eigenvectors and shows that
when an n x n matrix A has n distinct (different) eigenvalues, its n eigenvectors
form a basis for the vector space associated with the matrix A.

Linear independence of eigenvectors The eigenvectorsxy, Xy, . . ., X;;, correspond-
ing to m distinct eigenvalues Aj, Ay, ..., Ay, of an n x n matrix A, are linearly inde-
pendent. Furthermore, if m = n, the set of eigenvectors X1, Xz, . . ., X, forms a basis

for the n-dimensional vector space associated with A.

Proof The proof will be by induction, starting with two vectors, and it uses the
fact that Ax; = 1;x; fori =1,2,...,m.
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algebraic and
geometric multiplicity

Let x; and x; correspond to distinct eigenvalues A1 and X, and let constants k;
and k, be such that

kixy + kx, =0.
Then
A(kx + koxy) =0,
but Ax; = X;x;, so this is equivalent to
kiaxy + kiox, = 0.
Subtracting A, times the first equation from the last result gives
(2 — 2)kxy = 0.

By hypothesis, A1 # 12,50 as x; # 0 it follows that k; = 0. Using this result in k1 x; +
kyx, = 0 shows that k, = 0, so we have established the linear independence of x;
and x;.

To proceed with an inductive proof we now assume that linear independence
has been proved for the first » — 1 vectors, and show that the rth vector must also
be linearly independent. To accomplish this we consider the equation

kixy + koxy + - + kx, = 0.
Premultiplying this equation by A and reasoning as before, we arrive at the result
kiaixy + kotoxy + -+ kK Ax, = 0.
Subtracting %, times the first equation from the last one gives
(M = A)kxy + (Ao — A)kexo + -+ (o1 — A )k —1x%,-1 = 0.
By the inductive hypothesis x1, x,, ..., X,_1 are linearly independent, so as x, # 0,
M=r)=02 =)o ="=R_1—2)k_1=0.

The eigenvalues are distinct, so the last result can only be true if ki =k =--- =
k,—1 = 0. Thus k. = 0, and so the vector x, is linearly independent of the vectors
X1, X2, ..., X,—1. [t has been shown that x; and x; are linearly independent, so by
induction we conclude that the set of vectors x; is linearly independent for i =
1,2,...,m.

A matrix A can have no more than z linearly independent eigenvectors, so when

m = n the set of eigenvectors Xy, X, ..., X, spans the n-dimensional vector space
associated with matrix A and forms a basis for this space. The proof is complete.
| ]

It can happen that an eigenvalue with algebraic multiplicity » > 1 only has s dif-
ferent eigenvectors associated with it, where s < r, and when this occurs the number
s is called the geometric multiplicity of the eigenvalue. The set of all eigenvectors
associated with an eigenvalue with geometric multiplicity s together with the null
vector 0 forms what is called the eigenspace associated with the eigenvalue. When
one or more eigenvalues has a geometric multiplicity that is less than its algebraic
multiplicity, it follows directly that the vector space associated with A must have
dimension less than n.
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Find the characteristic polynomial, the eigenvalues, and the eigenvectors of the
matrix

21 -1
A=|3 2 -3
31 -2

Solution The characteristic polynomial Ps(1) is given by

2— 2 1 -1
P()=| 3 2-a -3/,
3 1 —2-2

and after expanding the determinant we find that
Ps(A) = -2+ 227 4 —2,
The characteristic equation P3(1) = 01is
=227 —r+2=0,

and inspection shows it has the roots 2, 1, and —1. So the eigenvalues of A are
A = 2,2, = 1,and A3 = —1, and as these roots are all distinct (there are no repeated
roots), each has an algebraic and geometric multiplicity of 1 (each is a single root).
The set of numbers —1, 1, 2 forms the spectrum of matrix A. As the spectral radius
R of a matrix is defined as the largest of the moduli of the eigenvalues, we see that
R=2.

To find the eigenvectors x; of A corresponding to the eigenvalues A = A;,fori =
1, 2, 3, it will be necessary to solve the homogeneous system of algebraic equations

(A=xDx; =0 fori=1,2,3,

where x; = [x1, x2, x3]T.

Case \1 =2
The system of equations to be solved is
2-2 1 1] |x 0
3 2-2 3| |lx|{=(0],
3 1 —2-2]|x3 0

and this matrix equation is equivalent to the set of three linear algebraic equations
X —x3=0, 3x1—3x3=0, and 3x;+x —4x;3=0.

The first two equations are equivalent, so only one of the first two equations
and the third equation are linearly independent. Solving the last two equations for
x1 and x; in terms of x3, we find that x; = x, = x3, so setting x3 = k; where k; is an
arbitrary real number (a parameter) shows that the eigenvector x; corresponding
to the eigenvalue A; = 2 is given by
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As ki is an arbitrary parameter, for convenience we set k| = 1 and as a result obtain
the eigenvector

1
X] = 1
1
Case \, =1
This time the system of equations to be solved to find the eigenvector x; is
2-1 1 1] |x 0
3 2-1 3| |x|=(0],

3 1 —2—-1]{x; 0
and this is equivalent to the three linear algebraic equations
Xt+x—x3=0, 3x1+x—3x3=0, and 3x;+x —3x3=0.

The last two equations are identical, so we must solve for xj, x,, and x3 using
the first two equations. It is easily seen from these two equations that x, = 0 and
X| = x3,s0setting x; = k», where k; is an arbitrary real number (a parameter), gives

1
X2=k2 0
1

Making the arbitrary choice k, = 1 shows that the eigenvector x, corresponding to
)»2 =1is

1

Case \3 = —1

Setting A = A3, and proceeding as before, shows that the elements of the eigenvector
x3 must satisfy the three equations

3xi+x —x3=0, 3x1+3x —3x3=0, and 3x;+x —x3=0,

with the solution x; =0, x, = x3 = k3, where ks is an arbitrary real number
(a parameter). Making the arbitrary choice k3 = 1 allows the eigenvector x3 to
be written as

0
X3 = 1
1
We have shown that matrix A has the three distinct eigenvalues A; =2, 1, =1,
and Az = —1, corresponding to which there are the three eigenvectors
1 1 0
X] = 1 , Xy = 0 s and X3 = 1
1 1 1

These three eigenvectors form a basis for the three-dimensional vector space asso-
ciated with A. ]
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As the eigenvectors x of matrix A satisfy the homogeneous equation (2), they
can be multiplied by an arbitrary nonzero number K, which is either positive or
negative, and still remain an eigenvector. This property is used to scale the eigenvec-
tors of A to produce what are called normalized eigenvectors. This scaling is used
in numerical calculations involving the iteration of eigenvectors, because without
normalization the elements of x may either grow or diminish in absolute value after
each stage of the calculation, leading to a progressive loss of accuracy.

Normalization of eigenvectors

Various normalizations are in use. The most common one for eigenvectors
with real elements involves scaling the eigenvector so that the square root of
the sum of the squares of its elements is 1. So, for example, if

a
.. 1
x=|b 0 the normathng factor K = m (6)

and the normalized eigenvector X becomes

a/(a® + b* + )12
K= |b/(a®+b*+ 22| (7)
c/(a* + b* + )12

When the eigenvectors in Example 4.1 are normalized in this way, they become

1/4/3 1/v2 0
f1=1//3|, %,=| 0 |, and %3=|1/V2].
1/v/3 1/v2 1//2
Find the characteristic polynomial, eigenvalues, and eigenvectors of the matrix

00 11
-1 2 01
A=1_10 21
1 0 -1 0

Solution The determinant defining the characteristic polynomial is

—A 0 1 1

-1 2—-x 0 1

-1 0 2—-x 1|
1 0 -1 —A

IAOES

and after the determinant is expanded the characteristic equation P4(1) = Oisfound
to be

P(0) =13 —422 450 —-2) =0.

Clearly, A = 0 is a root of P4(A) = 0, and inspection shows the other three roots to
be 1,1, and 2. So the eigenvalues of A are A = 0, A, = 1, 23 = 1, and A4 = 2. In this
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case A, = A3 = 1, so the eigenvalue 1 has algebraic multiplicity 2, and the remaining
two eigenvalues each have an algebraic multiplicity of 1. To find the eigenvectors
corresponding to these eigenvalues we proceed as in Example 4.1.

Case \1 =0
Setting » = 1; = 0in (A — AI)x = 0 leads to the four equations
Xx3+x4=0, —x1+20+x=0 —x1+2x3+x4=0, and x; —x3=0.

Proceeding as before we find that x; = x, = x3 = —xy, so solving for x1, x,, and x3
in terms of x4, and setting x4, = 1 (an arbitrary choice), shows the eigenvector x;
to be

-1
-1
-1

1

X1 =

Case \; = \3 =1

The eigenvalue 1 has algebraic multiplicity 2, so we must attempt to find two dif-
ferent eigenvectors that correspond to the single eigenvalue A = 1. Setting A = 1in
(A — AIx = 0 leads to the four equations

X1 +x3+x3=0, —x1+x+x3=0, —x1+x3+x=0, x31—x3—x4=0.

The first, third, and fourth equations are identical, so xi, x;, x3, and x4 must be
determined from the two equations

—x1+x3+x=0 and —x;+x+x4=0.

As there are four unknown quantities xi, x, x3, and x4, and only two equations
relating them, it will only be possible to solve for two of these quantities in terms of
the remaining two. The equations show that x, = x3 and x4 = x; — X3, so choosing
to solve for x3 and x4 in terms of x; and x, by setting x; = « and x, = 8, with « and
B arbitrary constants, shows that the eigenvectors x, and x3 are both of the form

a—p

It is possible to obtain two different eigenvectors from this last result by
choosing two different pairs of values for the arbitrary parameters o and 8. We
will define x; by setting « = 1 and 8 = 1, and x3 by settinga = 1 and 8 = 0, and as
a result we find that
1
1
1

Xy = and X3 =

_0 O =

0

Had other choices of the parameters « and 8 been made, two different eigenvectors
would have been produced.
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Case \y, = 2
Setting . = 14 = 2 in (A — AI)x = 0 leads to the four equations
2x1+x3+x4=0, —x14+x3=0, —x14+x4=0, x1—2x3—2x4=0.

These equations have the solution x; = x3 = x4 = 0, with no condition being im-
posed on x;. For simplicity we choose to set x, = 1 to obtain

0

In this example, the eigenvalue 1 has algebraic multiplicity 2, and two dif-
ferent eigenvectors can be associated with it, so the geometric multiplicity of the
eigenvalue is also 2. The four eigenvectors xi, Xz, X3, and x4 form a basis for the
four-dimensional vector space associated with matrix A.

Had different values been used for & and g, the basis vectors for this vector space
would have been different, though the vector space itself would have remained the
same because linear combinations of basis vectors will produce an equivalent set
of basis vectors.

The spectrum of A is the set of numbers 0, 1, 2, and the spectral radius of A is
seen to be R =2. ]

Show that the matrix

110
A=(0 1 0
0 0 0

has three eigenvalues, but only two linearly independent eigenvectors.

Solution The characteristic polynomial

1-2 1 0
PG)=| 0 1—-xr 0|,
0 0 -

and after expanding the determinant the characteristic equation P5(1) = 0 becomes
Py(1) = —x(1—2)*>=0.

The eigenvalue A; = 0 occurs with algebraic multiplicity 1 and the eigenvalue A, =
A3 = 1 occurs with algebraic multiplicity 2.

The equations determining the eigenvector x;, corresponding to the eigenvalue
A=A =0,are

X1+x =0 and x; =0,

so x; = x = 0 and x3 is arbitrary. Setting x3 = 1 gives

0
X1 = 0
1

The equations determining x; and x3, corresponding to A = A, = A3 = 1, are

x; = k(arbitrary) and x; = x3 =0,
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so setting k = 1, we find that the eigenvalue A, = A3 = 1 with algebraic multiplicity
2 only has associated with it the single eigenvector

1
x23=|0
0

So the algebraic multiplicity of the eigenvalue A = 1 is 2, but its geometric multi-
plicity is 1. The spectrum of A is the set of numbers 0, 1, so the spectral radius of A
is R=1. ]

The eigenvalues of a diagonal matrix can be found immediately, and the cor-
responding eigenvectors take on a particularly simple form. Let D be the n x n
diagonal matrix

ap 0 O 0
0 a O 0
D=| ... .. ..... ,
0O 0 0 - - - . a,
with entries ay, ay, . . ., a, onits leading diagonal, not all of which are zero, and zeros

elsewhere. Then it is easily seen that the eigenvalues of D are Ay =ay, A, =ap, .. .,
An=ay. The eigenvector x; corresponding to the eigenvalue A; = a; becomes an
n-element column vector in which only the ith element is nonzero. It is not dif-
ficult to show that this result remains true whatever the algebraic multiplicity of
an eigenvalue, so every diagonal n x n matrix has n eigenvectors of this form. For
convenience, the ith element in x; is usually taken to be 1 so, for example, the matrix

3 0 0
A=]|0 -5 0
0 0 4
has eigenvalues A; = 3, A, = —5, and A3 = 4 and eigenvectors
1 0 0
X] = 0 , Xp = 1 s and X3 = 0
0 0 1
Similarly, the diagonal matrix
-2 0 0
A= 0 4 0
0 0 4
has an eigenvalue A; = —2 with multiplicity 1 and a double eigenvalue 1, = 13 =4
with multiplicity 2, but the matrix still has the three distinct eigenvectors
1 0 0
X1 = 0, Xy = 1 s and X3 = 0
0 0 1

When the degree of the characteristic equation of a matrix exceeds 2, its roots
must usually be found by means of a numerical technique. In such circumstances the
next theorem provides a simple and useful check for the values of the eigenvalues
that have been computed.
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The sum of eigenvalues Let the n x n matrix A[a;;] have the n eigenvalues A4,
A2, ..., A, which may be either real or complex. Then

MAd+ -+ r=10)"Yay +an+ - +am) = (1) Lr(A).

Proof As the multiplication of a column of a matrix by a number k is equivalent
to multiplication of its determinant by k, we can write

P,(1) = det(A — AI) = (—1)" det(\l — A).

Expanding the determinant on the right in terms of the elements of the first column
and separating out the factors that can give rise to the terms in A" and A", we
arrive at the result

B(0) = (=D)"{(r —an)(h —az) - (A — am) + On2(2)},

where O, »(1) is a polynomial in A of degree n — 2.
Identifying the coefficients of A" and A"~! in the expression for P,(1) shows
that

P,(x) = (=1)"{\" — (a1 +axn + - - + au) A" + - - + constant + Q,_»(A)}.

An equivalent expression for P,(1) can be obtained by expanding it in terms of its
factors (A — A1), (A — A2), ..., (A — A,,) to obtain

Pu() = (1" = A)(A = 22) - - (A — )
= (=1)"(A" = (M + A2+ -+ A,)A"1 + .- 4 constant}.

The statement of the theorem then follows by comparing the coefficients of
A"~!in the two different expressions for P,(}), where it will be recalled that the
trace of an n x n matrix Afa;;], written tr(A), is the sum of the elements on its
leading diagonal, so that tr(A) = a1 +axn + - - - + dpp. [ |

Use Theorem 4.2 to check the eigenvalues of the matrices in Examples 4.1 and 4.2.

Solution In Example 4.1, .y =2,%; =1, and A3 = —1, s0 A; + X2 + A3 =2, and
tr(A) =2+ 2 — 2 =2, so the result of Theorem 4.2 is verified. Similarly, in Exam-
ple 42, A1 =0, =1,A3=1,and Ay =2,50 41 + Ay + A3+ A4 = 4, and tr(A) =
0+ 2+ 2+ 0 = 4, showing that the result of Theorem 4.2 is again verified. ]

Find the characteristic polynomial, eigenvalues, and eigenvectors of

—1-2i —1—-i 2+2
A= —4i —i 4
—-1-3i —-1—-i 2+3i

’

and use Theorem 4.2 to check the eigenvalues.

Solution This matrix has complex elements. Expanding det(A — AI) = 0 shows
that the characteristic polynomial P5(%) is

P(A) =2 — A2 4a—1.
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THEOREM 4.3

finding a region that
contains all the
eigenvalues

Inspection shows the eigenvalues determined by P5(A) = Otobe Ay =1, A, = i,and

A3 = —i. Finding the eigenvectors, as in Example 4.1, gives
1 0 1
()\1 = 1) X = 0 s ()\2 = l) Xy = 1 , and ()\.3 = —i) X3 = 1
1 1/2 1

In this example, although the matrix A has complex elements, the characteristic
polynomial has real coefficients, and one of its zeros (an eigenvalue) is real and its
other two zeros (eigenvalues) are complex conjugates. The test in Theorem 4.2 is
satisfied because tr(A) = A1 + Ay + A3 = tr(A) = 1. [ |

Complex eigenvalues arise in numerous applications of matrices, and when
this happens it is often useful to have qualitative information about a region in
the complex plane that contains all of the eigenvalues, without the necessity of
computing their actual values. This form of approach is particularly useful when
the coefficients of a polynomial are not specific, and all that is known is that they lie
within given intervals or, if complex, that the modulus of each is bounded by a given
number.

Another need for this type of information occurs when working with systems
of linear differential equations, because it will be seen in Chapter 6 that the roots
of a characteristic polynomial equation determine the form of the general solu-
tion of a homogeneous system. Roots of the form « + i will be seen to lead to
real solutions of the form e sin B¢ and e*’ cos Bt, and these solutions will only re-
main bounded (stable) as t — +oo if the real part of every root is negative. This
means that the qualitative knowledge that all of the roots lie to the left of the
imaginary axis will be sufficient to ensure that the solution remains finite (is stable)
ast — +o0.

The theorem that follows is the simplest of many similar results that are avail-
able, all of which provide information about regions in the complex plane where
all of the zeros of a characteristic polynomial are located. Two other results are to
be found in the exercise set at the end of this section; the one called the Routh—
Hurwitz stability criterion is particularly useful when working with systems of linear
differential equations.

Although the theorem to be proved in this section identifies a region less pre-
cisely than many similar theorems, it has been included toillustrate how such regions
can be found, and also because the derivation of the result is elementary. The proof
only uses the basic properties of complex numbers extending as far as the triangle
inequality.

The Gerschgorin circle theorem Let A[g;;] be an n x n matrix, and define the
circles Cy, C,, ..., C, in the complex plane such that circle C, has its center at a,,
and the radius

n

pr=Y_ layl=lanl+lanl+ -+ lap—1| + l@rrs1l + - + aral.
j=1,j#r

Then each of the eigenvalues of A lies in at least one of these circles.
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Proof The rth equation of Ax = Axis
ap Xy + -+ arp1%-1 + (arr - A)xr + a1 X410 Qg Xy = 0.

Solving for (a,, — A), taking the modulus of the result, and making repeated use
of the triangle inequality |a + b| < |a| 4 |b|, where a and b are arbitrary complex
numbers, leads to the inequality
n
L—anl < D layllxjl/lxl, forr=1,2,....n

J=1, j#r
We now choose x; to be the element of x with the largest modulus, so that |x;|/|x,| <
1forr =1,2,...,n The statement of the theorem is obtained from the inequality
involving |A — a,,| by replacing each term |x;|/|x,| on the right by 1, and then
repeating the argument forr = 1,2, ..., n. |

Apply the Gerschgorin circle theorem to Example 4.1.

Solution Circle C; hasits center at the point a;; = (2, 0) and its radius p; = |ag2| +
la1s| = 1+ 1 =2. Circle G, has its center at the point az; = (2, 0) and its radius
P2 = |ao1| + |axs| = 3+ 3 = 6, while circle C; hasits center at the pointas; = (=2, 0)
and its radius p3 = |az1| + |ap| =3 +1=4.

Consequently, the Gerschgorin circle theorem asserts that all the eigenvalues
of A lie in the region of the complex plane enclosed by these three circles. The
circles are shown in Fig. 4.1 together with the locations of the three eigenvalues
2,1, and —1. [ |

Physical problems that give rise to matrices with real coefficients often do so
in the form of real valued symmetric matrices. These matrices have a number of
useful properties that we will examine after first introducing the notions of the inner
product and norm of a matrix vector, and then orthogonal and orthonormal sets of
matrix vectors.

Imaginary axis

8  Real axis

FIGURE 4.1 The Gerschgorin circles for Example 4.1.
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inner products, the
norm, orthogonal
and orthonormal
sets of vectors

Inner product of vectors

Let u and v be two n-element matrix vectors (row or column) with the respec-
tive elements iy, uy, . .., uy and vy, vy, ..., v,. Then their dot or inner product,
denoted here by u - v but elsewhere often by (u, v), is defined as

U-V=1uvi+uvy+ -+ u,v,. (8)

Norm of a vector

The norm of an n-element vector w (row or column) with elements wiy,
Wa, ..., Wy, written ||w|, is defined as (w - w)¥/2, and so is given by

1/2
Wl = (w2 + w3+ +w2) 2. )

We now use the matrix norm to introduce the idea of the orthogonality of sets
of matrix vectors, and then to show how such sets can be replaced by an equivalent
orthonormal set of vectors.

Orthogonal and orthonormal sets of vectors

Letuy, up, ..., u, be aset of n-element vectors (row or column). Then the set
is said to be orthogonal if

_]o fori # j,

LS !nul-n2 fori = J. (10)
and to be orthonormal if, in addition to being orthogonal, the norm of each
vector is 1, so that ||u;|| =1 for i =1,2,...,n. This means that the set of
vectors uy, w, . . ., u, will form an orthonormal set if

_Jo fori # j,
ML = {Ilu,-||2 =1 fori=j. (D

Given the sets of vectors

(a)
1 2 -2
u = 2 , WU = 1 andu3= 2 s
-2 2 1
and
(b)

w = [1/4,3/4,v/3/2], w =[v3/2,-1/2,0], ws=[3/4,3/4, —1/2],

show the vectors in set (a) are orthogonal and convert them to an orthonormal set,
and that those in set in (b) are orthonormal.
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Solution

(@) u-uy=12+21-22=0 and, similarly, u; - u3 = w,-u3 =0, and |uy|| =
lua ]| = [lus]l = +/9 = 3. So the set is orthogonal but not orthonormal, because the
vector norms are not all equal to 1. To convert the set into an orthonormal set,
it is only necessary to divide each vector by its norm to arrive at the equivalent
orthonormal set

1/3 2/3 -2/3

ﬁl = 2/3 s ﬁz: 1/3 s and ﬁ3= 2/3

-2/3 2/3 1/3
(b) Proceeding as in (a) we have u; -u; = u; -u3 = wp - uz3 = 0, showing that the
set is orthogonal. However, |lu; || = ||uz|| = [Jus|| = 1, so the set is also orthonormal.
| ]

Eigenvalues and eigenvectors of a symmetric matrix Let A be an n x n real sym-
metric matrix. Then

(i) the eigenvalues of A are all real;

(ii) the eigenvectors of A corresponding to distinct eigenvalues are mutually or-
thogonal.

Proof We start by observing that if x and y are two n-element column vectors the
product yTAx is a scalar, and so is equal to its transpose. Thus, y'Ax = (y'Ax)T =
x"'ATy, but as A is symmetric AT = A, so that yTAx = xTATy.

To prove (i), let A be an eigenvalue of A with the corresponding eigenvector x.
Then

AX = AX.

Taking the complex conjugate of this result and using the fact that A is real valued,
so that A = A, gives
AX = 2X.

This shows that A is an eigenvalue of A with the associated eigenvector X. If we now
premultiply this result by x', we obtain the scalar equation

x'AX = AX'X,
but premultiplying the original eigenvalue equation by X' gives

X'Ax = AX'x.

Using the result x'AX = X' Ax then shows that AX'x = Ax'X, but X'x = x'X so
A = A, which is only possible if A is real. This has established the first part of the
theorem.

To prove (ii) we must show that if x, and x, are eigenvectors of A corresponding
to the distinct eigenvalues A, and A, with r # s, then x, - x; = 0, which is equiva-
lent to the condition x'x, =0. The eigenvalues A, and A, and the corresponding
eigenvectors x, and x; satisfy the equations

Ax, = A, x, and Ax, = AgX;,



192 Chapter4  Eigenvalues, Eigenvectors, and Diagonalization

orthogonal matrices
and rotations

from which, after premultiplication by x! and x!, respectively, we obtain the two
scalar equations

T T T T
X, AX, = L, X, X, and X, Ax; = AX, X;.

Again, using the fact that the transpose of a scalar leaves it unchanged, we
see that the preceding results are identical, so subtracting them we arrive at the
condition

(A — Ag )x,TxS =0.

As A, # As forr # s, this is only possible if x x; = 0, so the eigenvectors are mutu-
ally orthogonal and the proof is complete. [ ]

It can be shown that even when some of the eigenvalues of a real symmetric
n x n matrix A are repeated, the matrix A will still have » linearly independent
eigenvectors, though this result will not be proved here. See, for example, references
[2.1],[2.5], [2.8], [2.9], and [2.10].

Orthogonal matrices

An n x n real matrix Q will be said to be an orthogonal matrix if
Q'Q=1 (12)
so, if Q is an orthogonal matrix, it follows that

Q'=Q"

When interpreted geometrically in terms of the cartesian geometry of two or
three space dimensions, premultiplication of a linear transformation by an orthog-
onal matrix corresponds to a pure rotation (or a reflection or both; rotation only if
det Q = +1) in space that preserves the lengths between any two points in space,
and also the angles between any two straight lines.

A typical geometrical interpretation of a two-dimensional transformation per-
formed by an orthogonal matrix has already been encountered in Section 3.2(c),
where the transformation considered was x' = Rx, with

R — |:09s9 —sin@], ‘— |:x:|, and ¥ — |:x:i|
sin 6 cos 6 y y
When this transformation was considered in Section 3.2(c), the column vector x
represented a point P in the (x, y)-plane with coordinates (x, y), and x' represented
the same point with coordinates (x’, y') in the (x’, y’)-plane, which was obtained by
rotating the O{x, y} axes counterclockwise through an angle 6 about the origin, as
shown in Fig. 4.2.

The transformation (interpreted as a mapping of points) shows that every point
in the O{x’, y'} plane experiences the same rotation through an angle 6 about the
origin. To show that lengths are preserved, let points P, and P, have coordinates
(x1, y1) and (x2, y2) in the Ofx, y} plane and their image points P/ and P, have

the coordinates (xj, y;) and (x3, y5) in the O{x’, y'} plane. Then the square of the
distance d between P and Py isgivenby d? = (x; — x3)? + (y1 — y2)?, and the square
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of the distance (d')* between P and P, is given by (d')* = (x| — x3)* + (¥, — ¥5)*.
However, from the linear transformation X' = Rx we find that

X1 = Xjcosf — y;sinb,

and

y1 = x;siné + y; cos6,

X = X5c086 — y;sinf

y2 = x,siné + y; cos 6,

from which, after substituting for x;, x5, y|, and 5, it follows that (d')* = d?, show-
ing that distances are preserved. The angles between straight lines in the plane
will be preserved because the points on each line will be rotated about the origin
through the same angle without changing their distance from the origin.

Show that the matrix

is orthogonal.

Solution We have

R — |:cose —sm@}

sin cos

RT—[ cosf sin®

—sin6
but RTR = I, so R is orthogonal.

Properties of orthogonal matrices

(i) If Q is orthogonal then detQ = +1;

(ii) The product of n x n orthogonal matrices is an orthogonal matrix;
(iii) The eigenvalues of an orthogonal matrix are all of unit modulus;

(iv) The rows (columns) of an orthogonal matrix form an orthonormal set of

vectors.

Proof To prove (i) we start from the fact that detQ = detQ?. This follows directly
from the Laplace expansion of a determinant, because expanding detQ in terms of
the elements of its ith row is the same as expanding detQT in terms of the elements
of its ith column. From (12), QQT =1, so as det(AB) = detAdetB we can write
detQdetQT = 1, but detQT = detQ by Theorem 3.4 so detQdetQT = (detQ)? =1,
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and so detQ = +1. If det Q = +1, rotation. If det Q = —1, rotation plus reflection
in general.

Result (ii) follows from the fact that if Q; and Q, are two n x n orthogonal
matrices, then (Q1Q2)'Q1Q2 = Q1 Q[ Q1Q2 = Q) Q, = 1, and the result is estab-
lished.

The proof of Result (iii) is similar to the proof of (i) in Theorem 4.3. If Q is real,
taking the complex conjugate of Qx = Ax gives QX = AX, so taking the transpose
of this we find that X' QT = 2x". Forming the product of these two results gives
x'QTQx = 12x"x, but QTQ = I, so X'x = 11X 'x, showing that AXx = 1. Result (iii)
follows from this last result because AL = |A[]> = 1.

Finally, Result (iv) follows from the definition of an orthogonal matrix, because
QQT =1, andifw; istheithrowof Q and v jis the jth column of QT (the jth column
of Q), then w;v; =0 fori # j, and w;v; =1 for i = j, confirming that the vectors
form an orthonormal set. u

After definition of the eigenvalues of an n x n matrix A in terms of its characteristic poly-
nomial, the associated eigenvectors were defined. An eigenvalue that is repeated r times
was said to have the algebraic multiplicity r, and the set of all eigenvalues of A was
called the spectrum of A. The spectral radius of A was defined in terms of the eigenvalues
A, A2, ..., Ap @s the number R = max{|A1], |A2], ... |As]}, and the linear independence of
the set of all eigenvectors was established. The most frequently used method of normaliz-
ing eigenvectors was introduced, and examples were worked showing how to determine
eigenvectors once the eigenvalues are known.

A simple test was given to check the sum of all eigenvalues, and the Gerschgorin
circle theorem was proved that determines a region inside which all eigenvalues must
lie, though the region determined in this manner is far from optimal. Inner products, the
norm, and systems of orthogonal and orthonormal vectors were introduced, and the most
important eigenvalue and eigenvector properties of symmetric matrices and orthogonal
matrices were derived.

EXERCISES 4.1

In Exercises 1 through 8, find the characteristic polynomial

of the given matrix.

2 1 3
1. 1].
L 1

= =)
[EEEN )
I

L 02 1
311
4. |2 2 1]
L1 -1 2

In Exercises 9 through 24 find the eigenvalues and eigen-
vectors of the given matrix.

-1 0 1 3 -2 2 o 1 —27
5 321 9. |6 —4 6]. 4. |2 -1 2
L 123 2 -1 3 2 2 4]
r4 1 -1 3 -1 1 =5 8 17
6 1 0 2 10. (4 -1 4. 15. | -3 6 1
-1 1 2 12 -1 4 | 6 -8 0]
T 1 1 -1 0] -3 2 =2 -1 0 —27
. 1 -1 1 0 1. | 4 -1 4. 16. | -1 2 —1l
1 =3 3 ol | 8 —4 7] | 4 0 5]
-1 2 -1 —1] F s o 4 "o o
-1 1 0 17 12. | -4 5 —4|. 17. | -1 2 0f.
g |71 2 -1 1 | -4 4 5] -1 0 2
| 5 =3 4 -5 s 4 c 6 0 4
L3 = 3 13. |3 2 -1|. 8. 31 3.
6 -4 2 -8 0 —6
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20.

21.

25.

26.

27.
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00 2 301
-1 1 2 2.0 21 1|
-1 0 3 2 00
[ 4 0 2 -1 -1 1 0
2 2 2 11 1 -1
—4 0 2 Sl R T S R
o 4 2 2 2 1
2 2 -4 f0 10 —1
2 0 -2 1 00 -1
- . 4.0 1 50 1l
-3 30 2

Prove that the eigenvalues of upper and lower trian-
gular matrices are equal to the elements on the lead-
ing diagonal. Show by example that, unlike the case of
diagonal matrices, an eigenvalue of an upper or lower
triangular matrix with algebraic multiplicity r has fewer
than r eigenvectors.

Apply the Gerschgorin circle theorem to one or more
of the matrices in Exercises 9 through 24 to verify that
the eigenvalues lie within or on the circles determined
by the theorem.

It can be shown that all the zeros of the polynomial

Pu(A) =ag+aih+ @l + - +a,)",  a, #0,

lie in the circle

Ay

[A] <14 max , k=0,1,2,...,n—1.

n

Verity this result by applying it to one or more of the
characteristic equations associated with the matrices in
Exercises 9 through 24.

The Routh-Hurwitz stability criterion

Let the real polynomial P,()) be given by

B,(x)=A"+ M TP+ ta,

and form the determinants

a as das
ap as
Ar=ai, Dp= |1 . As= 1 a a4,...,
2 0 a as
a as as ... 04y
1 a ay cee Qyp2
A, = 0 a as ... dyu-3 with ap = 0 for k > n.

0O 0 0 0 9a,

Then, A, > Oforr =1,2,...,n, if and only if every zero of
P,()) has a negative real part.
28.

(a) Numerical computation shows that the matrix

-2 1 5
A=| 2 3 1
0 4 2
has the eigenvalues 5.7238, —1.3619 4 1.9328i, and
—1.3619 — 1.9328i. Apply the Routh-Hurwitz stability

criterion to confirm that not every zero of the charac-
teristic polynomial has a negative real part.

(b) Numerical computation shows that the matrix

-2 -2 -3
A=| 3 -1 0
-4 0 -3

has the eigenvalues —5.4873, —0.2563 — 1.4564i, and
—0.2563 + 1.4564i. Apply the Routh—-Hurwitz stability
criterion to confirm that every zero of the characteristic
polynomial has a negative real part.

An n x n matrix A is said to be similar to an n x n matrix
B if there exists a nonsingular n x n matrix M such that
B = M 'AM. The relationship between A and B is said
to constitute a similarity transformation between the two
matrices.

29. If A and B are similar, show that detA = detB, and by
substituting B = M~'!AM in detB and expanding the
result, show that similar matrices have the same eigen-
values.

30. Verify the result of Exercise 29 by direct calculation by

using
31 -1 1 4 1
A=|4 0 —-1| and M=|1 0 1
4 -2 1 210

to show that both A and B have the eigenvalues —1, 2,
and 3.

31. Let the n x n elementary matrix E be obtained from
the unit matrix I by interchanging its ith and jth rows
(columns). By considering the product EQ, where Q is
an n x n orthogonal matrix, prove that an orthogonal
matrix remains orthogonal when its rows (columns) are
interchanged.
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Diagonalization of Matrices

Our purpose in this section will be to examine the possibility of diagonalizing an
n x nmatrix A. The reason for this is to try to simplify the structure of A so that, in
some ways, it reflects the simple properties of a diagonal matrix. Diagonalization
finds many applications, some of which will be discussed later.

Let D be the general n x n diagonal matrix

M 0 0 . ... 0
0 % 0 .... 0

D=| . ... ... . . (13)
0 0 0 A

Then, as already seen in Section 4.1, the eigenvalues of D are the entries A1, Ao, .. .,
An on its leading diagonal, and the corresponding 7 linearly independent eigenvec-
tors can be taken to be

1 0 0
0 1 0
X] = 0 , X2 = 0 S 0 . (14)
0] 0 1
The rule for matrix multiplication shows that
(A0 0 .... 0
0 2 0 . ... 0
D"=| ... ... .. , (15)
00 0 . ... Ay

for any positive integer m, so D" is easily computed and will have the same set of
eigenvectors as D, though its eigenvalues will be 17", A7, ..., A"

In addition to these properties, it is obvious that detD = Ai;-Ap---24,,
so D will be nonsingular provided no entry on its leading diagonal is zero.
As a result, when D is nonsingular, the rule for matrix multiplication shows that
DD =, where

......... ] (16)

0 0 0 0

We now state and prove the fundamental theorem on the diagonalization of n x n
matrices.

Diagonalization of an n X n matrix Let the n x n matrix A have n eigenvalues

A1y A2, ..., Ap, nOt all of which need be distinct, and let there be n corresponding
distinct eigenvectors Xp, Xa, . . ., X,;, SO that
AX,':)\.,'Xi, i=1,2,...,n.
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Define the matrix P to be the n x n matrix in which the ith column is the eigenvector
x;, withi = 1,2, ..., n, so that in partitioned form P =[x; x, --- Xx,], and let D
be the diagonal matrix

A0 0 0000 0

0 2 0 .. .. O
D={| .. ... ..... ,

0 0 O An

where the eigenvalue J; is in the ith position in the ith row. Then
P'AP=D.

Proof Consider the product B = AP. Then, by expressing P in partitioned form,
we can write B as

B=[Ax; Ax, ... Ax,].
Using the fact that Ax; = A;x; allows this to be rewritten as
B=[ux1 Axp ... Aux,|=PD,
showing that
PD = AP.

As the columns of P are linearly independent, P is nonsingular, so P~! exists
and we can premultiply by P~! to obtain

D =P 'AP,

and the theorem is proved. ]

General Remarks About Diagonalization

(i) Ann x nmatrix can be diagonalized provided it possesses # linearly indepen-
dent eigenvectors.
(ii) A symmetric matrix can always be diagonalized.

(iii) The diagonalizing matrix for a real n x n matrix A may contain complex
elements. This is because although the characteristic polynomial of A has real co-
efficients, its zeros either will be real or will occur in complex conjugate pairs.

(iv) A diagonalizing matrix is not unique, because its form depends on the order
in which the eigenvectors of A are used to form its columns.

A useful consequence of the diagonalized form of a matrix is that it enables it
to be raised to a positive integral power with the minimum of effort. This property
will be used later when the matrix exponential is introduced.

To see the ease with which an n x n matrix can be raised to a power when it is
diagonalizable, we start by writing A in the form A = PDP~!. We then have

A’ = (PDP ') (PDP!) = PDP'PDP~! = PDDP ' = PD’P !,
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so that, in general,
A" =PD"P!, form=1,2,....

As evaluating D" simply involves raising each entry on its leading diagonal to the
power m, the evaluation of A” only involves three matrix multiplications.

This last result was used without justification in Section 3.2(f) when a stochastic
matrix was raised to the power m (do not confuse the stochastic matrix P in that
section with the orthogonalizing matrix P just defined).

Diagonalize the matrix

2 1 -1
A=|(3 2 =-3],
31 =2

and use the result to find A°.

Solution Matrix A was examined in Example 4.1 and shown to have the eigen-

values 1 =2, 1, = 1, and A3 = —1, and the corresponding eigenvectors
1 1 0
X1 = 1 s Xy = 0 s and X3 = 1
1 1 1

Theorem 4.5 shows that a diagonalizing matrix P is given by

1 1 0
P=|1 0 1],
1 11
and a routine calculation shows that
1 1 -1
P! = 0 -1 1
-1 0 1

Before finding A°, and although it is unnecessary for what is to follow, it is
instructive to check that when the matrix P~'AP is formed, the eigenvalues ap-
pearing in the diagonal matrix D do so in the order in which the corresponding
eigenvectors of A have been used to form the columns of P. This is seen to be so in
this case because

20 0
D=P'AP={0 1 0].
0 0 -1

Returning to the calculation of A’ and using the expressions for P, P~!, and D
in A> = PD°P~! gives
11 0][2° 0 0 1 10 32 31 -31
AS=|1 0 1[]0 1 0 1 0 1|{=133 32 -33]|.
1 1 1[0 0 (=1)[|1 01 33 31 -32

Had the eigenvectors been arranged in a different order when constructing P,
a different but equivalent diagonal matrix would have been obtained. For example,
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if P had been written

1 10
P=|0 1 1],
1 11

D would have become

1 0 O
D=0 2 0],
0 0 -1

though after P~! was found and A5 = PD°P~! was computed, the matrix A’ would,
of course, remain the same. [ |

EXAMPLE 4.10 Diagonalize the matrix

00 11
12 01
A=1_10 21
10 -1 0

Solution Matrix A was considered in Example 4.2, which showed that it had the
eigenvalues A1 = 0, A, = 1, A3 = 1, and A4 = 2, and that although the eigenvalue 1
occurred with algebraic multiplicity 2, the matrix still had the four linearly inde-
pendent eigenvectors

()\1:0) X1 = s ()\2:1) Xy = s ()»3:1) X3 =

|
[ Y
—_ o O =

S ==

and

()\4 = 2) X1 =

SO RO
1

Using these eigenvectors to form P gives

-1 1 1 0
-1 1 0 1
P=1_1 10 o
1 01 0
from which it follows that
-1 0 1 1
-1 0 2 1
71_
Po=1 10 210
01 -1 0
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orthogonalization of a
set of linearly
independent vectors

Because of the ordering of the eigenvectors, the diagonal matrix D will be

0000
0100
D=145 01 0|
000 2
where
P !AP =D. -

We saw in Theorem 4.4 that a real symmetricz x n matrix A with distinct eigen-
values has a set of n mutually orthogonal linearly independent eigenvectors. It fol-
lows at once that if when constructing the diagonalizing matrix for A the normalized
eigenvectors of A are used to form the columns of P, the resulting diagonalizing
matrix will be an orthogonal matrix. This is often advantageous, because the prop-
erties of orthogonal matrices can simplify subsequent calculations that may arise.
However, if an eigenvalue is repeated, the corresponding eigenvectors will not, in
general, be orthogonal to the other eigenvectors, so although there will still be a set
of nlinearly independent eigenvectors, the set will no longer form an orthogonal set.

Because of the frequency with which symmetric matrices arise in applications,
and the fact that symmetric matrices with repeated eigenvalues are not unusual,
it is reasonable to ask if it is possible for symmetric matrices always to be diago-
nalized by an orthogonal matrix and, if so, how this can be achieved. The answer
to the question about the possibility of diagonalization by an orthogonal matrix
is in the affirmative. The method of arriving at an orthonormal set of vectors to
be used when constructing P involves using a generalization of the Gram-Schmidt
orthogonalization process introduced in Section 2.7 in the context of geometrical
vectors in R®.

As an n element matrix vector is simply a vector in a vector space, an exten-
sion of the Gram—Schmidt orthogonalization process to include n-element matrix
vectors can be used to construct an orthonormal set of n vectors from any set of
n linearly independent eigenvectors that are always associated with an n x n sym-
metric matrix A. The required generalization of the orthogonalization process that
leads to an orthonormal system is an immediate extension of the one derived in
Section 2.7, so the details of its derivation will be omitted.

Rule for the Gram—Schmidt orthogonalization process for matrix vectors

Let x1,X2,...,X, be a set of n element linearly independent nonorthogo-
nal matrix column vectors. Then an equivalent orthonormal set of vectors
Pi, P2, - .., Pn can be constructed from the vectors xi, Xa, ..., X,, via an in-
termediate set of orthogonal nonnormalized vectors vy, v,, ..., v,. The steps
involved in the determination of the vectors py, p2, . . ., p, are as follows:

p1 = x1/[Ixl,

V2 =X — (p1 - X2)Pp1,

p2 = v2/|Iv2ll,

Ve =% —{(p1-x)p1 + (P2 - x)p2 + -+ - + (Pr—1 - X1 )Pr—1}
pr = Vv./llvi|l, forr=2,3,... n
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When the Gram-Schmidt orthogonalization process is applied to the eigen-
vectors of a real symmetric matrix A with repeated eigenvalues, the diagonaliz-

ing matrix P is constructed by using the vectors py, p2, .. ., pn, Obtained from the
preceding scheme after starting with any linearly independent set of eigenvectors
X1, X2, . .., X, of A. Then, in partitioned form,

P=[p1 p2 ... pil

and, as before,
D =P AP,

where D is again a diagonal matrix with its diagonal elements equal to the eigen-
values of A arranged in the same order as the corresponding columns of P. This
time, however, entries on the leading diagonal will be repeated as many times as
the multiplicity of the eigenvalues concerned.

Use the Gram-Schmidt orthogonalization process to construct an orthonormal set
of vectors from the vectors

1 1 1
x =1, x= O], and x3=12
1 -1 0

Solution In this case the Gram-Schmidt orthogonalization process involves the
three vectors xp, X,, and x3, so a set of orthonormal vectors p;, pz, and ps is given
by the scheme

pP1 = x1/[Ixu|

V2 =X — (p1 - X2)p1

p2 = v2/lIv2ll

vi =x3 — {(p1 - X3)p1 + (P2 - X3)p2}
p3 = v3/llvsll.

A series of straightforward calculations gives

1/3/3 1 1 1/4/2
p=|1//3|. and va=| 0| —-0pi=| 0|, sopy= 0 |,
1/V3 -1 —1 —1/+/2
and, finally,
1 1/4/37] 1/3/2 1,2
vi=|2|-+v3[1/V/3|-1/V2 0 [=| 1 |,
0 1/+/3] —1/¥2 —-1/2
SO
T—1//6
pB=| V73| u
[-1/V6
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Construct an orthogonal diagonalizing matrix for the symmetric matrix

4 0 0
A=|0 1 2].
0 21

Solution This has the distinct eigenvalues A1 = —1, 1, = 3, and A; = 4, so the cor-
responding eigenvectors Xxi, Xp, and x3 are orthogonal. Simple calculations show
that

0 0 1
xi=|—-1|, x=|[1|, and x3={0
1 1 0

The normalized eigenvectors are

0 ] 0 1
f1=|—-1/vV2|, %=|1/v2|, and % =|0],
1/v/2 L 1/v2 0
so the diagonalizing matrix P and the corresponding diagonal matrix D are
0 0 1 -1 0 0
P=|-1/v2 1/¥/2 0| and D=| 0 3 0. ]
1/¥2 1/42 0 0 0 4

Construct an orthogonal diagonalizing matrix for the real symmetric matrix

-1 2 4
A=| 2 2 2.
4 -2 -1

Solution This has the eigenvalues A; = —6, 1, = 3, and A3 = 3, so as the eigen-
value 3 has multiplicity 2, the corresponding set of eigenvectors xi, X, and x3 will
not be orthogonal. The eigenvectors X, X;, and x5 are easily shown to be

-2 1 0
X| = 1 , Xp = 2 s and X3 = -2
2 0 1

Applying the Gram—Schmidt orthogonalization process to vectors x1, x;, and x3, as
in Example 4.11, after some straightforward calculations we arrive at the orthonor-
mal set

~2/3 1/v/5 4/(3V5)
pi=| 13|, p=|2/V/5|. and ps=|-2/(3V5)
2/3 0 V5/3

In this case an orthogonal diagonalizing matrix is

—2/3 1/v/5  4/(3V5)
P=| 1/3 2//5 —2/(3V95) |,
2/3 0 V5/3
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and the corresponding diagonal matrix is

6 0 0
D=| 0 3 0f. -
00 3

To close this section we state the important Cayley-Hamilton theorem, which
is true for all square matrices, though before considering the theorem we first define
a matrix polynomial.

A matrix polynomial involving an n x n matrix A is an expression of the form

A"+ b A" L DA™ o by A+ by
in which m is an integer and by, bs, ..., by, are real or complex numbers.

The Cayley-Hamilton theorem Let P,(1) be the characteristic polynomial of an
arbitrary n x n square matrix A. Then A satisfies its own characteristic equation,
and so is a solution of the matrix polynomial equation P,(A) = 0.

Proof For simplicity, we only prove the theorem for real symmetric matrices,
though it is true for every n x n matrix. If A is a real n x n symmetric matrix, then
from Theorem 4.6 we may write A = PDP~!. Let the characteristic polynomial of
A be

Pu(}) = (—=1)" A" 4+ A" T cpih + )
Then replacing A by A converts P,(1) to the matrix polynomial
Py(A) = (-1)"{A"+ A"+ A + o),
but A” = PD'P !, so
Py(A) = (—=1)"{P{D" + ;D" ... 4 c,_ D + ¢, L )P Y.

The ith row of the matrix polynomial D" + D" 4. 4D+l s
simply A + clkf'_l + -+ cp1)hi + ¢y, but this is P,(%;), and it must vanish for
i =1,2,..., nbecause }; is an eigenvalue of A. Thus, D" + ¢;D" ! + ... 4+ ¢, D +
c,I = 0, showing that P,(A) = P{0}P~! = 0, and the result is proved. [ |
Verify the Cayley—Hamilton theorem for the matrix

2 1
A=2 ]
Solution The characteristic polynomial is P5() = A> — 41 — 1, and

A2:[290 3} SOPZ(A)Z[;O g]“‘[? ﬂ_[(l) (1)]2[8 8] =

Finding A~! from the Cayley—-Hamilton theorem

If the n x n matrix A is nonsingular, the following interesting result can be
obtained directly from the Cayley—Hamilton theorem. Let the characteristic
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polynomial of A be P,(1) = (=1)*{}" + ciA" ' 4+ -+ + ¢,_1A + ¢}, 5O from
Theorem 4.7

A"+ A" e A+, I =0.
The matrix A~! exists because by hypothesis A is nonsingular, so premulti-
plication of the preceding equation by A~!, followed by a rearrangement of
terms, allows A~! to be expressed in terms of powers of A through the result

A7l = (—1/c){A" 4 A2 - D) (17)

Use the result of equation (17) to find A~! for the nonsingular matrix
2 1
A=t ]
Solution Matrix A was considered in Example 4.14, where it was found that the

characteristic polynomial P(1) = A?> — 41 — 1, 50 in terms of (17) we see that ¢; =
—4 and ¢; = —1. Thus,

A1=—1/(—1>{[§ ﬂ—“[(l) (1)]}2[_2 —5] 8

Summal‘y This section has described how an n x n matrix can be diagonalized when it possesses
n linearly independent eigenvectors. The diagonalization was shown not to be unique,
since its form depends on the order in which the eigenvectors are used to construct the
diagonalizing matrix P.

Sometimes, when a linearly independent set of n vectors has been obtained, it is
desirable to replace it by an equivalent set of n orthogonal or orthonormal vectors. The
section closed by showing how this can be accomplished by means of the Gram-Schmidt
orthogonalization procedure.

EXERCISES 4.2
In Exercises 1 through 12, find a diagonalizing matrix P for F5 -2 2 [ 12 —4 8
the given matrix, in each case using the fact that the zeros 7. 2 12 10 -6 2 —4].
of the characteristic polynomial are small integers that can -2 21 |20 8 14
be found by trial and error. _ -
12 4 6 -6 2 —4
2 -3 17 6 —10 —4 8| -6 -2 3. 1. | -4 0 —4
L1 2 1 4. 2 3 2] [-22 -8 -1l L 4 -2 2]
L 3 3 2] . 7 10 5 T2 0 0 .70 —6]
T3 1 47 1 2 -2 9. 1 -1 2:|. 12. 3 -1 3.
2. | -4 2 —4 5.1 2 -1 2] -2 01 9 0 8]
-1 -1 2 2 =2 3
- - - In Exercises 13 through 16 use the Gram-Schmidt orthogo-
31 =2 14 2 8 nalization process with the given set of vectors to find (a) an
3.6 2 —6]. 6. | -8 =3 —4]. equivalent set of orthogonal vectors and (b) an orthonormal
14 1 =3 | —26 —4 —15 set.
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In Exercises 17 through 22 find an orthogonal diagonalizing
matrix P for the given symmetric matrix.

[y
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4 2 0 4 1 1
21. |2 4 0. 22. |1 4 1.
0 0 2 11 4

23. Verify by direct calculation that the matrix in Exercise 1
satisfies the Cayley—Hamilton theorem.

N

4. Verify by direct calculation that the matrix in Exercise 7
satisfies the Cayley—Hamilton theorem.

In Exercises 25 through 28 use (17) to find A~! and check
the result by showing that AA~! = 1.

300 4 1 0 5 3 S 1o
A R =a[1] aadl )
510 2 1 1 26.A=|:§ ;] Lo s

18. (1 5 0f. 20. |1 2 1]. -
00 2 1 1 2 28.A=|:310:|.
0 2 4
4.3 Special Matrices with Complex Elements
I

In the previous section it was seen that one way in which matrices with complex
elements can occur is when the eigenvectors of an arbitrary n x n matrix are used
to construct a diagonalizing matrix. This is not the only reason for considering
n x n matrices with complex elements, because the following three special types of
matrices arise naturally in applications of mathematics to physics and engineering,

and elsewhere.

Hermitian, skew-Hermitian, and unitary matrices

Let A = [a;;] be an n x n matrix with possibly complex elements. Then:

. . . T _
A is called an Hermitian matrix if A° = A, so that a;; = aji;

. . . .T _
A is called a skew-Hermitian matrix if A = —A, so thatay; = —aj;

U is called a unitary matrix if U =U"

The basic properties of these three types of matrices follow almost directly from

their definitions.

Basic Properties of Hermitian, Skew-Hermitian,
and Unitary Matrices

1. The elements on the leading diagonal of an Hermitian matrix are real, because
a;; = a;;, and this is only possible if a;; is real.

2. The elements on the leading diagonal of a skew-Hermitian matrix are either
purely imaginary or 0. This follows from the fact that a;; = —a;;, so the real
part of a;; must equal its negative, and this is only possible if a;; is purely

imaginary or 0.
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3. If the elements of an Hermitian matrix are real, then the matrix is a real
symmetric matrix, because then A= AT, and the definition of an Hermitian
matrix reduces to the definition of a real symmetric matrix.

4. If the elements of a skew-Hermitian matrix are real, then the matrix is a skew-
symmetric matrix, because then the definition of a skew-Hermitian matrix
reduces to the definition of a skew-symmetric matrix.

5. Any n x n matrix A of the form A = B +iC, where B is a real symmetric
matrix and C is a real skew-symmetric matrix, is an Hermitian matrix. This
follows directly from Properties 3 and 4.

6. Any n x n matrix A can be written in the form A =B+ C, where
B is Hermitian Tand Cis a ﬂ(Tew-Hermitian. To see this we, v write
A=(1/2)(A+A )+ (1/2)(A—A"), and then set B= (1/2)(A + A ") and
C=(1/2)(A—A"). Then B' = (1/2)(AT +A) = (1/2)(A+A') = B and
CT = (1/2)(AT —A) = —(1/2)(A — A ') = —C, showing that B is Hermitian
and C is skew-Hermitian.

. .. . . —T

7. A real unitary matrix is an orthogonal matrix, because in that case A = AT,

causing the definition of a unitary matrix to reduce to the definition of an
orthogonal matrix.

8. The determinant of a unitary matrix is 1. This result is established in essen-
tially the same way as the result of Theorem 4.4(i), so the argument will not
be repeated.

The following are examples of Hermitian, skew-Hermitian, and unitary matrices.

Hermitian matrix:

3 2+5 743
A=| 2-5i 0 1—1
—7-3i 1+i 4

Skew-Hermitian matrix:

4i —3-2i —6-4i

B=|3-2i =2i 5
6 —4i =5 0
Unitary matrix:
1+i —-1+41
0
2 2
2 2
0 0 1

It can be seen from Properties 3, 4, and 7 that Hermitian, skew-Hermitian, and
unitary matrices are, respectively, generalizations of symmetric, skew-symmetric,
and orthogonal real-valued matrices. Accordingly, it is to be expected that some of
the properties exhibited by these real-valued matrices are shared by their complex
generalizations, and this is indeed the case as we now show.



THEOREM 4.8

Section 4.3 Special Matrices with Complex Elements 207

Eigenvalues of Hermitian, skew-Hermitia