Int. J. Res. Undergrad. Math. Ed. @ CrossMark
https://doi.org/10.1007/s40753-017-0066-1

Levels of Programming in Mathematical Research
and University Mathematics Education

Laura Broley’ - France Caron? - Yvan Saint-Aubin?

© Springer International Publishing AG 2017

Abstract In response to a recent Canada-wide survey, where it was found that math-
ematicians use computer programming much less in their teaching than in their research,
an exploratory study involving 14 Canadian mathematicians sought to gain a deeper
understanding of the place of programming in both contexts. To capture the differences
in the degree of interaction with programming in various mathematical practices, a scale
of six levels has been defined and used. While providing visibility to an aspect of
mathematical practice that is often absent from published work, the views of our
participants also highlight some important issues that would require attention in order
to reduce the identified gap, should that be deemed the favourable direction to take.

Résumé En réponse a un sondage pancanadien récent, qui révélait que les
mathématiciens utilisent beaucoup moins la programmation informatique dans leur
enseignement que dans leur recherche, une étude exploratoire auprés de quatorze
mathématiciens canadiens a cherché a mieux comprendre la place de la programmation
dans ces deux contextes. Une échelle a six niveaux a été définie et utilisée pour
caractériser le degré d’interaction avec la programmation dans différentes pratiques
mathématiques. Tout en rendant visible un aspect de la pratique mathématique souvent

P4 Laura Broley
1_brole@live.concordia.ca

Department of Mathematics and Statistics, Concordia University, Montréal, Canada

Faculté des Sciences de L’éducation, Département de Didactique, Université de Montréal,
Montréal, Canada

Département de Mathématiques et de Statistique, Universit¢ de Montréal, Montréal, Canada

. . @ Springer
Published online: 30 November 2017

http://crossmark.crossref.org/dialog/?doi=10.1007/s40753-017-0066-1&domain=pdf
mailto:l_brole@live.concordia.ca

Int. J. Res. Undergrad. Math. Ed.

absent des publications, le témoignage des participants a 1’étude met en évidence
certaines contraintes qu’il conviendrait de revoir si I’on souhaitait réduire I’écart entre
les pratiques de recherche et celles qui sont développées dans la formation.

Keywords Mathematical practices - Mathematicians - Undergraduate teaching and
learning - Computer programming - Institutional constraints

Introduction

In this so-called “digital era”, where one can graph a function or compute an integral
simply by speaking into a mobile phone, it may be hard to remember that only 40 years
ago, the power of computer technology to perform even these simple tasks was
accessed only through “programming”." Today’s digital landscape includes a diverse
set of software and applications capable of supporting all sorts of mathematical activity
“at the press of a button”; and current discussions about using the computer in the
teaching and learning of mathematics reflect this diversity. Nonetheless, programming
has remained a significant part of science, technology, engineering, and mathematics
(i.e., STEM) related disciplines, where professional work often involves not just the use
of existing digital tools, but also the creation of new and/or more adequate computer
programs. This is just one reason why programming has recently regained the attention
of politicians, curriculum developers, and researchers worldwide, who envision it as
having potential both within and beyond classrooms.

But one cannot forget that programming has had a relatively long history in
mathematics education, generating as much enthusiasm as resistance. It therefore seems
important to learn more about the current scope, nature, and conditions of programming
integration in the teaching and learning of mathematics. Given the mutual evolution of
computer technology and human activity, it also seems useful to better understand the
place of programming in the work of today’s mathematician.

Universities present a rich context for studying these topics, as they are both hubs of
mathematical research in a variety of fields and educational institutions offering courses
taught by research mathematicians. We might assume that with easier access to
technology and greater liberty, university professors could integrate authentic program-
ming activities into their teaching more easily than their school counterparts. Yet, a
national survey brings forth some doubts: while 43% of 302 Canadian mathematicians
reported using programming in their research, only 18% claimed to use it in their
teaching (Buteau et al. 2014). We wanted to know why such a large gap existed; and
that required us to examine more closely the specific ways in which mathematicians
develop and use computer programs in their research, as well as the types of program-
ming activities they make available to students in their courses.

The present paper reflects on an exploratory study involving 14 mathematicians
(Broley 2015), which sought to uncover some of the story behind the statistics.
Building on a presentation of its results (Broley 2016), we begin by placing the study
in the context of two classical topics: computer programming in mathematics

' The use of quotations here indicates a lack of clarity in the definition of programming. We return to this later.
Readers, who are likely to have their own implicit definition, should be aware of a potential ambiguity.

@ Springer

Int. J. Res. Undergrad. Math. Ed.

education, and the gap between mathematical activity in educational institutions and the
research practices of professional mathematicians (thereafter professional mathematical
practices). We then summarize elements of Chevallard’s (1998) Anthropological The-
ory of the Didactic (thereafter ATD), which were used in carrying out the study. We
also add to our theoretical framework some notions developed in the context of
professional practices in education (Morrissette 2011). The perspectives of our partic-
ipants are then presented, with the aim of describing, comparing, and explaining some
elements of “programming” “use” in mathematical research and university mathemat-
ics education. We conclude by discussing the variable status of programming within the
mathematics community and university mathematics departments.

Context and Theoretical Underpinnings
The Rise, Fall, and Revival of Programming in Mathematics Education

As personal computers became available in the 1970s and 80s, scholars began reporting
on the potential of programming for exploring mathematical ideas or developing ways
of thinking (cf. Papert 1980; Knuth 1985; Leron and Dubinsky 1995). Despite the initial
enthusiasm, however, there were relatively few long-lived classroom implementations
and little impact on curricula. The disappearance of programming from mathematics
education literature followed throughout the 1990s (Lagrange and Rogalski 2015).
Computer science remained a self-contained discipline, and educators began focussing
on the user-friendly powerful tools developed for mathematical purposes, such as
spreadsheets, dynamic geometry software, and computer algebra systems. So why
now, over two decades later, is programming returning as an important concern?

Ironically, technological evolution has been cited as a catalyst to both the fall and
revival of programming in mathematics education. While the initial outbreak of tools
made programming skills seem obsolete, such skills have recently been recognized as
essential for understanding how the growing mass of “black boxes” work (Lagrange
and Rogalski 2015). The increased importance of tool development in various areas of
society is also pushing nations to focus more on training a next generation of
technologically-skilled workers (Francis and Davis forthcoming). On these bases, some
researchers are continuing in the footsteps of the pioneers cited above (cf. ibid.;
Misfeldt and Ejsing-Dunn 2015). Others, recognizing that professional mathematical
activity has also been influenced by technological developments, study another poten-
tial: programming as a way of engaging students in the computational practices of
STEM professionals (cf. Weintrop et al. 2016). Indeed, programming was found to be
the second most-used technology by the 302 mathematicians in Buteau et al.’s (2014)
survey; and, a 2012 report by the Society for Industrial and Applied Mathematics
indicates that “programming and computer skills continue to be the most important
technical skill that new hirees [in industry mathematics] bring to their jobs™” (p. 25).
Programming is hence being revived not just as a didactical tool for helping students
develop mathematical knowledge, but also as a potential part of the knowledge to be
developed. Examining how professional mathematicians now use programming in their
work could therefore bring forth new epistemological grounds for its integration in
mathematics education.

@ Springer

Int. J. Res. Undergrad. Math. Ed.

But as technology and mathematics have evolved, so too has the activity of
programming itself. Available to today’s programmer are various approaches (e.g.,
procedural versus object-oriented), languages, and libraries of routines, capable of
accomplishing a variety of goals. The difficulty we faced in solidifying a definition
of “programming” in our study was rooted in our perceived diversity of computer uses
in mathematics. Even our research team was diverse, including an applied mathema-
tician who had worked in industrial-level software engineering, a research mathemati-
cian who used computer algebra systems and C to explore new territories of mathe-
matical knowledge, and a student who had learned and used a programming language
in university mathematics courses.

In many papers, “programming” appears without an explicit definition; and, amongst
those that define the term, there is no consensus. Weintrop et al. (2016), who place
programming alongside other practices like “designing computational models” and
“troubleshooting and debugging”, seem to equate the term with understanding, modi-
fying, and writing code (whether it is ten lines of Python or millions of lines of C++).
Buteau and Muller (2010), on the other hand, define a “programming cycle” involving
the design, implementation, testing, and revising of a computer tool; and in their
Canada-wide survey, Buteau et al. (2014) labelled “programming” with languages like
Fortran, Java, and C++, placing software like Maple, R, and MATLAB in different
categories. In contrast, Lagrange and Rogalski (2015) couple “programming” with the
study of algorithms and consider the activity within the scope of software development.

In the end, rather than fixing our own definition, we decided to inquire about the
perspectives held by professional mathematicians. This, after all, could provide insight
into the place of programming not only in professional mathematics practices, but also
in mathematics education.

The Gap between Professional Mathematics and Mathematics Education

The experiences of students and STEM professionals have been compared extensively
over the years; for example, in terms of the knowledge at stake (Madsen and Winslow
2009), the general kinds of behaviour that take place (Cuoco et al. 1996), the influence
of institutional constraints (Watson 2008), and certain social and cultural aspects
(Burton 2004). The extent and legitimacy of disconnections has been debated (cf. Issue
28, Number 3, of For the Learning of Mathematics), not just those within a level (i.e.,
primary, secondary, university), but also between levels, with universities predicted as
exhibiting the closest connection. And yet, Artigue (2016) writes: “There is no doubt
that [...] undergraduate mathematics education is poorly connected to the mathematics
of today in most universities” (p. 22).

In a subsequent paragraph, she highlights a specific gap: while technology has had a
major impact on professional mathematical practices, “in many places, undergraduate
mathematics education seems still blind to this evolution, even when those in charge make
extensive use of technology in their professional activity” (ibid, p. 22-23). This comment
seems to contradict two large-scale surveys. Lavicza (2010), driven by a lack of data on
technology integration in universities, collected survey responses from 1103 mathemati-
cians in the US, the UK, and Hungary, which led him to conclude: “the extent of
technology use at universities is substantial and [...] mathematicians have developed an
extensive array of technology-assisted teaching materials and pedagogical approaches” (p.

@ Springer

Int. J. Res. Undergrad. Math. Ed.

110). He also found mathematicians’ use of technology in research to be the most
influential factor on technology use in teaching. Another survey he conducted with
colleagues (Buteau et al. 2014) reported similar conclusions in the Canadian context.

Upon closer consideration, however, Artigue’s comment and the international sur-
veys may not be at odds. First, not all technologies were found to have almost equal use
in research and teaching: the number of Canadian mathematicians who reported using
programming in their teaching was less than half those who indicated using it in their
research (Buteau et al. 2014). Secondly, while the surveys required mathematicians to
indicate the ways in which they use technologies in their teaching (e.g., to visualize
concepts in lectures, engage students in experimentation, or develop course materials),
comparable data was not collected for research. The studies, with their focus on
computer algebra systems and primarily quantitative data, also were not aimed at
answering certain programming-specific questions: To what extent are students being
asked to engage with programming? How do mathematicians describe and explain this
level of engagement? Why might the gap exist?

Buteau et al. (2014) hypothesize that the learning curve for programming is steeper
than for other technologies (e.g., computer algebra systems, which contain pre-
programmed mathematical tools). Its toll on students’ and teachers’ time and effort
could hence make it a less attractive option in regular mathematics courses. Other
obstacles, not specific to programming, have also been conjectured: for example, the
time required to create new learning activities, logistical obstacles of curriculum-wide
integration, and departmental resources and support. Artigue (2016), reflecting on her
own difficulty in maintaining an innovative course, describes the ATD as powerful
theoretical equipment for addressing such issues of ecology.

ATD, a Frame for Capturing, Comparing, and Clarifying Practices

Chevallard’s (1998) Anthropological Theory of the Didactic (ATD) provides a generic
framework for capturing the different elements of any mathematical activity occurring in
any context. The theory highlights the know-how (i.e., the praxis) and the discourse that
explains it (i.e., the Jogos), defining an individuals’ activity in terms of “praxeologies”
consisting of four components: fasks (e.g., solve a system of linear equations), tech-
niques for achieving them (e.g., Gaussian Elimination), fechnologies that justify the
techniques (e.g., because row operations preserve the solution set of the system) and
underlying theories (e.g., Linear Algebra). Following the example of Artigue (2002), we
prefer to label any logos (i.e., technology or theory) as “justification” to avoid the
ambiguity of the word “technology”, which often appears as a synonym for computer-
ized tools. We also use her distinction between pragmatic justifications (e.g., “Iused the
technique because it’s faster”), and epistemic justifications (e.g., “I used the technique
because it helps me better understand the concept”). Of particular interest to us were
praxeologies that, in some way or another, involve programming, as the associated
tasks, techniques, and justifications could provide some answers about the when, how,
and why of programming use by mathematicians and their students. But this would not
necessarily reveal the whole story.

Indeed, an individual’s praxeologies do not occur in isolation; they develop under the
influence of social institutions that normalize certain ways of being, thinking, and doing
through various conditions and constraints. From the ATD perspective, the word

@ Springer

Int. J. Res. Undergrad. Math. Ed.

“institution” is to be interpreted in a wide sense: for example, each mathematics depart-
ment, composed of a unique collection of mathematicians, will foster certain norms
(explicit or implicit), as will any subfield of mathematics (e.g., analysis, geometry, or
modelling). These norms are not necessarily fixed; on the contrary, the increased accep-
tance of new praxeologies can cause a re-evaluation of what is deemed possible or
important. We could hence expect the place of programming in a mathematician’s or a
student’s praxeologies not only to be influenced by the place of programming in the
institutions where their research or learning take place, but also to influence it, even if these
mutual influences might not be of the same strength or apply to the same time scale.

To describe the variable status of praxeologies within institutions, we ended up
adding to the ATD framework the categories of practices introduced by Morrissette
(2011). During a study of school teachers’ methods of formative assessment, the
researcher identified three kinds of practices:

1. Shared Practices, in which everyone engages because they are intimately tied to
the profession and remain unquestioned;

2. Admitted Practices, which are not shared by everyone in a profession, but are accepted
because they have been shown to be effective by innovative practitioners; and

3. Contested Practices, which are not accepted by everyone and are therefore situated
at the boundaries of the professional culture.

While these notions were not developed within or for the specific context of
mathematics education, categorizing programming-related practices as conventional,
innovative, or exceptional in both mathematicians’ and students’ activity allowed us to
provide more nuanced descriptions, comparisons, and reflections. After all, if shared
practices represent current conventions, their coexistence with admitted or contested
practices can suggest opportunities, or even a desire, to re-evaluate what has become
conventional. Combining this with the ATD notion of institutional conditions and
constraints provided new insight into why gaps like the one found by Buteau et al.
(2014) exist; and this analysis also suggested ways of reducing these gaps, should that
be deemed the favorable direction to take.

Research Questions and Methodology
We sought to answer the following research questions:

How do research mathematicians define computer programming?

What is the place of programming in the praxeologies that form the research
activity of mathematicians and the learning activity they offer their students? What
are the differences and similarities between these praxeologies?

3. What role do institutional contexts play in the choices of mathematicians
concerning the use of programming in their research and the integration of
programming in their courses?

N —

To answer these questions, we elaborated a study involving individual semi-structured
interviews with 14 mathematicians: 3 women and 11 men of various ages, languages

@ Springer

Int. J. Res. Undergrad. Math. Ed.

(French or English), and research domains, working within 10 universities in 3 Canadian
provinces (British Columbia, Ontario, and Québec). These interviewees were among 17 we
invited to participate based not only on our goal of having a culturally, linguistically, and
institutionally diverse sample, but also on our interest in interviewing mathematicians who
were “using” programming in their research and/or teaching.

Our choice to conduct interviews with mathematicians was driven by the exploratory
nature of our study. We sought a rather large sample of professors to cover, as much as we
could, the spectrum of possibilities and reasons for (not) integrating programming in
mathematics research and education. It is true that when it comes to students’ learning, a
professor can describe only the “planned” praxeologies, that is, the ones s/he hopes to help
develop in students. Even when a professor plans a learning activity that resembles his/her
research in the type of practice it aims at developing, this need not imply that the student
develops the practice. Including classroom observations or student interviews would have
helped to qualify the learning that actually occurred with the planned activities. However,
because of the spread of our 14 participants across Canada and the calendar within which
we had to work, such data could not be generated within the constraints of the study. In this
sense, our study could not compare directly the actual programming experiences of
students and those of their professors. Nonetheless, the exploration of planned praxeologies
seemed a useful first step, as it could offer professors’ perspectives on a priori analyses of
activities given to students; and this could pave the way for future research.

While collecting information exclusively from mathematicians, we still wished to
make students’ potential activity our focal point of comparison with the mathemati-
cians’ research activity. Previous studies, such as that carried out by Madsen and
Winslew (2009), have employed the ATD to study the “nexus” between mathemati-
cians’ research and teaching activity, in hopes of understanding how the two activities
can be mutually beneficial rather than compete for the time and energy of the
researcher-professor. Their initial goal was to compare research work with teaching
work and it is in contrast with our goal of comparing what mathematicians do and what
students are invited to do in mathematics classes. In fact, the shift in perspective from
inquiring about how programming is used by a researcher-professor to carry out his/her
courses (e.g., to prepare lectures, illustrate concepts, engage students), to exploring the
types of programming experiences encountered by students, constituted an important
moment in our research project. And this is why we also talk about the programming to
be experienced by the students in their learning of mathematics, rather than only the
programming used by their professors in their teaching of that discipline.

Conducting interviews with mathematicians was also the only way to gain access to
the justification component of the praxeologies under study. One could question the
validity of self-reporting in outlining the praxis components (i.e., the tasks and tech-
niques). To minimize bias, the interviews were based on Vermersch’s (20006) entretien
d’explicitation (explication interview, i.e. interview that seeks explicit accounts of
experience), in which the interviewer guides the interviewee into a state of descriptive
verbalisation where they “relive” specific experiences. The hope is that by becoming
re-immersed in those experiences, the interviewee will be able to most accurately
describe and reflect on them. Our participants were encouraged to relive moments
throughout their research and teaching, in relation to computer programming. Some, in
response to our invitation, shared resources they had developed (e.g., computer pro-
grams and activity outlines); this enhanced their descriptions.

@ Springer

Int. J. Res. Undergrad. Math. Ed.

Asking the mathematicians to describe their experiences led some of them, without
direct prompts, to reflect on their choices and, in some cases, contemplate making changes
to their practices. Still, some reflections on mathematics, programming, and institutional
constraints were solicited to gain insight into the mathematicians’ definitions of program-
ming and help us identify factors that could be shaping the praxeologies described. The
potential influence professors have on their own teaching and, through the development of
curricula, the teaching of others, again supports our decision to collect their perspectives:
the issues they consider to be important are likely the ones that should be addressed if an
institution wishes to implement any changes and reduce any gaps.

The interviews were recorded, transcribed, and examined through a categorical analysis
(Van der Maren 1996, Chapter 19) with a mixed coding approach to identify, classify, and
compare the main ideas. Examples of programming use underwent a supplementary
characterisation using the ATD framework to extract and compare the types of tasks,
techniques, and justifications defining the related research and planned learning praxeol-
ogies. Those familiar with the precision of ATD analyses carried out in previous studies (cf.
Winslew et al. 2014) might be surprised by how broad our praxeologies are: they take a sort
of bird’s eye view on the participants’ mathematical activity. This said, it has been
questioned if students’ and mathematicians’ praxeologies could ever be significantly
compared with such a fine-grained analysis (Winslew 2015). Moreover, taking a broad-
brush perspective was natural in our case, as we hoped to better understand the place of
programming throughout curricula and across institutions, rather than within specific
curricular topics like calculus, group theory, or numerical analysis.

Early in our project, we also began to distinguish certain praxeologies and mathe-
maticians as “pure” or “applied”. Although this naturally arising distinction adds an
interesting dimension to our results, we were hesitant to use it. We even attempted to
recognize that the pure-applied dichotomy is truly a continuum by assigning our
participants fictive names in a special way: those beginning with an “A” (“P”) would
represent mathematicians who were most clearly applied (pure), and B’s, O’s, and N’s
would identify mathematicians situated somewhere in between. But even now, the
categorization of certain participants remains a little blurry, and should not be taken
reducing the complexity of their research, teaching, or mathematical identity.

Mathematicians’ Perspectives on Programming
What Is Programming?

The mathematicians we interviewed seem to agree that programming includes any
activity aimed at constructing a computer tool (a program) by way of three interwoven
tasks of varying importance: the development of an algorithm, the coding of the
algorithm, and the verification and validation of the program. This said, there is no
unanimity about which human interactions with a computer qualify as programming.
Our participants mentioned a whole spectrum of computing activities: from construct-
ing geometric figures in Geometer’s Sketchpad, finding the primitive of an integral with
Mathematica, or running an open-source Sage program to solve large linear systems,
all the way to devising from scratch a thousand-line program in Maple or C. The
blurred boundary of programming we encounter in the literature also appears amongst

@ Springer

Int. J. Res. Undergrad. Math. Ed.

our interviewees; and this reflects the variety, in terms of size, complexity, and
permanence, of the programs they develop and use.

When we inquired about the mathematical nature of programming, we were
reminded that “doing mathematics is [also] a very poorly defined activity”. In terms
of algorithm development, some participants suggested that it was “most
mathematical” when it involved complex, deep, or original thinking (as in the search
for an efficient algorithm). Others mentioned the need to consider the physical limita-
tions of the computer as distinguishing algorithm development from mathematical
thinking. In general, however, algorithm development was deemed comparable to
solving a problem or constructing a proof, and was hence perceived as a mathematical
activity. In contrast, the mathematicians were reluctant to declare the coding and testing
steps as “mathematics” due to their mechanical nature; and only some eventually
recognized these steps as demanding the same kind of rigor and proficiency as
performing a long by-hand calculation, or checking the logic of a proof. All in all,
most participants recognized a mathematical character in some aspects of program-
ming. But the whole task of programming was principally perceived as a technique (or
a tool) for accomplishing more important mathematical tasks.

One could wonder if our wide-reaching definition hindered our ability to draw
conclusions about the gap that inspired our research. Recall that Buteau et al.’s
(2014) conception of “programming” did not include some technologies that we did
include in our definition, such as Maple, R, and MATLAB; these were assigned to
categories where no significant gaps were found. With our definition, the researchers
might not have identified such a large difference between programming use in teaching
and research. Irrespective of the size of this gap, however, there are differences between
the usages of programming by mathematicians and their students, which led us to
conceptualize the activity in terms of levels.

In the praxeologies described by our participants, we identified six levels at which
an individual might interact with programming: s/he may

LO: Strictly observe the results of a computer program (under the direction of
someone else);

L1: Manipulate the interface of an existing program (in an extracurricular fashion);
L2: Observe (and analyze) the code of a program;

L3: Modify existing code to accomplish something new;

L4: Construct the code of a program, with some elements (e.g., the algorithm)
provided; or

L5: Create a program, including algorithm development, coding, and verification/
validation.

These “levels” provide a measurement of the visibility of and involvement in the
programming activity of a given individual. They should be interpreted as overlapping
intervals on a continuous spectrum. For instance, depending on the amount of independence
one has in completing the different subtasks of programming, an activity could be classified
as L4 or L5; and L5’s most active involvement would include the decision that a task calls
for programming, followed by the creation of a program from scratch. Moreover, a single
research or learning experience might demand engagement at several levels and include
programming activities beyond the span of L0 to L5 (we return to this in the discussion).

@ Springer

Int. J. Res. Undergrad. Math. Ed.

Nonetheless, the six levels above enabled us to make significant comparisons between the
praxeologies of a mathematician and those intended to be developed by his/her students.

Programming Levels in “Pure” Problem Solving

In both research and learning, we found that a main type of task where programming
may be involved is the exploration of abstract concepts, properties, or theories,
typically realized through an Exploration Cycle including the observation of mathe-
matical objects, as well as the formulation and verification of conjectures. Our study
shows that the place of programming within the associated praxeologies may differ
significantly between mathematicians and their students.

Like several pure mathematicians interviewed, Omar develops computer tools (LS5) to
collect evidence about the behaviour of the abstract objects he studies (e.g., in representa-
tion theory). He proceeds through an Exploration Cycle to first gain the insight necessary to
formulate plausible conjectures and then build confidence in their truth. He justifies his
technique principally in an epistemic fashion, exclaiming: “Before starting to prove
something, you'd better know it's true beyond a doubt!” The pragmatic character of his
programming is also undeniable: he is free to control every aspect of his exploration and
extend it to any number of otherwise tedious or impossible examples.

Given his familiarity with creating programs to assist in his own discovery of mathe-
matics, it is not surprising that Omar, like many of our participants, also develops tools to
support his students’ understanding of challenging notions (e.g., spanning sets and linear
independence). From the students’ perspective, however, the proposed praxeology is quite
different from their professor’s: the students are invited to observe dynamic images
produced by their professor (L0), are prompted to make guesses, and are provided images
that verify or refute their voiced conjectures. Their exploration is strongly guided and
limited to the time available in class, and the programming activity remains completely
inaccessible to them. The fact that Omar does not share his programs with his students
parallels the way he (and other pure mathematicians) communicate their research results:
once they have arrived at a theorem and its proof, they typically see no need to discuss the
programming that assisted their exploratory work. Similarly in teaching, Omar sees no need
to encourage further exploration with a program once he believes the main goal of student
discovery has been achieved. Indeed, he emphasizes the epistemic quality of the proposed
technique, claiming that observing carefully chosen computer-generated results enables
students to have their intuitions challenged and the abstract theories they’re learning
rendered more concrete, interesting, and memorable. When he attributes a pragmatic value
to the technique, it is in relation to himself: the examples he generates would be difficult, if
not impossible, to reproduce on a board, and he would not have the same flexibility of re-
executing programs in response to the needs of his students. A summary of Omar’s research
praxeology and the counterpart praxeology he proposes to his students is given in Table 1.

Paul is a probability professor whose table of praxeologies would differ from Omar’s
in terms of techniques and justifications. In his research projects that require the use of
computer tools (not all of them do), he remains at LO or L1; the programming is done
by a collaborator. And yet, he encourages his students to write and use programs (L4 or
L5) to discover content of his probability course. Like Omar, Paul brings forth
principally epistemic justifications for his students’ programming-related praxeologies;
the difference is his claim that

@ Springer

Int. J. Res. Undergrad. Math. Ed.

Table 1 Omar’s research praxeology vs. the praxeology proposed to his students

Task type: Discover mathematical concepts, properties, or theories

Technique Justification
Omar LS5 + Exploration Cycle until Mainly Epistemic: Gain insight to formulate
“sufficient” evidence collected conjectures and confidence to proceed to proof

Omar’s students L0 + Guided Exploration Cycle until Mainly Epistemic: Have intuition challenged
time runs out in class and abstract theory rendered concrete,
exciting, and memorable

It's much better if the students can program it for themselves. If they're sitting in
front of the screen and they can play with it and they can adjust parameters, it
becomes a kind of a game and it's more interactive for them. And it's better than
me just showing them a picture at the front of the classroom, you know what I
mean? If they're doing it themselves, they learn it way better.

We will return to this idea that higher-level interactions may have greater epistemic
value. For now, this claim naturally raises the question: why doesn’t Omar invite his
students to reach L5?

Ironically, it is Paul who provides an enlightening story for framing the response to this
question. It turns out that the probability course described above is geared towards science
students; in the corresponding course for mathematics majors, computer technology is
absent. Of course, there are many ways to “discover mathematical concepts, properties, or
theories”, and Paul’s pure mathematics students are encouraged to adopt more “traditional
techniques. Upon reflecting on the addition of programming, Paul concluded: “I think it's
the right way to go actually. I think that we're missing an opportunity here.” So, why not
take the opportunity? At first, Paul discussed curricular constraints: the pure mathematics
students may not have the prerequisite knowledge needed for programming and it would
take too much time to develop and integrate new activities into the already jam-packed
curriculum. Omar also explained that “There’s so much material in [his] course that it seems
like it would be an exaggeration to ask them to program as well [...] But, if we had more
time, well it would be nice.” Since Paul already overcame curricular obstacles during the
transformation of the probability course for science students, it seems like something deeper
could be at play. He eventually revealed that “Academia is a very conservative place. And
there's a huge amount of inertia. And there's also a huge amount of independence among the
different instructors.” He added: “I don't hear a lot of people talking about this being a great
idea.” Omar elaborated on similar institutional constraints: “I realize that my department is
very abstract [...] And the students in pure math love that. But I believe it limits some of
their abilities that are absolutely essential if they want to become researchers.”

Programming Levels in “Applied” Problem Solving
When it comes to solving “real-world” problems, the applied mathematicians we

interviewed create computer programs to accomplish several tasks, including data
analysis (to develop or validate mathematical models), parameter calculation (to specify

@ Springer

Int. J. Res. Undergrad. Math. Ed.

models to a context), or the exploration of model behaviour (for validation purposes or
to describe, explain, or predict real-world phenomena). As above, we discuss praxeol-
ogies related to one (the last) type of task.

According to our applied participants, exploring the behaviour of their mathematical
models necessitates programming for pragmatic reasons: not only does it create tools
capable of performing a massive number of calculations and experiments (i.e., varying
parameters to consider different scenarios), but first and foremost it permits the
simulation of models that lack analytic solutions. As Alice explains, “it's highly
unlikely that a mathematical model will give you the quadratic formula in the end. It
would be nice, but that doesn't happen. And so, computer programming is essential.”
Though it was not emphasized, the epistemic character of programming is also clear:
the visual and dynamic output generated by the computer enables the recognition of
patterns leading to conclusions about the phenomena under study.

Given their pragmatic justifications, the applied researchers all interact with program-
ming at the highest level (L5). We also observed the least dramatic differences between
programming levels in research and learning within this category. Still, there were some
notable differences and interesting debates. Barbara’s students, for example, are not asked
to develop their own programs. In addition to observing results shown by their professor in
class (L0), they receive explanations of her code (L2), manipulate her programs at the
interface level (L1), and modify them (L3) to analyse different models. Barbara explains
that “[she] want[s] [students] to see that programming isn't that bad. You can do lots of
interesting stuff with just a few lines of code.” Through the proposed techniques, her
students may learn about programming (e.g., syntax and structure), and may come to
appreciate the computer as a powerful tool. Having some insight into the code may also
support their understanding of the corresponding output and models. Nevertheless, Barbara
justifies mid-level interactions by saying things like, “It wasn't so much how to program a
vector field, it was how to use a vector field to understand the model.” Her ultimate goal is
for students to understand models and learn how to use them, not necessarily how to
program them. Like Omar’s table of praxeologies, Barbara’s would exhibit a gap: L5 in her
research vs. LO-L3 in the praxeologies she proposes to her students.

In comparison, Table 2 below shows no difference between the technique compo-
nents of Ben’s research praxeology and the praxeology proposed to his students
(though the students often receive some direction, at least in the form of knowing that
programming is necessary).

Table 2 Ben'’s research praxeology vs. the praxeology proposed to his students

Task type: Understand the behaviour of a mathematical model

Technique Justification
Ben L5 + Experimentation (i.e., variation Mainly Pragmatic: Otherwise impossible
of parameters to observe different output) due to a lack of analytic solutions and
the number of calculations and scenarios
to consider
Ben’s students L5 + Experimentation (i.e., variation Mainly Epistemic: LS leads to a deep
of parameters to observe different output) understanding and control of the tool,

output, and model

@ Springer

Int. J. Res. Undergrad. Math. Ed.

This similarity in praxeologies can be explained by Ben’s belief that L5 program-
ming interaction has a higher epistemic value. He explains that “it’s very hard to write a
program and not understand what it’s doing. You know, it’s a different level of
comprehension.” In contrast, he describes his students’ manipulation of a pre-
developed program (L3) as “an exercise in typing. They really didn’t know what it
was doing or why it was doing it.” In Ben’s view, if students write their own programs,
it is more likely that they will understand the tool, be able to adapt it to their needs,
effectively interpret the results, and, by extension, better understand the models. Other
mathematicians add that students may come to grasp better the concepts and processes
they must structure into an algorithm and transpose into a programming language.
Then, having created their own tool, students may feel a sense of empowerment and
excitement that may further enhance their experience. Finally, students may gain insight
into elements of programming (e.g., algorithms, data structures, code efficiency) that
could not only allow them to make better use of existing software (previously “black
boxes”), but also provide them with the knowledge to develop their own tools in the
future. After all, the more the power of programming is shifted into the hands of
students, the more they may be convinced of both the epistemic and pragmatic value of
such techniques. In sum, many participants agree with Paul that “it's much better if the
students can program it for themselves.”

Once again, we may wonder why Barbara does not ask her students to develop their
own programs. Throughout her interview, the professor complained that her university
lacks a mandatory training in programming for mathematics students and that the
activity is not widely implemented by her colleagues; some of her students are even
afraid of programming. In contrast, learning and using programming are integrated
throughout the curricula in Ben’s department. But, as Ben explains, echoing Paul, this
systematic institutionalization of programming is not necessarily easy to achieve:

There's a lot of inertia in Universities. [...] You don't just introduce something and
it happens. [...] You introduce it one year, and everybody talks about it, and it's a
no. And then there's lots of conversations about it [...] because you want people to
have something that they truly need, and that has to evolve through discussion.

Even when the discussion leads to department-wide recognition of programming, the
institutional context may impose other constraints. Alice, for example, works at a university
that has integrated programming-based techniques, but that lacks the resources for an
adequate grading of students’ code; and in Alice’s view, “if it’s not assessed in detail, the
requirement is shallow.” As a result, she provides pre-developed programs and asks
students to make modifications (L3), much like Barbara. Reflecting the way that she and
other mathematicians we interviewed had to develop their programming competencies
independently of their mathematics courses, Alice concluded bluntly: “those [students]
who take the extra step will learn. Those that don't won't.”

Discussion

The differences between the praxeologies of individual mathematicians and their
students seem to align with differences in the status of programming (contested,

@ Springer

Int. J. Res. Undergrad. Math. Ed.

admitted, or shared) in the related institutions. For our pure mathematician participants,
it appears that programming (L5) is admitted within their practices: it is becoming more
accepted as mathematicians demonstrate how the computer can be useful in pure
problem solving. But there still exist pure mathematicians who use only traditional
methods. In addition, whether or not programming is involved from one project to the
next, can vary greatly for a given pure mathematician, depending on the nature of the
project. Phillippe summarizes the general opinion when he says that “Programming is
really one tool among many others to do mathematics [...] that is not necessary, but that
is useful.” In contrast, Barbara suggests that “It's absolutely indispensable for applied
mathematicians. I mean, I don't think there's any applied mathematician who doesn't
use the computer.” Our applied participants explained that their projects simply
wouldn’t be possible without the computer. Many of them even seemed surprised by
the question of how they use programming in their research. Programming (L5) might
hence be categorized as shared within the applied mathematics community.

When it comes to pure or applied courses/programs offered by mathematics depart-
ments, programming is not always accorded as high a status as in the relevant
mathematical community. Both Omar and Paul, for example, suggest that their depart-
ments contest the integration of programming in courses geared towards pure mathe-
matics students. In fact, all our participants agreed that programming should not be
accorded a significant place (if any) in courses like topology or measure theory. In
contrast, Paul’s university chooses to introduce programming to its science students
taking a course that is equivalent to one in the pure mathematics program, which likely
reflects the greater importance attributed to programming in the applied mathematics
community. Indeed, when we asked which courses would most naturally include
programming, those related to applied mathematics seemed to be the “obvious”
responses. Examples like Barbara and Alice, however, show how institutional con-
straints might cause programming to be seen as admitted rather than shared within
courses of an applied nature. In sum, we find that while programming (L5) may be part
of the shared (admitted) practices of applied (pure) mathematicians, within educational
institutions it may be portrayed as admitted (contested) for the community of students
in applied (pure) mathematics courses.

As alluded to previously, many factors may contribute to this status gap. At a
personal level, the professors we interviewed all share the goal of assisting students
in acquiring mathematical knowledge; what they debate is the appropriate degree to
which students should be asked to interact with programming to reach this goal. While
some defend lower-level programming approaches as allowing students to effectively
gain access to the mathematics, without focussing too much on the programming,
others encourage students to engage in programming because they believe it will better
support their understanding of the related mathematics. This said, it is interesting to
note that Paul and Ben, who are part of the latter mindset, teach in courses that have
been specifically designed to implement programming-related praxeologies; in other
words, programming has been institutionally recognized as part of the mathematics
they teach, rather than just one possible means to the mathematics. In comparison,
professors who implement lower-level programming interactions, such as Omar and
Barbara, speak constantly about the institutional constraints they face, including a lack
of time to introduce competencies that do not figure amongst the prerequisites or
objectives of their courses.

@ Springer

Int. J. Res. Undergrad. Math. Ed.

It would seem, then, that an explicit recognition of programming (e.g., throughout
curricular documents) as a worthwhile mathematical skill to be developed by students,
could be an important factor influencing the status gap. Note that to “contest™ a practice in a
course is not necessarily a negative standpoint; it is to be expected that not all courses in a
pure or applied mathematics program would be deemed suited to programming integration.
But if a university wishes to eliminate or reduce the gap, then it seems essential to have
courses where programming activity is not only perceived as an appropriate optional
addition, but is also institutionally recognized as part of the course; and this could call
for a re-evaluation of the mathematics that is taught. It might also require a shift in how
programming is perceived by mathematicians: recall that our participants tend to see
programming as a tool used to access the heart of their mathematical work. If they were
to see it as more central (e.g., worthy of publication), maybe it would be easier to encourage
an analogous change in universities. To be critical, perhaps the first step is to decide if (and
where) reducing the gap is the favourable direction to take. From Morrissette’s (2011)
perspective, the work of innovative practitioners, like some of our participants, could make
all the difference. As a case in point, the research of mathematicians like Bailey and
Borwein (2005) undoubtedly contributed to computer-based techniques evolving from
contested to admitted in the pure mathematics community.

Turning a critical eye on our own work, we realize that some readers might be led to
conclude that students should, whenever possible, engage at the highest programming
level, L5 (i.e., creating a computer program from scratch). This is not our intention; on
the contrary, each of the “levels” may have its own place in undergraduate mathematics
education, as it has in mathematical research. The researchers we interviewed men-
tioned having to interpret their colleagues’ computer-based results (LO), using ready-
made software so as not to “reinvent the wheel” (L1), and making sense of existing
code (L2), either to validate it (e.g., in the case of a collaboration) and/or with the goal
of reworking it to fit their own projects’ needs (L3). In a society where programming is
often collaborative, the lower to mid-levels (L0-L3) could be equally important. In fact,
this leads us to envisage another level: L6, write a program to be shared with others. As
some of our participants explained, it is quite a different task to prepare a program to be
viewed, critiqued, modified, and used by someone else. But this additional level (i.e.,
sharing a computer tool) could also contribute to the greater visibility of programming
in mathematics, with enhanced means for its validation; and this could favour its
recognition as a mathematical activity.

Conclusions

In this paper, we presented some results of an exploratory study that sought to better
understand why Canadian mathematicians report using programming in their teaching
much less than in their research (Buteau et al. 2014).

Our analysis of interviews with 14 mathematicians shows that the word “programming”
has diverse meanings in mathematics. Furthermore, when professors declare “using
programming” in their courses, their students may interact with the activity at various levels,
from strictly observing the results of programs (L0) to independently developing their own
computer tools (L5). The identification of six levels allowed us to note important differences
between the praxeologies of individual mathematicians and those they propose to their

@ Springer

Int. J. Res. Undergrad. Math. Ed.

students, with the latter rarely involving the most active version of L5. Adopting
Morrissette’s (2011) terminology, we further noted that while programming (L5) is shared
or admitted within applied or pure mathematics research communities, respectively, it may
be admitted or contested within institutions where mathematics is taught and learnt.

Adding their views as to why such gaps occur and, by extension, pointing to issues that
should be considered when seeking to harmonize praxeologies, our participants spoke of
different kinds of institutional constraints: curricular (objectives, prerequisites, time),
departmental (tension between academic freedom and course coordination, lack of re-
sources to assess programming in large classes), and cultural (deep-rooted traditions in
mathematics). And yet, they spoke equally of the potential benefits of reducing the gaps.
Not only might doing so encourage techniques of high epistemic value or make students
aware of the pragmatic character of programming, but it may be important for social/
cultural reasons: programming may widen students’ vision and appreciation of all math-
ematical activity, while also encouraging the development of practices that could diversify
their options beyond their degree.

Of course, one cannot expect the praxeologies developed by university mathematics
students to be faithful replicas of professional mathematics practices. This is partly
explained by the diversity of these practices and the associated institutions, even among
academic mathematicians. But more fundamentally, the learning goals which define the
undergraduate experience are not strictly equivalent to research goals. Even with a greater
presence of research-like projects involving programming, many learning tasks will still
differ from research in scope or approach. Paradoxically, this could mean that for a task
where a mathematician engages in programming at a lower level to save time (e.g. by using
a preprogrammed tool), a student might be asked to engage at a higher level for epistemic
reasons (to understand the associated algorithm, develop skills in programming, etc.).

This reflection emphasizes the need for a nuanced interpretation of our levels. Rather
than associating them with a hierarchical scale and systematically aiming for the
highest possible, one should choose the level that is adequate for a given task, with a
given group of students, in a given course. There could be numerous justifications for
exposing students to all levels, including the development of a range of widely
applicable competencies: e.g., managing their and others’ computational work, deter-
mining when a situation calls for programming in the first place, researching and
judging the adequacy of existing tools, constructing powerful tools when adequate
tools do not already exist, and sharing tools as contributions to society. Given the recent
push to implement computational thinking across all school levels, such competencies
could be as beneficial for future teachers and professors as for those seeking careers in
STEM disciplines. Further research may be needed to uncover what benefits and
obstacles these different groups of students actually experience while programming
in mathematics — but not without continuing to follow the evolution of mathematical
praxeologies both within and outside mathematics departments.

Acknowledgements An carlier version of a portion of this paper was presented by Broley at INDRUM
2016 and published in the corresponding proceedings (see Broley 2016). We thank the discussion group on
Teachers’ Practices and Institutions for their insightful questions and comments throughout the conference,
many of which contributed to our expansion of the paper. We also thank the reviewers and editors for their
thoughtful suggestions throughout the review process. The research discussed herein was completed as part of
a M.Sc. in mathematics (see Broley 2015 for the complete thesis) at Université de Montréal, with the support
of the Social Sciences and Humanities Research Council of Canada.

@ Springer

Int. J. Res. Undergrad. Math. Ed.

References

Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about
instrumentation and the dialectics between technical and conceptual work. International Journal of
Computers for Mathematical Learning, 7, 245-274.

Artigue, M. (2016). Mathematics education research at university level: Achievements and challenges. In E.
Nardi, C. Winslew, & T. Hausberger (Eds.), Proceedings of INDRUM 2016 first conference of the
international network for the didactic research in university mathematics (pp. 11-27). Montpellier:
University of Montpellier and INDRUM.

Bailey, D. H., & Borwein, J. M. (2005). Experimental mathematics: Examples, methods and implications.
Notices of the AMS, 52(5), 502-514.

Broley, L. (2015). La programmation informatique dans la recherche et la formation en mathématiques au
niveau universitaire. Universit¢ de Montréal, Montréal: Unpublished master’s thesis Available at
https://papyrus.bib.umontreal.ca/xmlui/handle/1866/12574.

Broley, L. (2016). The place of computer programming in (undergraduate) mathematical practices. In E.
Nardi, C. Winslew, & T. Hausberger (Eds.), Proceedings of INDRUM 2016 first conference of the
international network for the didactic research in university mathematics (pp. 360-369). Montpellier:
University of Montpellier and INDRUM.

Burton, L. (2004). Mathematicians as enquirers: Learning about learning mathematics. Norwell: Kluwer
Academic Publishers.

Buteau, C., & Muller, E. (2010). Student development process of designing and implementing exploratory and
learning objects. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the
sixth congress of the European Society for Research in mathematics education (pp. 1111-1120). Lyon:
Institut national de recherche pédagogique.

Buteau, C., Jarvis, D., & Lavicza, Z. (2014). On the integration of computer algebra systems (CAS) by
Canadian mathematicians: Results of a national survey. Canadian Journal of Science, Mathematics, &
Technology. Education, 14(1), 1-23.

Chevallard, Y. (1998). Analyse des pratiques enseignantes et didactique des mathématiques : L'approche
anthropologique. Retrieved from http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Analyse des
pratiques_enseignantes.pdf.

Cuoco, A., Goldenberg, E. P., & Mark, J. (1996). Habits of mind: An organizing principle for mathematics
curricula. Journal of Mathematical Behavior, 15, 375-402.

Francis, K. & Davis, B. (forthcoming). Number, arithmetic, multiplicative thinking and coding. In
Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education.
Dublin.

Knuth, D. (1985). Algorithmic thinking and mathematical thinking. The American Mathematical Monthly,
92(3), 170-181.

Lagrange, J.-B., & Rogalski, J. (2015). Savoirs, concepts et situations dans les premiers apprentissages en
programmation et en algorithmique. In A.-C. Mathé & E. Mounier (Eds.), Actes du séminaire national de
didactique des mathématiques (pp. 155-176). Paris: IREM Paris.

Lavicza, Z. (2010). Integrating technology into mathematics teaching at the university level. ZDM. The
International Journal on Mathematics Education, 42(1), 105-119.

Leron, U., & Dubinsky, E. (1995). An abstract algebra story. The American Mathematical Monthly, 102(3),
227-242.

Madsen, L. M., & Winslew, C. (2009). Relations between teaching and research in physical geography and
mathematics at research-intensive universities. International Journal of Science and Mathematics
Education, 7, 741-763.

Misfeldt, M. & Ejsing-Dunn, S. (2015). Learning mathematics through programming: An instrumental
approach to potentials and pitfalls. In K. Krainer & N. Vondrova (Eds.), Proceedings of the Ninth
Congress of the European Society for Research in Mathematics Education (pp. 2524-2530). Charles
University in Prague, Faculty of Education, and ERME: Prague.

Morrissette, J. (2011). Vers un cadre d'analyse interactionniste des pratiques professionnelles. Recherches
qualitatives, 30(1), 10-32.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.

Society for Industrial and Applied Mathematics. (2012). Mathematics in industry. Retrieved from http:/www.
siam.org/reports/mii/2012/report.pdf.

Van der Maren, J.-M. (1996). Le codage et le traitement des données. In Méthodes de recherche pour
l'éducation (2nd ed., pp. 427-457). Montréal/Bruxelles: PUM et de Boeck.

@ Springer

https://papyrus.bib.umontreal.ca/xmlui/handle/1866/12574
http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Analyse_des_pratiques_enseignantes.pdf
http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Analyse_des_pratiques_enseignantes.pdf
http://www.siam.org/reports/mii/2012/report.pdf
http://www.siam.org/reports/mii/2012/report.pdf

Int. J. Res. Undergrad. Math. Ed.

Vermersch, P. (2006). L'entretien d’explicitation (5th ed.). Paris: ESF éditeur.

Watson, A. (2008). School mathematics as a special kind of mathematics. For the Learning of Mathematics,
28(3), 3-7.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining
computational thinking for mathematics and science classrooms. Journal of Science Education and
Technology, 25, 127-147.

Winslew, C. (2015). Mathematics at university: The anthropological approach. In S. J. Cho (Ed.), Selected
regular lectures from the 12th international congress on mathematical education (pp. 859-875). Cham:
Springer International Publishing.

Winslew, C., Barquero, B., De Vleeschouwer, M., & Hardy, N. (2014). An institutional approach to university

mathematics education: From dual vector spaces to questioning the world. Research in Mathematics
Education, 16(2), 95-111.

@ Springer

	Levels of Programming in Mathematical Research and University Mathematics Education
	Abstract
	Abstract
	Introduction
	Context and Theoretical Underpinnings
	The Rise, Fall, and Revival of Programming in Mathematics Education
	The Gap between Professional Mathematics and Mathematics Education
	ATD, a Frame for Capturing, Comparing, and Clarifying Practices

	Research Questions and Methodology
	Mathematicians’ Perspectives on Programming
	What Is Programming?
	Programming Levels in “Pure” Problem Solving
	Programming Levels in “Applied” Problem Solving

	Discussion
	Conclusions
	References

